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Abstract

Multi-hop question answering (QA) involves
finding multiple relevant passages and step-by-
step reasoning to answer complex questions,
indicating a retrieve-and-read paradigm. How-
ever, previous retrievers were customized for
two-hop questions, and most of them were
trained separately across different hops, re-
sulting in a lack of supervision over the en-
tire multi-hop retrieval process and leading to
poor performance in complicated scenarios be-
yond two hops. In this work, we introduce
Beam Retrieval, an end-to-end beam retrieval
framework for multi-hop QA. This approach
models the multi-hop retrieval process in an
end-to-end manner by jointly optimizing an
encoder and two classification heads across
all hops. Moreover, Beam Retrieval main-
tains multiple partial hypotheses of relevant
passages at each step, expanding the search
space and reducing the risk of missing relevant
passages. To establish a complete QA system,
we incorporate a supervised reader or a large
language model (LLM). Experimental results
demonstrate that Beam Retrieval achieves a
nearly 50% improvement compared with base-
lines on challenging MuSiQue-Ans, and it also
surpasses all previous retrievers on HotpotQA
and achieves 99.9% precision on 2WikiMulti-
HopQA. Providing high-quality context, Beam
Retrieval helps our supervised reader achieve
new state-of-the-art performance and substan-
tially improves the few-shot QA performance
of LLMs1.

1 Introduction

Question Answering (QA) has been a mainstream
research in natural language processing (NLP) for
a long time. With the development of pretrained
language models (PLMs), simple QA tasks can be
solved by adopting a BERT-like PLM (Devlin et al.,

*Corresponding author
1Code is available at https://github.com/

canghongjian/beam_retriever
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Question:
The gold spike in the city where Falling in 
Reverse formed is owned by a person whose 
alma mater has how many undergraduates?

Title: Falling in Reverse
Falling in Reverse is an American rock band 
based in Las Vegas, Nevada and formed in 2008, 
signed to Epitaph Records

Title: Gold Spike (property)
… at the Gold Spike, a 50 - room three floor hotel 
located in downtown Las Vegas. It was owned by 
entrepreneur Tony Hsieh and …

Title: LinkExchange
It was founded in March 1996 by 23-year-old 
Harvard graduates Tony Hsieh …

Title: Harvard University
Harvard's 2,400 professors, lecturers, and 
instructors instruct 7,200 undergraduates and 
14,000 graduate students. . …

…city where Falling in 
Reverse formed…

…gold spike… owned 
by a person… 

… alma mater… 

...how many 
undergraduates…

First 
Hop

Second 
Hop

Third 
Hop

Last 
Hop

Figure 1: An example of multi-hop QA from MuSiQue-
Ans benchmark. This complicated 4-hop question re-
quires the model to select relevant passages based on
the question and previously chosen passages.

2019). As a result, researchers have been increas-
ingly drawn to more complex QA benchmarks,
such as multi-hop QA. This presents a significant
challenge, as it requires reasoning across multiple
and diverse passages to accurately answer com-
plicated multi-hop questions. Many high-quality
multi-hop QA datasets have been introduced, such
as HotpotQA (Yang et al., 2018), 2WikiMulti-
HopQA (Ho et al., 2020), MuSiQue (Trivedi et al.,
2022) and so on. Figure 1 illustrates an example
of an actual question taken from MuSiQue-Ans
dataset.

Mainstream methods for multi-hop QA often
follow a retrieve-and-read paradigm (Chen et al.,
2017; Zhu et al., 2021), including a passage re-
triever to filter out extraneous information and a
reader to obtain the final answer (Chen et al., 2017;
Tu et al., 2020; Xiong et al., 2021; Zhao et al.,
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2021; Wu et al., 2021; Trivedi et al., 2022; Li et al.,
2023; Zhangyue et al., 2023). However, these meth-
ods have primarily focused on two-hop scenarios,
exhibiting limited adaptability to more complex
situations beyond two-hops. Additionally, while
multi-hop retrieval requires identifying the next
hop passage based on the question and previously
selected passages (see figure ??), few of them fo-
cus on supervision over the entire retrieval process.
Furthermore, these retrievers exhibit limited robust-
ness, as the entire retrieval process is susceptible
to failure if the first stage identifies irrelevant pas-
sages. In conclusion, previous retrievers perform
poorly when handling questions with more than
2 hops and provide low-quality context for down-
stream QA tasks.

To address the described problems, we pro-
pose Beam Retrieval, an end-to-end beam retrieval
framework for multi-hop QA. Beam Retrieval uti-
lizes an encoder and two classification heads to
model the entire multi-hop retrieval process in an
end-to-end manner and can be adapted to a ques-
tion with a variable hop. During training, Beam
Retrieval accumulates the loss at each step and
jointly optimizes the encoder and two classification
heads in the backpropagation phase, enabling the
model to learn the entire retrieval process. During
inference, Beam Retrieval searches the relevant pas-
sage at each step until the highest predicted score
falls below a predefined threshold. In summary,
Beam Retrieval produces a chain of relevant pas-
sages with the highest score using a single forward
pass, effectively learning the entire multi-hop re-
trieval process. Moreover, we employ the beam
search paradigm by keeping track of multiple par-
tial hypotheses of relevant passages at each step.
This approach enables our model to learn more neg-
ative passage pairs in the expanded search space,
enhances the probability of obtaining the truly rele-
vant passages, and mitigates the impact of retrieval
errors that may occur in the early stages. To reduce
the gap between training and reasoning, Beam Re-
trieval is designed to reason using the same beam
size as it employs during training.

Beam Retrieval can also serve as a plugin in the
QA domain, providing high-quality relevant con-
text and enhancing the performance of downstream
QA tasks. Based on Beam Retrieval, we implement
a multi-hop QA system to extract the answers by
incorporating a supervised reader (Li et al., 2023;
Zhangyue et al., 2023) following conventional ma-
chine reading comprehension setting or a few-shot

large language model (LLM) (Brown et al., 2020;
OpenAI, 2023). We validate Beam Retrieval by
extensive experiments on three benchmark datasets
MuSiQue-Ans, HotpotQA and 2WikiMultihopQA,
and experimental results demonstrate that Beam
Retrieval surpasses all previous retrievers by a large
margin. Consequently, Beam Retrieval substan-
tially improves the QA performance of downstream
QA readers on all three datasets.

We highlight our contributions as follows:

• We propose Beam Retrieval, which models
the entire multi-hop retrieval process in an
end-to-end manner by jointly optimizing an
encoder and two classification heads across
all hops. Designed to handle questions with
variable hops, Beam Retrieval shows great
performance, especially in complex scenarios
beyond two hops.

• Our Beam Retrieval keeps multiple hypothe-
ses of relevant passages at each step during
end-to-end training and inference, which mit-
igates the impact of retrieval errors that may
occur in the early steps. This beam search
paradigm brings further improvement.

• We evaluate our multi-hop QA system on
three multi-hop QA datasets to validate the
effectiveness of Beam Retrieval. Beam
Retrieval achieves a nearly 50% improve-
ment compared with baselines on challenging
MuSiQue-Ans, and it also surpasses all pre-
vious retrievers on HotpotQA and achieves
99.9% precision on 2WikiMultiHopQA. Pro-
viding high-quality context, Beam Retrieval
helps our supervised reader achieve new
state-of-the-art performance and substantially
improves the few-shot QA performance of
LLMs.

2 Related Work

Retrievers in Multi-Hop QA Mainstream meth-
ods for multi-hop QA often follow a retrieve-and-
read paradigm (Chen et al., 2017; Zhu et al., 2021),
where a retriever is used to find passages relevant
to the multi-hop question, followed by a reader
that answers the question based on the retrieved
content. Previous retrievers focus on two types of
multi-hop QA settings: the open-domain setting
and the reading comprehension setting. In the open-
domain setting, models are required to retrieve rel-
evant passages within a large-scale corpus, while
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the reading comprehension setting involves search-
ing within a smaller set of candidate passages. In
open-domain multi-hop QA, retrievers can be cate-
gorized into semantic retrieval methods like BM25
(Chen et al., 2017) and dense retrieval methods
like MDR (Xiong et al., 2021) and BeamDR (Zhao
et al., 2021). Retrievers in the reading compre-
hension setting are almost cross-encoders, divided
into two types. One type is the one-step methods.
SAE (Tu et al., 2020) and MuSiQue SA Selector
(Trivedi et al., 2022) concatenate each candidate
passage and the question as inputs fed to BERT,
then select out the most relevant passages with the
highest scores. Such methods do not utilize the
dependency between relevant passages, resulting
in a limited performance. The other type is the two-
step method. S2G (Wu et al., 2021) and FE2H (Li
et al., 2023) select the first hop passage in the same
way as one-step. In the second stage, they identify
the second hop relevant passage by pairing the se-
lected passage with the other candidate passages.
R3 (Zhangyue et al., 2023) selects three passages in
the first stage, then combines them two by two and
identifies the true passage pair in the second stage.
Notice that the unselected passages in the first stage
will not be utilized in the second stage, leaving lim-
itations in retrieval. The Beam Retrieval proposed
in this paper, primarily aimed at the reading com-
prehension setting, similarly introduces the idea
of beam search as in BeamDR. However, unlike
BeamDR, Beam Retrieval emphasizes modeling
the entire multi-hop retrieval process and dealing
with complex scenarios beyond two hops.

3 Beam Retrieval

Beam Retrieval is designed to handle a k-hop multi-
hop question Q and accurately selects the most
relevant passages, providing nearly noiseless con-
text for downstream QA tasks. In this section, we
clarify how Beam Retrieval infers and trains in an
end-to-end manner, which is illustrated in Figure 2.

3.1 Problem Formulation

Given a k-hop question Q and a candidate set with
n passages as D = {p1, p2, ..., pn}, multi-hop re-
trieval aims to produce a relevant passages chain
(p̂1, p̂2, ..., p̂k). Most existing work formulates it
as a one-step or two-step sequence labeling task,
classifying every passage pi ∈ D as relevant or
not. However, this method lacks generality and
precision.

In contrast, we align the multi-hop retrieval task
with text decoding, proposing a more general re-
trieval framework with higher precision. Con-
ceptually, a passage pi ∈ D corresponds to a
token wi ∈ V and the question Q corresponds
to a special start token “<s>”. Similarly, we
also denote the output of a multi-hop retriever as
źt = f́(Q, p̂1, ..., p̂t−1), given the concatenated se-
quence of question and passages identified so far,
(Q, p̂1, ..., p̂t−1), which we write as p̂<t for short.
The output źt ∈ Rn.

We use an auto-encoder language model as an en-
coder to derive embeddings for the concatenated se-
quence (Q, p̂1, ..., p̂t−1, źt). Subsequently, a fully
connected layer is utilized to project the final di-
mension of the “[CLS]” representations of these
embeddings into a 2-dimensional space, represent-
ing “irrelevant” and “relevant” respectively. The
logit in the “relevant” side serves as the score for
the sequence. This scoring process is denoted by a
function S(źt|p̂<t), and it is shown in Figure 2.

The probability distribution over the next possi-
ble relevant passage being p ∈ D is the softmax:

Ṕ (p̂t = p|p̂<t) =
S(źt|p̂<t)∑

p∈D\{p̂1,...,p̂t−1} S(p|p̂<t)

∀źt ∈ D \ {p̂1, ..., p̂t−1}
(1)

We should keep the uniqueness of each passage
within the sequence, as there are no duplicated
passages in the only one ground-truth relevant pas-
sage chain. This requirement differs from the text
decoding process, where such uniqueness is not
necessarily enforced.

3.2 Scoring

As described in Section 3.1, every hypothesis will
be scored at each step. Beam Retrieval also em-
ploys a scoring function S(źt|p̂<t) as illustrated in
Figure 2, which utilizes an encoder and two classifi-
cation heads to obtain scores for each hypothesis of
passages. At the first hop, for every passage pi ∈ D
we concatenate “[CLS] + Q + pi + [SEP]” to the
encoder and derive the encoded (Q, pi) representa-
tions Hi = [hi

1,hi
2, ...,hi

Li
] ∈ RLi×h, where Li de-

notes the length of the concatenated sequence and h
denotes the output dimension of the encoder. Then
a classification head named “classifier1” projects
every Hi into a 2-dimensional space, represent-
ing “irrelevant” and “relevant” respectively. We
take the logit in the “relevant” side as the score
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Figure 2: A visualization of Beam Retrieval with a beam size of 2 for the example in Figure 1. The left part shows
how to obtain scores for each hypothesis, where M denotes the number of hypotheses at each hop, L denotes the
max length of the hypotheses and h denotes the output dimension of the encoder. The right part shows how Beam
Retrieval reasons and trains in an end-to-end way, where the red path refers to the ground-truth relevant passages.

for the sequence (Q, pi). At subsequent hop t,
we concatenate “[CLS] + Q + p̂1 + ... + p̂t−1

+ źt + [SEP]” for every źt ∈ D \ {p̂1, ..., p̂t−1}.
We use the same encoder but another classifica-
tion head named “classifier2” to obtain the score
of concatenate sequence (Q, p̂1, ..., p̂t−1, źt) in the
same way. The structures of “classifier1” and
“classifier2” are totally the same, the only differ-
ence is “classifier1” handles a fixed n sequence
while “classifier2” deals with a variable number
of sequences in an expanded search space.

3.3 End-to-End Inference

Compared with previous customized two-step re-
trieval methods (Wu et al., 2021; Li et al., 2023;
Zhangyue et al., 2023), Beam Retrieval employs
the beam search paradigm to retrieve multiple rele-
vant passages at each hop, discovering all the rele-
vant passages of Q in an end-to-end way. Let B be
the predefined beam size. Starting from the ques-
tion Q, Beam Retrieval pairs it with n passages
in D and scores these n concatenated sequences
through the encoder and classifier1, choosing the
B passages with the highest scores as the first se-
lected passages. At subsequent hop t, Beam Re-
trieval keeps track of B partial hypotheses, denoted
as Pb

t−1 = {p̂b1, ..., p̂bt−1}, b ∈ [1, B]. Then we con-

catenate (Q, Pb
t−1, źt) for every źt ∈ D\Pb

t−1 as in-
put concatenated sequences. In this way Beam Re-
trieval expands the search space, producing M hy-
potheses of passages, where M is slightly less than
B×n as we should keep the uniqueness of each pas-
sage within the sequence. Then we score these hy-
potheses using the encoder and classifier2, choos-
ing the B hypotheses with the highest scores. This
process continues until the current highest pre-
dicted score falls below a predefined threshold τ ,
and we take the passage sequence from the previ-
ous step that has the highest score.

Beam Retrieval finishes the multi-hop retrieval
task using a single forward pass, where it calls
k times encoder, 1 time classifier1, and k − 1
times classifier2. Additionally, as we can see in
Figure 2, for methods that select only one passage
at a time, choosing an irrelevant passage in the first
stage could fail in the entire multi-hop retrieval
process. In conclusion, Beam Retrieval reduces the
risk of missing hidden relevant passage sequences
by keeping the most likely B hypotheses at each
hop and eventually choosing the hypothesis that
has the overall highest score.

1721



3.4 Jointly Optimization
We jointly optimize the encoder, classifier1, and
classifier2 across all hops in an end-to-end man-
ner. Let (p1, p2, ...,pk) be the ground truth rele-
vant passages. At the first hop, the loss can be
represented as:

L1 =−
∑

p∈D
l1,plogS(p|Q)+

(1− l1,p)log(1− S(p|Q))

(2)

where l1,p is the label of p and S(p|Q) is the score
function described in Section 3.1. At subsequent
hop t, the loss can be represented as:

Lt =−
B∑

b=1

∑

p∈D\Pb
t−1

lt,plogS(p|Pb
t−1, Q)

+ (1− lt,p)log(1− S(p|Pb
t−1, Q))

(3)

where lt,p is the label of p. As the beam size B in-
creases, there is a corresponding rise in the number
of irrelevant passage sequences. This increment
augments Beam Retrieval’s capability to accurately
identify irrelevant paragraph sequences, allowing
the model to halt at the appropriate point during in-
ference, reducing instances of either under-retrieval
or over-retrieval of passages.

It is important to note that not all datasets of-
fer the ground-truth relevant passage for each hop.
Consequently, for t ∈ [1, k] we define lt,p under
two scenarios: one with a provided order of rele-
vant passages and another without a specified order.
If the order of ground-truth relevant passages is
given, lt,p is set as:

lt,p =

{
1 if p = pt

0 if p ̸= pt
(4)

Otherwise lt,p is set as:

lt,p =

{
1 if p ∈ {p1, p2, ...,pk}
0 if p /∈ {p1, p2, ...,pk}

(5)

The overall training loss of Beam Retrieval is:

L =
k∑

i=1

Li (6)

4 Experimental Setup

4.1 Datasets
We focus on the retrieval part of Multi-hop QA
and primarily aim at the reading comprehension

setting. All experiments are conducted on three
benchmark datasets MuSiQue-Ans (Trivedi et al.,
2022), distractor-setting of HotpotQA (Yang et al.,
2018) and 2WikiMultihopQA (Ho et al., 2020).
For each question, MuSiQue-Ans, HotpotQA, and
2WikiMultihopQA provide 20, 10, and 10 can-
didate passages, respectively. MuSiQue-Ans re-
quires the model to answer the complicated multi-
hop questions, while HotpotQA and 2WikiMulti-
hopQA additionally require the model to provide
corresponding supporting sentences. In the setting
of Beam Retrieval augmented LLM, we evaluate
our method on the partial part of three multi-hop
datasets, where we use the 500 questions for each
dataset sampled by (Trivedi et al., 2023).

HotpotQA and 2WikiMultihopQA share a sim-
ilar format and have 2-hop and 2,4-hop questions
respectively. Furthermore, 2WikiMultihopQA has
entity-relation tuples support, but we do not use this
annotation in our training or evaluation. To eval-
uate Beam Retrieval’s performance in more com-
plex scenarios, main experiments are conducted
on MuSiQue-Ans, which has 2,3,4-hop questions
and is more challenging, as it requires explicit con-
nected reasoning.

4.2 Models

4.2.1 Beam Retrieval

Beam Retrieval selects all the relevant passages in
an end-to-end way. We set the predefined threshold
τ to -1. We employ the base and the large version
of DeBERTa (He et al., 2021) as our encoder. We
use a single RTX4090 GPU and set the number of
epochs to 16 and the batch size to 1 (here batch
size means the number of examples taken from the
dataset, and the actual batch size is the hypothesis
number M ). Owing to our multiple calls of encoder
during training, we set gradient checkpointing to
True, otherwise it requires a huge amount of mem-
ory. We use AdamW (Loshchilov and Hutter, 2017)
with a learning rate of 2e-5 for the optimization and
set the max position embeddings to 512. Consid-
ering the long concatenated sequences, we adopt a
truncation method. If the total length exceeds the
max length, we calculate the average length of each
passage and truncate the extra part. To enhance the
robustness of the model, we shuffle the inner order
of the concatenated passages within the hypothesis.
(See Appendix E for more details.)
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4.2.2 Downstream Reader
We implement a downstream reader to receive the
retrieved relevant passages as the context C, and
we concatenate input “[CLS] + Q + [SEP] + C +
[SEP]” to feed our reader. Specifically, we conduct
experiments with two types of readers: supervised
setting and few-shot LLM setting.

(i) Supervised Reader For MuSiQue-Ans
dataset, we train a reading comprehension
model following BertForQuestionAnswering (De-
vlin et al., 2019; Wolf et al., 2020). For Hot-
potQA and 2WikiMultihopQA, we train a multi-
task reader which extracts the answer and the sup-
porting facts of the question, following FE2H (Li
et al., 2023) and R3 (Zhangyue et al., 2023), where
you can refer to Appendix A for details. In the su-
pervised setting, we employ the large version of De-
BERTa for MuSiQue and 2WikiMultihopQA and
the xxlarge version of DeBERTa for HotpotQA. We
use a single RTX4090 GPU to train the large ver-
sion reader and a single A100 to train the xxlarge
version reader. We set the number of epochs
to 12 and the batch size to 4. We use AdamW
(Loshchilov and Hutter, 2017) with a learning rate
of 5e-6 for the optimization and set the max posi-
tion embeddings to 1024. To enhance the robust-
ness of the model, we shuffle the inner order of
the concatenated passages within the context. (See
Appendix E for more details.)

(ii)Few-Shot LLM In addition to the supervised
reader above, we also incorporate a LLM as the
downstream reader to benchmark the few-shot QA
performance of Beam Retrieval augmented LLM.
In the few-shot LLM setting, given that each ex-
ample contains up to 20 passages, we choose long-
input LLMs. Specifically, we use closed model gpt-
3.5-turbo-16k provided from API of OpenAI2 and
open model longchat-13b-16k3 running locally on
two 80G-A100 with the help of FastChat4 (Zheng
et al., 2023). We use the template described in
Appendix B to obtain the answers directly.

4.3 Evaluation Metrics
Generally, we use Exact Match (EM) and F1 scores
to evaluate the retrieval performance. Retrieval EM
means whether the passage-level prediction is the
same as the ground truth, while retrieval F1 is the
harmonic mean of precision and recall, and both

2https://openai.com/api/
3https://huggingface.co/lmsys/

longchat-13b-16k
4https://github.com/lm-sys/FastChat

of them are irrespective of the inner order between
relevant passages. In the retrieve-and-read setting,
retrieval EM is particularly critical, as missing rele-
vant passages can significantly impact the perfor-
mance of downstream readers.

For MuSiQue-Ans, we report the standard F1-
based metrics for the answer (An) and support
passage identification (Sp). Actually, Sp F1 in
MuSiQue-Ans is equivalent to retrieval F1. For
HotpotQA and 2WikiMultihopQA, we report the
EM and F1 metrics for the answer prediction task
(Ans) and supporting facts prediction task (Sup).
In the Beam Retrieval augmented LLM setting, we
report the answer F1.

5 Results

Influence of Beam Size We first explore the in-
fluence of different beam sizes on MuSiQue-Ans,
as shown in Table 1, where the encoder is the base
version. Beam Retrieval performs well even with a
beam size of 1, showing that modeling the multi-
hop retrieval process in an end-to-end manner in-
deed yields significant improvement, and a beam
size of 2 brings further improvement, which is con-
sistent with (Sutskever et al., 2014). However, a
beam size greater than 2 leads to a slight decline
in performance, which we assume is due to the
increase in the number of irrelevant sequences as
the beam size expands, making the retrieval task
more difficult (further analysis can be found in
Appendix C). It is worth mentioning that in our ex-
perimental setting, the candidate set size n ranges
from 10 to 20. As the beam size expands, both
the necessary training memory and training dura-
tion increase rapidly. Due to these considerations,
we do not conduct experiments with a beam size
larger than 4. In conclusion, we employ beam sizes
of 1 and 2 for Beam Retrieval in our subsequent
experiments.

beam size EM F1 Mem (%) Speed (%)
1 74.18 87.46 100% 100%
2 75.47 88.27 119% 58%
3 74.56 87.84 150% 42%
4 74.43 87.65 194% 36%

Table 1: Influence of different beam sizes among re-
trieval performance, training memory required, and
training speed. A beam of size 2 offers the optimal bal-
ance between retrieval performance and training costs.

In terms of computational cost, at each hop
Beam Retrieval only calls the encoder and clas-
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sifier once theoretically, aligning with the resource
consumption of previous methods like FE2H and
R3, maintaining a similar order of magnitude in
both training and inference. We have conducted
a specific inference time experiment on the Hot-
potQA development set to compare the computa-
tion cost between Beam Retrieval and past SOTA
retrievers R3 and FE2H, where we keep the same
backbone model and device. The results are shown
in Table 2:

Inference Time EM
FE2H 96.82ms 96.35

Smoothing R3 127.75ms 96.85
Beam Retrieval, beam size 1 124.64ms 97.29
Beam Retrieval, beam size 2 196.35ms 97.52

Table 2: Comparison of inference speed among Beam
Retrieval and past SOTA methods. Beam Retrieval with
a beam size of 1 achieves optimal performance while
maintaining a similar complexity level as previous meth-
ods.

Overall, while increasing the beam size does
improve performance, it also correspondingly in-
creases computational costs. However, the absolute
processing time per question does not become un-
bearably long. Therefore, we recommend using a
beam size of 1 in practical applications, as it offers
comparable resource consumption to similar meth-
ods, while also achieving superior performance.

Beam Retrieval Performance We compare our
Beam Retrieval with previous retrievers on three
multi-hop datasets, as shown in Table 3. Beam
Retrieval achieves new SOTA performance across
all datasets, significantly outperforming existing
methods even when using a beam size of 1, and
notably attaining a nearly 50% EM improvement
(from 53.50 to 77.37) on challenging MuSiQue-
Ans. This result highlights the effectiveness of our
proposed end-to-end modeling of the entire multi-
hop retrieval process in handling more complex
situations. As demonstrated in Table 1, employing
a beam size of 2 consistently improves performance
on both MuSiQue-Ans and HotpotQA datasets, val-
idating the benefits of an expanded search space.
As the high-performance retrievers in HotpotQA
are customized for two-hop issues, we do not re-
produce them for the other two datasets. A large
version encoder is employed for all datasets except
2WikiMultihopQA, where a base version encoder
achieves a remarkable 99.9% retrieval precision.

Methods Retrieval
EM F1

MuSiQue-Ans
EE (Trivedi et al., 2022) 21.47 67.61
SA (Trivedi et al., 2022) 30.37 72.30
Ex(EE) (Trivedi et al., 2022) 48.78 77.79
Ex(SA) (Trivedi et al., 2022) 53.50 79.24
Beam Retrieval, beam size 1 77.37 89.77
Beam Retrieval, beam size 2 79.31 90.51

HotpotQA
SAE (Tu et al., 2020) 91.98 95.76
SA Selector* (Trivedi et al., 2022) 93.06 96.43
S2G (Wu et al., 2021) 95.77 97.82
FE2H (Li et al., 2023) 96.32 98.02
Smoothing R3 (Zhangyue et al., 2023) 96.85 98.32
Beam Retrieval, beam size 1 97.29 98.55
Beam Retrieval, beam size 2 97.52 98.68

2WikiMultihopQA
SA Selector* (Trivedi et al., 2022) 98.25 99.13
Beam Retrieval, beam size 1 99.93 99.96

Table 3: Retrieval performance on the development
set of MuSiQue-Ans, HotpotQA, 2WikiMultihopQA in
comparison with previous work. SA Selector* indicates
that we reproduce SA Selector by training it on the
full HotpotQA and 2WikiMultihopQA. Beam Retrieval
surpasses all previous retrievers by a large margin.

Methods MuSiQue-Ans
An Sp

EE (Trivedi et al., 2022) 40.7 69.4
SA (Trivedi et al., 2022) 52.3 75.2
Ex(EE) (Trivedi et al., 2022) 46.4 78.1
Ex(SA) (Trivedi et al., 2022) 49.0 80.6
RoHTmix (Zhang et al., 2023) 63.6 0
Beam Retrieval, beam size 1 66.9 90.0
Beam Retrieval, beam size 2 69.2 91.4

Table 4: Overall performance on the test set of
MuSiQue-Ans. Beam Retrieval achieves a new SOTA.

Therefore we do not conduct further experiments
with larger beam sizes or encoders for this dataset.

Downstream QA Performance Table 4 and Ta-
ble 5 compare multi-hop QA performance between
Beam Retrieval augmented supervised reader (here-
inafter referred to as Beam Retrieval) and other
strong multi-hop systems across three datasets.
Thanks to the retrieved high-quality context, Beam
Retrieval with a beam size of 2 achieves new SOTA
on all three datasets567. Specifically, on MuSiQue-

5MuSiQue-Ans leaderboard:
https://leaderboard.allenai.org/musique_ans/

submissions/public
6HotpotQA leaderboard:
https://hotpotqa.github.io/

72WikiMultihopQA leaderboard:https://github.com/
Alab-NII/2wikimultihop
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Methods Answer Supporting
EM F1 EM F1

HotpotQA
HGN (Fang et al., 2020) 69.22 82.19 62.76 88.47

SAE (Tu et al., 2020) 66.92 79.62 61.53 86.86
S2G (Wu et al., 2021) 70.72 83.53 64.30 88.72
FE2H (Li et al., 2023) 71.89 84.44 64.98 89.14

Smoothing R3 (Zhangyue et al., 2023) 72.07 84.34 65.44 89.55
Beam Retrieval, beam size 2 72.69 85.04 66.25 90.09

2WikiMultihopQA
CRERC (Fu et al., 2021) 69.58 72.33 82.86 90.68

NA-Reviewer (Fu et al., 2022) 76.73 81.91 89.61 94.31
BigBird-base model (Ho et al., 2023) 74.05 79.68 77.14 92.13

Beam Retrieval, beam size 1 88.47 90.87 95.87 98.15

Table 5: Overall performance on the blind test set of HotpotQA and 2WikiMultihopQA in comparison with previous
work. Beam Retrieval achieves SOTA in both datasets

Figure 3: Answer F1 for gpt-3.5-turbo-16k (Left) and longchat-13b-16k (Right) under two conditions on three
multi-hop datasets. Beam Retrieval substantially improves the few-shot QA performance of LLMs.

Ans our Sp performance (91.4) is comparable to
the Human Score (93.9) reported in (Trivedi et al.,
2022). To evaluate the degree of enhancement
Beam Retrieval can provide, we compare the few-
shot QA performance of few-shot LLMs under two
conditions: one using all candidate passages (re-
ferred to as “without BR"), and the other only in-
corporating relevant passages retrieved by Beam
Retrieval (referred to as “with BR"), which is de-
picted in Figure 3. LLMs perform poorly in di-
rectly handling complex multi-hop QA tasks, while
Beam Retrieval significantly boosts the few-shot
QA performance of both gpt-3.5-turbo-16k and
longchat-13b-16k, some of which are comparable
to supervised methods.

Ablation Study To understand the strong perfor-
mance of Beam Retrieval, we perform an ablation
study by employing inconsistent beam sizes be-
tween training and reasoning and using different
numbers of classification heads, as illustrated in
Table 6. Performance declines when the training

Methods Retrieval
EM F1

Beam Retrieval1,1 74.18 87.46
Beam Retrieval2,2 75.47 88.27
Beam Retrieval3,3 74.56 87.84

w/o Consistent Beam Size
Beam Retrieval3,2 74.31 87.84
Beam Retrieval3,1 74.06 87.67
Beam Retrieval2,1 75.13 88.17

w/o 2 Classification Heads
BR1,1 with 4 Classification Heads 72.16 87.04
BR1,1 with 1 Classification Head 73.11 87.32

Table 6: Ablation study results on MuSiQue-Ans dataset.
The subscript x,y indicates training with beam size x
and reasoning with beam size y.

beam size differs from the reasoning beam size, and
it drops more sharply as the gap between training
and reasoning widens. We do not investigate situ-
ations where the reasoning beam size exceeds the
training beam size, as it is evident that the model
cannot perform hard reasoning after easy training.
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We also vary the number of classification heads to
verify if two heads are the optimal setting. First,
we use 4 classification heads as there are up to 4-
hop questions and we arrange one head for one
hop, however it results in a 2-point decrease in
EM. Then we employ a unified classification head,
which also leads to a one-point performance drop.
These results confirm that using one head for the
first hop and another head for subsequent hops is
the best configuration. We hypothesize that the rea-
son for the 2 heads setup’s superior performance
is due to the different total number of passages
sequences faced at the first hop compared to subse-
quent hops.

Methods Retrieval EM
MDR (direct) (Xiong et al., 2021) 65.9

MDR (reranking) (Xiong et al., 2021) 81.2
MDR (Beam Retrieval reranking) 82.2

MDR (gold reranking) 85.6

Table 7: Fullwiki HotpotQA reranked retrieval results.
Retrieval EM means whether both gold passages are in-
cluded in the top two retrieved passages (top one chain).
Gold reranking refers to whether both gold passages are
included among all the retrieved chains.

Reranking in Open-Domain Setting Beam Re-
trieval can serve as a reranker in open-domain
multi-hop retrieval, and we conduct a simple exper-
iment on fullwiki HotpotQA to assess the impact
of Beam Retrieval as a re-ranker, as illustrated in
Table 7. We choose MDR (Xiong et al., 2021) as
the baseline, initially employing it to obtain 100
retrieved passage chains. Subsequently, Beam Re-
trieval is utilized to rerank the passages within these
chains, where we take the top two passages for met-
ric calculation. As an effective reranker, Beam Re-
trieval further enhances the retrieval performance
of open-domain retrieval based on MDR.

6 Conclusion

We present Beam Retrieval, an end-to-end beam re-
trieval framework for multi-hop QA. This approach
models the entire retrieval process in an end-to-end
manner and maintains multiple partial hypotheses
of relevant passages at each step, showing great per-
formance in complex scenarios beyond two hops.
Experimental results on three datasets prove the
effectiveness of Beam Retrieval and demonstrate it
could substantially improve the QA performance
of downstream readers. In general, Beam Retrieval
establishes a strong baseline for complex multi-hop

QA, where we hope that future work could explore
more advanced solutions.

Limitations

There are two major limitations to this work. First,
the resource consumption during training will in-
crease with larger beam sizes. Second, Beam Re-
trieval struggles with being independently applied
to open-domain settings. We will work on methods
to reduce the training consumption of the model
and enable its application to open-domain multi-
hop retrieval with variable hops.

Ethics Statement

This work is a fundamental research work that fo-
cuses on technical improvement, thus we have not
applied additional filtering techniques to the textual
data we used, beyond what has been performed on
the original datasets. The textual data we used may
have information naming or uniquely identifying
individual people or offensive content that we have
not been able to identify, as those are out of the
focus of this work.
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A Multi-Task Supervised Reader

After receiving the relevant passages (p̂1, p̂2, ..., p̂k)
from the retriever, our reader is expected to com-
plete both the answer prediction task and the sup-
porting facts prediction task. Following SAE and
R3, we also implement a multi-task model to ex-
tract the answer and the supporting facts, jointly
training the answer prediction and supporting sen-
tence classification in a multi-task learning way.

We define three types of tasks: supporting facts
prediction, answer type prediction, and answer
span prediction. Following R3, we incorporate
a special placeholder token “<d>” before each
passage’s title and a token “<e>” before each sen-
tence to provide additional information and guide
the model to predict at the sentence level.

We concatenate the question and the retrieved
passage chain (p̂1, p̂2, ..., p̂k) as “[CLS] + question
+ [SEP] + p̂1 + p̂2 + ... + p̂k + [SEP]”. We denote
the BERT-like PLM output as H = [h1, ..., hL] ∈
RL×d where L is the length of the input sequence

and d is the hidden dimension of the backbone
model. For answer type prediction, we perform
a 3-class ("Yes", "No" and "Span") classification,
with the corresponding loss item denoted as Ltype.
To extract the supporting facts prediction, we ap-
ply a linear layer on H to classify each sentence
as either a supporting facts sentence or not (using
the sentence token “<e>”), with its corresponding
loss item denoted as Lsf . Similarly, we employ an-
other linear layer to project H and identify the start
and end positions of the answer, denoting the start
position loss and the end position loss as Lstart and
Lend, respectively, as introduced in BERT. Finally,
the total answer span loss Lans is described using
the following formulas.

Lans =λ1(Lstart + Lend) (7)

where λ1 is 0.5 in our setting. Formally, the total
loss Lqa can be jointly calculated as:

Lqa =λ2Ltype + λ3Lsf + λ4Lans (8)

where λ4 is 0.2 and λ2, λ3 are 1 in our setting. Here
each loss function is the cross-entropy loss.

B Few-Shot Templates

We use the prompts following (Liu et al., 2023). To
ensure diversity in the demonstrations, we selected
demonstrations with different hops and question
types. The number of demonstrations is 3.

Prompt B.1: without Beam Retrieval

Write a high-quality answer for the given question using
only the provided search results (some of which might be
irrelevant).

For example:

{examples}

{search_results}

Question: {question}
Answer:
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Prompt B.2: with Beam Retrieval

Write a high-quality answer for the given question using
only the provided search results.

For example:

{examples}

{search_results}

Question: {question}
Answer:

C Analysis of Beam Search Algorithm in
Beam Retrieval

Beam size is a crucial and interesting parameter
in our proposed Beam Retrieval method. It is sim-
ilar to the beam search process in text decoding,
where expanding the search space increases the
probability of finding the correct passages. Un-
like beam search, Beam Retrieval uses beam size
in both the training and inference phases, mean-
ing that the beam size of Beam Retrieval signifi-
cantly impacts our method’s training process. We
will dive into the internal workings of Beam Re-
trieval to explore the actual impact of beam size.
As described in the formula 3, the essential role
of beam size is to increase the number of negative
examples in each cross-entropy loss. This enhances
the Beam Retrieval’s ability to recognize irrelevant
passage sequences. As described in the main text,
during the inference phase, the decision to stop is
based on comparing the highest score of all cur-
rent passage sequences with a specified threshold
τ . Therefore, the ability to identify irrelevant pas-
sage sequences determines whether it can stop at
an appropriate step. In fact, we conducted exper-
iments on MuSiQue to derive the distribution of
scores across different hop counts and beam sizes.

Specifically, we performed an additional hop of
reasoning for each question, recording the highest
score among all passage sequences at the additional
hop.

For instance, for a 4-hop question, we record
the score distribution for the abnormal hop 5. All
results represent the average scores, and we choose
the versions of Beam Retrieval reported in Table 4
in our original paper, and the results are shown in
the table below.

It is evident that as the beam size increases, it
leads to a lower negative score at the unreasonable
hop, prompting Beam Retrieval to terminate at the
appropriate hop. As the beam size increases, so

3hop 4hop 5hop
Additional Hop, beam size 1 -2.65 -2.41 -2.83
Additional Hop, beam size 2 -2.85 -2.90 -3.32

Table 8: Influence of different beam sizes among the
score of the additional hop. It leads to a lower negative
score at the additional unreasonable hop as the beam
size increases.

does the number of negative examples during train-
ing, which in turn enhances the model’s ability to
distinguish irrelevant passage sequences. This al-
lows the model to assign very low negative scores
when extraneous passages are introduced, enabling
it to terminate in a timely manner. This is the di-
rect cause of the overall performance improvement
associated with an increased beam size.

Of course, the beam size can’t increase indefi-
nitely. There is indeed a point at which it may lead
to suboptimal states. This happens because as the
beam size grows, the number of negative instances
increases, while there’s always only one positive
instance. This imbalance makes it increasingly
challenging for the model.

Overall, the optimal choice of beam size involves
a trade-off that takes into account the size of the
backbone model, the number of candidate passages,
and the difficulty of the retrieval task. If the back-
bone model is base version, the benefits of a larger
beam size decrease because an increased beam size
expands the search space and brings complexity
to the task. Conversely, larger backbone models
can get more gains, as demonstrated in the table.
The ’large’ version of the model achieves a 2 per-
centage point increase (77.37 -> 79.31) with an
increased beam size, while the ’base’ version sees
only a 1 percentage point improvement (74.18 ->
75.47). The number of candidate passages and the
retrieval task difficulty also influence the optimal
beam size. For the more challenging MuSiQue task
with a larger pool of candidate passages (20), an
increase in beam size brings greater benefits. In
contrast, for the simpler HotpotQA task with fewer
candidate passages (10), the advantages of increas-
ing beam size are less pronounced (97.29 -> 97.52).
This is further confirmed by the below experiments
on the new knowledge-intensive task IIRC (see
Appendix D), where the questions involve more
variable hop counts, thus yielding greater benefits
from an increased beam size.

Next, we will discuss why we choose beam
search rather than other possible alternatives for
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multi-hop retrieval. Indeed, there are alternative
approaches, such as the coarse-to-fine method pro-
posed by R3. This retriever suggests selecting the
three most likely passages in the first hop and then
pairing them in the second hop to determine the
most probable combination. However, this method
has two distinct disadvantages:

• Passages not chosen in the first hop are never
reconsidered in later stages;

• It lacks scalability, as it requires determining
too many variables in complex scenarios be-
yond two hops.

Take a three-hop scenario as an example: if you
need three passages in the end, how many should
you choose in the first hop? (It should be more than
three, as there would only be combinations, where
n is the number of passages chosen in the first hop,
and k is the number of hops. If both n and k equal
three, there would only be one candidate.) How
many document pairs should be selected in the
second hop? And how should a triplet of passages
be combined in the third hop from the pairs selected
in the second? This process is complicated and
involves too many parameters, obviously leading
to geometrically increasing computational resource
consumption, thus making it highly unscalable.

In contrast, our Beam Retrieval models an end-
to-end retrieval process, similar to the decoding of
a language model, and naturally incorporates the
concept of beam search. Our version with a beam
size of 1, where we select only one passage per hop,
has outperformed the complex R3 method on Hot-
potQA dataset. It can also be effortlessly extended
to any number of hops, which is verified to adapt
Beam Retrieval to another knowledge-intensive
task IIRC below, and previous experiments have
also validated the effectiveness of Beam Retrieval.
We chose beam search over other methods because
it was inspired by the striking similarity between
multi-hop retrieval process and language model de-
coding, and it aligns closely with our end-to-end
modeling manner.

D Beam Retrieval Performance on
Dataset IIRC

As a retrieval method, Beam Retrieval can be
adapted for a variety of knowledge-intensive
tasks. We have applied Beam Retrieval to an-
other knowledge-intensive dataset IIRC (Incom-
plete Information Reading Comprehension) (Fergu-

son et al., 2020) dataset and conducted experiments
to evaluate its efficacy. Details and results are given
below.

• Each question in IIRC is accompanied by
an original passage and a set of links to
Wikipedia pages which might contain neces-
sary information missing from the original
passage. There are a total of 56550 Wikipedia
pages and the relevant sentences in pages for
each question are given.

• We first divide each Wikipedia page into pas-
sages consisting of 10 sentences. For each
question, we choose the passages with the
relevant titles and highest Rouge scores as
positive passages and randomly pick passages
in irrelevant links as negative passages. Note
that for each question, the number of relevant
passages varies from 1 to 6 and the number of
negative passages varies from 10 to 25, which
introduces more uncertainty compared with
the three datasets in the paper (This is why
we do not choose previous strong retrievers
like FE2H and R3 as baselines below). Fi-
nally, we get 7566 training samples and 954
test samples.

• We train Beam Retrieval (base) on IIRC and
compare it with a one-step retriever (like SAE
and SA Selector) as the baseline. For Beam
Retrieval, nothing changes except concatenat-
ing the question and its original passage as
the new question text. For baseline, it con-
catenates each candidate passage and the new
question text as inputs fed to BERT, then se-
lect out the most relevant n passages with the
highest scores. The retrieval performance is
as follows:

Retrieval EM
One-Step Retriever 57.35

Beam Retrieval, beam size 1 85.01
Beam Retrieval, beam size 2 86.90
Beam Retrieval, beam size 3 86.37

Table 9: Retrieval performance on IIRC. Beam Retrieval
has significantly surpassed the one-step retriever.

We can see a beam size greater than 1 yields
better performance. All the results on the new task
verify the effectiveness and adaptability of Beam
Retrieval.
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E Ablation Study on Shuffle Operation

In the training of our Beam Retrieval retriever and
supervised reader, we both adopt a shuffle oper-
ation to enhance the robustness of the model. It
is a common and useful deep learning trick that
involves shuffling the order of input components.
Because we cannot guarantee that passages will
always be retrieved in the correct order, we dynam-
ically shuffle the order of input passages during
training retriever and reader. To give a specific ex-
ample, for a 4-hop question, if we have a pair of
passages (p1, p2) by the third hop, we shuffle the
order of these two passages. This approach is also
applied in subsequent hops, such as the fourth hop,
where the order of three passages (p1, p2, p3) would
be shuffled. Similarly, this shuffling is applied dur-
ing the training of supervised readers, i.e. shuffle
the order of retrieved passages passed to down-
stream readers. This shuffle operation enhances
the model’s robustness, allowing it to perform well
even if the predicted passages at inference time
do not maintain the expected order of reasoning,
which is due to that the model was trained with
shuffled input sequences.

We also conducted an ablation study to deter-
mine the effectiveness of the shuffle operation on
MuSiQue-Ans, as shown in the table below:

Methods An Sp
Beam Retrieval 66.9 66.9

BR w/o shuffle in retriever - 89.4
BR w/o shuffle in reader 64.3 -

Table 10: Ablation study on shuffle operation.
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