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Abstract

Current end-to-end coreference resolution mod-
els combine detection of singleton mentions
and antecedent linking into a single step. In
contrast, singleton detection was often treated
as a separate step in the pre-neural era. In
this work, we show that separately parameter-
izing these two sub-tasks also benefits end-to-
end neural coreference systems. Specifically,
we add a singleton detector to the coarse-to-
fine (C2F) coreference model, and design an
anaphoricity-aware span embedding and single-
ton detection loss. Our method significantly
improves model performance on OntoNotes
and four additional datasets.1

1 Introduction

Coreference resolution (CR) is the task of identify-
ing and clustering linguistic expressions that refer
to the same real-world entity. Recent progress in
CR has been led by various end-to-end (e2e) neural
models (Lee et al., 2017, 2018; Joshi et al., 2019;
Kirstain et al., 2021; Otmazgin et al., 2023) which
significantly outperform older pipelined systems.
Many of these e2e models follow the design of
Lee et al. (2017), jointly training both a mention
detector that extracts candidate mentions from all
text spans and a mention linker that assigns the an-
tecedent to each candidate mention. Despite their
impressive performance, these e2e CR models are
far from perfect: replacing either the mention detec-
tor or linker with an oracle results in a substantial
improvement of the entire model (Wu and Gardner,
2021). This indicates room for improving the men-
tion detector and linker in the current joint systems.

Indeed, modeling CR as mention detection fol-
lowed by mention linking is not a clear decomposi-
tion because mention linking itself is composed of
two sub-tasks: singleton detection and antecedent

1Our code is available at https://github.com/
XiyuanZou/C2F-SD

linking. Singletons are mentions that refer to enti-
ties which only appear once in the discourse and
are often removed from model predictions because
they are not coreferring. It is important to cor-
rectly distinguish anaphoric mentions from single-
tons since singletons account for the majority of
mentions: over 80% of mentions in the develop-
ment set of OntoNotes are singletons (De Marn-
effe et al., 2015). Nevertheless, prior work shows
that current mention detectors lack the ability to
make such anaphoricity decisions (Wu and Gard-
ner, 2021). Thus, the mention linker in current
joint systems performs two tasks: it not only links
anaphora with antecedents, but also identifies sin-
gletons by linking them to the empty antecedent.
Singleton detection and antecedent linking, how-
ever, are two disparate tasks that may require differ-
ent representations and relying on a single module
hurts their performance. Wu and Gardner (2021)
further note that the mention linker increases its
confidence in assigning coreference scores when
not tasked with singleton detection.

Incorporating an extra singleton detector is a
straightforward solution and has been extensively
investigated in the pre-neural era for pipelined sys-
tems (Recasens et al., 2013; De Marneffe et al.,
2015; Moosavi and Strube, 2016). In this work, we
show that it is also effective for neural end-to-end
CR models. We extend the coarse-to-fine (C2F)
model (Lee et al., 2018) by adding a separately pa-
rameterized singleton detector between the mention
detector and linker. The singleton detector takes
in the top-scoring candidate mentions extracted by
the mention detector and predicts a singleton score
for each candidate mention. Candidate mentions
with the highest singleton scores are pruned out
before being fed into the mention linker.

It is notable that the anaphoricity decision is
more challenging than the mention decision be-
cause the former requires not only the information
from the mention itself but also contextual clues
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from its potential antecedents. We concatenate the
mention embedding with an anaphoricity-aware
span embedding produced from a span-level atten-
tion that explicitly attends to itself and all of its
preceding candidate mentions. In addition, we add
a singleton detection loss to explicitly supervise
the singleton detector during the joint training. We
show in Sec. 4 that these components are necessary,
and there is little performance gain without them.

Zhong and Chen (2021) show that using sepa-
rate encoders for each sub-task greatly improves
the overall task of entity and relation extraction.
Inspired by their work, we set up an expert repre-
sentation learner for each of the mention detection,
singleton detection, and antecedent linking tasks.
In addition, we add a shared representation learner
between these three sub-tasks as these sub-tasks
are related and may benefit from certain shared
features during training.

The overall architecture of our model is shown
in Figure 1. Although C2F is used as the base,
our method is general and can be applied to any
CR model that follows the mention detector-linker
architecture. We show that our model gains sig-
nificant improvements on OntoNotes and four ad-
ditional datasets compared to the base model and
achieves a new SoTA among all detector-linker
models. We also scale up our model to 2B parame-
ters, outperforming the 11B ASP model (Liu et al.,
2022) and approaching the current SoTA seq2seq
model (Bohnet et al., 2023) while being consider-
ably smaller in size and faster at inference.

2 Background: The C2F Model

In this section, we introduce the C2F model (Lee
et al., 2018), which is one of the first e2e neu-
ral CR models. It was later outperformed by the
LingMess model (Otmazgin et al., 2023) which is
the current best model that follows the mention
detector-linker architecture. Recently proposed
seq2seq approaches (Liu et al., 2022; Bohnet et al.,
2023; Zhang et al., 2023) also achieve substantially
higher accuracy, but they require significantly more
resources and have slower inference speed. We will
show that with our method of separately parameter-
izing a singleton detector, the old C2F model can
significantly outperform the LingMess model and
narrow the gap with the SoTA seq2seq model.

The C2F model computes a span embedding
vq for each text span q. Let xi be the contextual
representation of the ith token produced by the

HF Attention

Mention 
Detector

HF Attention

vmdi vsdi SL 
Attention

vanai

Singleton Detector
Candidate 
mentions

HF Attention

Antecedent 
Linker

Candidate non-
singleton mentions

vali

Mention 
Detector

Singleton
Detector

Antecedent 
Linker

Input document D

Language Model Encoder

Token representation xi

FFNNmd FFNNsd FFNNal FFNNshared

Encoder

xmdi xsdi xali

Figure 1: A high-level overview of our model. HF
attention refers to the head-finding attention proposed
by Lee et al. (2017) and SL attention is the span-level
attention to make anaphoricity-aware embeddings.

LLM encoder. Each span embedding consists of
the representation of the start token xqs , the end
token xqe , and the weighted average of all tokens
within the span x̂q computed via a head-finding
attention, and a feature vector ϕq encoding the span
width:

vq = [xqs ;xqe ; x̂q;ϕq]

C2F first consists of a mention detector, which is
essentially a feed forward network that computes a
mention score sm for each span based on the span
embedding:

sm(q) = FFNNm(vq)

Those spans with the highest mention scores are
retained as candidate mentions. For each candi-
date mention i, C2F roughly scores the possible
antecedents of i by a lightweight bilinear function
and keeps a constant number of top-scoring spans
as its candidate antecedents Y(i). The antecedent
linker, which is another feed forward network, then
computes an antecedent score sa between i and
each of its candidate antecedents j:

sa(i, j) = FFNNa([vi; vj ; vi ⊙ vj ;ϕij ])

where ϕij is a vector of pairwise features such as
the distance between spans, whether two spans are
from the same speaker, etc. The final pairwise
coreference score s(i, j) is the sum of the mention
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scores and the antecedent score:

s(i, j) =

{
sm(i) + sm(j) + sa(i, j), j ̸= ϵ

0, j = ϵ

where ϵ is the empty antecedent. Finally, C2F pre-
dicts an antecedent distribution for each candidate
mention i:

P (a = j | i) = exp (s(i, j))

Σj′∈Y(i) exp (s(i, j′))

During training, C2F optimizes the marginal log-
likelihood of each candidate mention i being as-
signed all of its unpruned gold antecedents j ∈
Y(i) ∩ Gold(i):

LCoref = − log
∏

i

∑

j∈Y(i)∩Gold(i)

P (a = j | i)

3 Methodology

Our core contribution is to add a singleton detector
to the C2F architecture. To exploit the similarities
and differences between distinct sub-tasks of CR,
we build an expert representation learner for each
of the mention detector (md), singleton detector
(sd), and antecedent linker (al) and also a general
representation learner shared between them. The
representation of each token xi for each sub-task
t is the concatenation of the expert and the shared
representation:

xsharei = FFNNshare(xi)

xti = [FFNNt(xi);xsharei ], t ∈ {md, sd, al}
We follow the same approach as C2F to create a
span embedding vtq for each sub-task t. Addition-
ally, we make an anaphoricity-aware embedding
to improve the ability of the singleton detector to
make anaphoricity decisions. For this, we use addi-
tive attention (Bahdanau et al., 2015), but applied
on the span-level where each candidate mention i
attends to itself and all of its preceding unpruned
candidate mentions:

fatt(i, j) = wv
⊺ tanh (Wqvsdi +Wkvsdj )

αij =
exp (fatt(i, j))∑

j′∈i∪Preceding(i) exp (fatt(i, j′))

vanai =
∑

j∈i∪Preceding(i)

αij · vsdj

The singleton detector computes a singleton score
ss for each candidate mention using both the

anaphoricity-aware embedding and the original
span embedding:

ss(i) = FFNNs([vanai ; vsdi ])

The top K percentile of spans with highest
singleton scores are identified as singletons and
pruned out. We keep the antecedent linker un-
changed and the final pairwise coreference score
s(i, j) now becomes the sum of the mention
scores and the antecedent score minus the singleton
scores.

s(i, j) =

{
sm(i) + sm(j) + sa(i, j)− ss(i)− ss(j), j ̸= ϵ

0, j = ϵ

We further introduce a singleton detection loss to
explicitly supervise the singleton detector:

LSingleton = −
∑

i

1(i) log(1− Ss(i))+

(1− 1(i)) log(Ss(i))

where 1(i) is an indicator function that equals to 1
if the span i is a gold non-singleton mention and 0
otherwise. This is essentially a binary cross entropy
loss that pushes down the singleton scores of those
coreferent mentions and pushes up the scores of all
singletons. Our final objective is a weighted sum
of the coreference loss and the singleton detection
loss:

L = λ1LCoref + λ2LSingleton

4 Experiments

Dataset We train and evaluate on the OntoNotes
5.0 English dataset (Weischedel et al., 2013) and
four additional datasets: WiKiCoref (Ghaddar and
Langlais, 2016), OntoGUM (Zhu et al., 2021b),
GAP (Webster et al., 2018) and WinoBias (Zhao
et al., 2018). These datasets do not annotate sin-
gletons and thus require models to filter out any
potential singletons.

Baseline We re-implement and re-train the C2F
model (Lee et al., 2018) as a baseline and build
our model upon it. The original C2F model comes
with a higher-order inference step which we do not
include as it marginally affects performance (Xu
and Choi, 2020). We also re-implement the recently
developed LingMess model (Otmazgin et al., 2023)
as a stronger baseline. In addition, we compare
our model to the ASP (Liu et al., 2022) at 11B
and the Link-Append model at 13B parameters
(Bohnet et al., 2023). Unfortunately, we do not
have enough resources to train these large seq2seq
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MUC B3 CEAFϕ4

R P F1 R P F1 R P F1 Avg F1

LingMess 84.6 88.2 86.3 78.3 83.1 80.7 76.3 78.1 77.2 81.4
C2F 85.2 86.5 85.9 79.0 80.2 79.6 76.4 76.6 76.5 80.7
C2F + singleton detector 85.4 88.0 86.7 78.8 83.5 81.1 76.9 79.2 78.1 81.9

Table 1: Model performance on the test set of the OntoNotes 5.0 English dataset measured by the CoNLL F1 score
averaged from MUC, B3, CEAFϕ4. Our approach of separately parameterizing a singleton detector achieves an
increase that is statistically significant according to a non-parametric permutation test (p < 0.05).

C2F C2F + singleton detector

WiKiCoref 61.2 63.0
OntoGUM 67.7 68.6
GAP 88.9 89.8
WinoBias 84.5 85.3

Table 2: Model performance on the test set of 4 ad-
ditional CR datasets. WiKiCoref and OntoGUM are
evaluated by CoNLL F1 score, GAP by F1 score and
WinoBias by accuracy.

models. For Link-Append, we load the publicly
released weights. For the ASP model, we compare
against the reported results as finetuned weights
are not available.

Pretrained Encoder We use DeBERTa-large
(He et al., 2020) as the pretrained encoder for the
C2F baseline and our model since DeBERTa out-
performs other pretrained encoder models for CR
(Porada et al., 2024). To compete with seq2seq
models that are considerably larger, we scale up
our model by using DeBERTa-v2-xxl.

Main Results Table 1 and 2 show that our
method improves the C2F base model by 1.2 ab-
solute points on OntoNotes, 1.8 on WikiCoref, 1.1
on OntoGUM, 0.9 on GAP and 0.8 on WinoBias.
All of these performance increases are statistically
significant, showing the effectiveness of separately
parameterizing a singleton detector in CR systems.
Our model also outperforms the LingMess model
by 0.5 on OntoNotes and achieves a new SoTA
among all detector-linker CR models. Table 3 fur-
ther shows that our model at 2B parameter size
outperforms the 11B ASP. Although there is still
a gap of 0.7 to the 13B Link-Append model, our
model is about 6.5 times smaller and 95 times faster
in inference speed, thus more practical to use.

Importance of Singleton Detector To assess
that the improvement of our model is due to the
independent parameterization of singleton detec-
tion rather than the added parameters, we increase

LM Avg F1 Size Time

C2F + SD DeBERTa-xxl 82.6 2.0B 637.4
Link-Append mT5-xxl 83.3 13B 6.0e5
ASP FlanT5-xxl 82.5 11B N/A

Table 3: Comparison between our model and the SOTA
seq2seq models after scaling up. Inference is done on
OntoNotes test set using a single 80 GB A100 GPU.
Model performance is measured by CoNLL F1 score
and time is inference speed (ms/doc) at max batch size.

the parameter count of the original C2F model by
adding extra layers to its mention linker to match
the number of parameters of our model. We ob-
serve that simply adding more parameters to the
mention linker without separately parameterizing
singleton detection surprisingly results in a 0.2 ab-
solute drop of CoNLL F1 score on OntoNotes.

Importance of Anaphoricity-aware Span Em-
bedding and Singleton Detection Loss
We find that the anaphoricity-aware span embed-
ding together with the singleton detection loss is
important to the success of the singleton detector.
To show this, we perform a series of ablation stud-
ies on OntoNotes (table 4). Firstly, we concatenate
the mention embedding with a copy of itself rather
than the anaphoricity-aware embedding, leading to
a 1.2 decrease in model performance, reducing it to
the same accuracy as the original C2F model. Sec-
ondly, we train a model without Lsingleton in which
case we observe a 0.9 absolute drop of CoNLL F1
score. In addition, we independently ablate the
shared and the expert representation learners. In
both cases, the performance witnesses a statisti-
cally significant drop, but not as much as when
ablating the anaphoricity-aware span embedding
and the singleton detection loss.

Singleton Detector Imposes Heavier Penalties
on Singletons than on Non-entity Spans
To better understand the model behavior, we count
the average number of non-entity spans, coreferent
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Avg F1 ∆

C2F + SD 81.9 –
w/o anaphoricity-aware embedding 80.7 -1.2
w/o singleton detection loss 81.0 -0.9
w/o shared representation learner 81.5 -0.4
w/o expert representation learners 81.4 -0.5

Table 4: Ablation studies for each proposed module of
the C2F+SD model on the test set of the OntoNotes 5.0
English dataset measured by the CoNLL F1 score.

spans and singletons per document at each pro-
cessing stage of the original C2F model and our
C2F+SD model. Counting singletons requires gold
annotation of singletons. Thus we test the mod-
els on PreCo (Chen et al., 2018), where singletons
are annotated. As shown in table 5, we find that
99.4% spans filtered by the mention detector of the
original C2F model are non-entity spans. There
are still over 80% singletons left and the mention
detector does not have the ability to filter out these
singletons. In our C2F+SD model, 65.3% spans
filtered out by the singleton detector are the sin-
gletons, and only 30.2% singletons remain after
singleton detection compared to 86.1% before it.
In addition, we observe that among the remaining
spans, on average, the singleton score for single-
tons is 279% higher than that for non-entity spans
and 46% higher than for coreferent spans. These
results indicate that our design of the singleton de-
tector imposes significant penalties on singletons,
something that is absent in the original C2F model.

5 Related Work

Singleton detection has been extensively explored
in the pre-neural era for the pipelined CR systems.
Recasens et al. (2013) builds a logistic regression
model with both surface (i.e. part-of-speech and
n-gram based) features and carefully designed lin-
guistic features for predicting the distinction be-
tween singletons and coreferent spans. They in-
corporate it into a SoTA CR pipeline and yield
a significant performance improvement. Moosavi
and Strube (2016) models singleton detection by an
anchored SVM and use only a small set of shallow
features to achieve similarly significant improve-
ments across various CR models.

However, singleton detection still remains under-
explored for end-to-end neural CR models. Zhu
et al. (2023) design a multi-task learning based
neural coreference model which learns singletons
jointly with other tasks such as entity type recogni-

Before MD

Non-entity Coreferent Singletons

C2F Base 5036.99 51.92 51.91
C2F + SD 5036.99 51.92 51.91

After MD (Before SD)

Non-entity Coreferent Singletons

C2F Base 128.38 45.52 41.62
C2F + SD 135.44 47.13 44.69

After SD

Non-entity Coreferent Singletons

C2F Base – – –
C2F + SD 121.25 45.90 15.66

Table 5: The average number of non-entity spans, coref-
erent spans and singletons per document at each process-
ing stage of the original C2F model and the C2F+SD
model. MD and SD stand for mention detector and sin-
gleton detector respectively. Models are trained on the
OntoNotes 5.0 English dataset and tested on the test set
of PreCo (Chen et al., 2018).

tion. Their model achieves SoTA results on On-
toGUM (Zhu et al., 2021b) and generalizes ro-
bustly to two other datasets. It is notable that their
approach assumes the gold annotations of entity
types and information status which are not com-
monly annotated in many coreference datasets. As
a comparison, our model does not require addi-
tional information beyond what the original C2F
model requires.

6 Conclusion

We decouple the singleton detection and the an-
tecedent linking in the current detector-linker CR
models by separately parameterizing a singleton
detector. The effectiveness of our method shows
that a separate singleton detection step benefits neu-
ral end-to-end CR systems. This also points out a
future research direction: how to build a stronger
singleton detector in end-to-end systems.

7 Limitations

Separately parameterizing a singleton detector in-
troduces extra parameters and increases the in-
ference time and the memory usage. Moreover,
we build our model around OntoNotes and other
datasets where singletons are not annotated. On
datasets where singletons are explicitly annotated,
it is not clear if our proposed method will result
in similar improvements as those observed in our
experiments.
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Appendix A Implementation Details

A.1 Hyperparameters

We use Pytorch Lightning (Falcon and The PyTorch
Lightning team, 2019) and HuggingFace Trans-
formers (Wolf et al., 2020) to implement our model.
We generally use the same hyperparameters as the
original C2F model with a few exceptions. We re-
port these changes here. As our model is memory
intensive, we randomly truncate documents to 6
segments for DeBERTa-large and 3 segments for
DeBERTa-v2-xxl. We set the maximum segment
length to 512 for each segment. We use the hidden
size of 3072 for the extra singleton detector intro-
duced. We filter out top 40% candidate mentions
with highest singleton scores. We use 1.0 for λ1
and 0.6 for λ2 to prioritize the coreference loss over
the singleton detection loss. The DeBERTa-large
model is trained for 50 epochs on a single 80GB
A100, and the training takes about 18 hours. The
DeBERTa-v2-xxl model is trained for 75 epochs on
4 80GB A100 GPUs, and the training takes about 1
and half a day.
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A.2 Evaluation

We use the official CoNLL coreference scorer2 for
evaluating on OntoNotes, OntoGUM and WiKi-
Coref. We use the official GAP scorer3 for evaluat-
ing on GAP.

Appendix B Dataset Details

Ontonotes 5.0 (Weischedel et al., 2013) is the
most common dataset for training and evaluating
CR models. We specifically use the CoNLL-2012
Shared Task v4 dataset split (Pradhan et al., 2012).
The train/validation/test splits are 1940/343/348
document parts, respectively. This dataset covers
7 genres of text including telephone conversations,
broadcast conversations, broadcast news, maga-
zine, newswire, pivot text and web blogs. Genre
and speaker information is annotated in OntoNotes,
so we use them when training and evaluating our
model.

OntoGUM (Zhu et al., 2021b) is composed of
the coreference annotations in the English language
GUM corpus (Zeldes, 2017) transformed heursti-
cally to follow OntoNotes annotation guidelines
(Zhu et al., 2021a). This dataset covers 12 different
text genres. We use both genre and speaker infor-
mation to help our model. There are totally 168
documents in OntoGUM. We randomly split it into
148/10/10 as the train/validation/test splits.

GAP (Webster et al., 2018) consists of pro-
nouns in English Wikipedia annotated for corefer-
ence with respect to two preceding noun phrase.
We do not use genre and speaker informa-
tion for this dataset as they are not available.
The train/validation/test splits are 4000/908/4000
coreference-labeled pairs, respectively.

WinoBias (Zhao et al., 2018) contains Winograd-
schema style sentences with entities corresponding
to people referred by their occupation. There are
1580 sentences in the training set and another 1580
sentences in the test set. We randomly take half the
sentences from the test set as our validation set. We
do not consider genre and speaker when evaluating
our model.

WiKiCoref (Ghaddar and Langlais, 2016) is a
CR dataset where all documents are sourced from

2https://github.com/conll/
reference-coreference-scorers

3https://github.com/google-research-datasets/
gap-coreference

English Wikipedia. It is a relatively small dataset
with 30 documents. We do not consider genre and
speaker for this dataset.
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