
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 229–238

June 16-21, 2024 ©2024 Association for Computational Linguistics

On Retrieval Augmentation
and the Limitations of Language Model Training

Ting-Rui Chiang Xinyan Velocity Yu Joshua Robinson
Ollie Liu Isabelle Lee Dani Yogatama

University of Southern California
{tingruic,xinyany,joshua.j.robinson,zliu2898,gunheele,yogatama}@usc.edu

Abstract

Augmenting a language model (LM) with k-
nearest neighbors (kNN) retrieval on its train-
ing data alone can decrease its perplexity,
though the underlying reasons for this remain
elusive. In this work, we rule out one previ-
ously posited possibility — the “softmax bot-
tleneck.” We then create a new dataset to eval-
uate LM generalization ability in the setting
where training data contains additional infor-
mation that is not causally relevant. This task is
challenging even for GPT-3.5 Turbo. We show
that, for both GPT-2 and Mistral 7B, kNN re-
trieval augmentation consistently improves per-
formance in this setting. Finally, to make kNN
retrieval more accessible, we propose using a
multi-layer perceptron model that maps datas-
tore keys to values as a drop-in replacement for
traditional retrieval. This reduces storage costs
by over 25x.1

1 Introduction

Recent efforts to improve the performance of lan-
guage models (LMs) have focused on scaling up
model (Brown et al., 2020) and training data size
(Hoffmann et al., 2022). The resulting models have
reached near-human or even super-human perfor-
mance on some tasks (Chowdhery et al., 2022),
though with steep accompanying energy and com-
pute resource costs (Schwartz et al., 2020; Brown
et al., 2020; Touvron et al., 2023).

Another approach for improving LM perfor-
mance has been retrieval augmentation. Khandel-
wal et al. (2020) proposed to build a datastore us-
ing LM training data. The datastore associates the
next token of prefixes in the training data with the
representations of the prefixes extracted from an
intermediate layer of an LM. They found that when
predicting the next token for a given prefix, using
k-nearest neighbor (kNN) retrieval, which retrieves

1The source code is available at https://github.com/
usc-tamagotchi/on-knnlm.

the next token based on the intermediate represen-
tation of a given prefix, reduced language models’
perplexity. Because the datastore is drawn entirely
from the LM’s training data, the success of kNN
augmentation suggests the standard LM training
setup does not yield models that best utilize their
parametric capacity or training data. Studying why
LMs augmented with kNN retrieval (kNN-LMs)
outperform vanilla LMs may shed light on ways to
improve the standard LM training setup.

In this work, we base our study on the analy-
ses of kNN-LMs by Xu et al. (2023). Among the
aspects they explore are the limitations of model
architecture and memorization. Xu et al. (2023)
suggest the kNN component may be able to map
intermediate representation of context to distribu-
tions in a more flexible way, while the last layer of
LMs has a softmax bottleneck (Yang et al., 2018)
that restricts LMs from generating certain distribu-
tions. This discrepancy of expressiveness may thus
cause the performance gap. They also show that
replacing the kNN component with an overfitted
LM performs worse than kNN-LM, suggesting that
kNN augmentation does not perform better solely
because it memorizes the training data better.

In this work, we start with inspecting the bot-
tlenecks in the model as suggested by Xu et al.
(2023). We propose an experiment that shows that
the softmax bottleneck is not the cause of the per-
formance gap between kNN and vanilla LM. Our
experimental results show that the last linear layers
of LMs can generate distributions that approximate
the distribution from a kNN-LM well. Therefore,
we conclude that the bottleneck issues in the last
layers, including the softmax bottleneck issue, are
not the cause of the performance gap.

We then investigate the performance gap from
the perspective of generalization. This explains
why an overfitted LM is less effective than a kNN
retrieval component (Xu et al., 2023). We identify
a scenario which we refer to as over-specification.

229

https://github.com/usc-tamagotchi/on-knnlm
https://github.com/usc-tamagotchi/on-knnlm

That is, when a statement about certain knowledge
(e.g., relational knowledge (Petroni et al., 2019)
or commonsense (Speer et al., 2017; Young et al.,
2018; Sap et al., 2019)) contains redundant infor-
mation. We create a synthetic dataset Macondo
and use it to show that over-specification in train-
ing data prevents LMs from learning the knowledge
in a robust way, i.e., LMs cannot generalize to test
data which is not over-specified. Even GPT-3.5
Turbo, fails, indicating it is a fundamental limita-
tion of LM training. It may be crucial when the
size of training data is limited, because in this sce-
nario, it is likely that there are only few statements
about certain knowledge and all of them are over-
specified. Decounfounding the effect of having
redundant information also requires more training
examples. This may explain why we need to scale
up the training data size.

Because the better generalization ability may be
what makes the kNN component helpful, we ex-
plore alternatives to a kNN component by looking
for components that also generalize well. It turns
out that we can close the generalization gap on
Moncodo by training another neural model that
maps the intermediate representation to the target
token. We also show that on the WikiText dataset,
this approach reduces the perplexity by 1.45 while
requiring less than 4% storage space of kNN aug-
mentation. We suggest it is a promising future
direction for improving LMs.

2 Background and Notations

LM We focus on Transformer LMs such as GPT-
2. Given context c = {xi}t−1

i=1, we formulate next
token prediction as

plm(xt|c) = f ◦ g ◦ enc(c), (1)

where f is the last linear layer with softmax ac-
tivation, g is the two-layer MLP network with a
residual connection in the last Transformer layer,
and enc includes the earlier layers of the model.

kNN-LM Khandelwal et al. (2020) use the enc
function from a trained LM (Eq 1) to build a data-
store, where a key is the representation of a token
sequence {xi}t−1

i=1 in the training data encoded by
enc, and the value of the key is the next token xt.
When predicting the next token x′t of given context
c = {x′i}t−1

i=1, kNN-LM has a kNN retrieval mod-
ule that maps enc(c) to a distribution pknn(·|c) by
querying the datastore with enc(c). Then a kNN-

Original LMs pproj projected with Eq. 2
LM kNN-LM f → pknnlm f ◦ g → pknnlm

20.13 16.92 16.76 16.78

Table 1: The perplexity of the LMs discussed in §3.

LM generates the next token distribution with

pknnlm(xt|c) = λplm(xt|c) + (1− λ)pknn(xt|c),

where λ is a hyperparameter for interpolation.

Softmax bottleneck Yang et al. (2018) theoreti-
cally show that the dimensionality of the last linear
layer confines the possible vocabulary distribution
the last softmax layer can generate. It implies that
no matter what g◦enc generates, f can not generate
certain distributions.

3 Capacity of LMs’ Last Layers

Xu et al. (2023) hypothesize that the performance
gap between kNN-LM and vanilla LM is because
the softmax bottleneck prevents it from generating
some distributions that kNN-LM can generate. In
this section, we reinspect this hypothesis.

3.1 Projecting to the Probability Space
We study whether softmax bottleneck causes the
performance gap by inspecting whether the last
layers can generate a distribution that approximates
the distribution generated by kNN-LM pknnlm. We
do the projection by solving

z∗ ∈ argmin
z∈Rd

KL[f(z)∥pknnlm], (2)

where f is the last layer of the model with its
trained parameters fixed (definition in Eq 1). By
definition, if softmax bottleneck really prevents
the model from generating pknnlm, then f(z∗) can
not approximate pknnlm well and thus its perplex-
ity should be close to the vanilla LM’s. Therefore,
by comparing the perplexity of pproj = f(z∗) with
vanilla LM’s and kNN-LM’s perplexity, we can in-
fer the effect of softmax bottleneck in this problem.

Similarly, we can inspect whether the MLP layer
has a bottleneck effect by replacing f in Eq 2 with
f ◦ g. We use enc({xi}t−1

i=1) as the initialization of
z and solve Eq 2 with gradient descent.

3.2 Experiment, Result, and Discussion
We train an LM using WikiText following the set-
ting in Khandelwal et al. (2020) and measure its

230

perplexity (details in §A). Table 1 shows that the
approximation of pknnlm by the last layer f has an
average perplexity similar to the perplexity of kNN-
LM. The average KL-divergence between pknnlm
and pproj is also under 0.1 (Table 3). These results
imply that the approximation is good enough for
a good perplexity. It also implies the softmax bot-
tleneck does not prevent the LM from generating
a good distribution. Thus, the softmax bottleneck
is not the cause of the gap between vanilla LM
and kNN-LM. Projecting the pknnlm to the output
space of f ◦ g has a similar result. Therefore, LMs’
last layers do not have a bottleneck that causes the
performance gap. 2

4 Generalization from Over-specification

As the last layers do not have a bottleneck issue
that explains the performance gap, we turn to study
the efficacy of kNN augmentation from the per-
spective of generalization. In this section, we iden-
tify a limitation of LM training that may cause the
performance gap: The failure to generalize from
over-specified descriptions.

4.1 Over-specification

We refer to the phenomenon that the prefix of
a partial sentence contains information that is
not causally relevant to its completion as over-
specification. In other words, over-specification
is the scenario where removing some information
in the prefix (e.g. a phrase) does not change the
likelihood of the continuation. This phenomenon
often occurs in in the training data. The descrip-
tions about factual knowledge or commonsense are
usually over-specified with non-causally relevant
information, but the causally irrelevant information
may be absent during inference. Generalization
from over-specified training data is thus important
for an LM to utilize knowledge in the training data.

For example, in the training data, the text about
the knowledge “being drunk” implies “dangerous
to drive” may be over-specified as “I was drunk
when I left the party, so it was dangerous to drive”.
In this example, “I was drunk” is causally relevant
to “it was dangerous to drive” but “when I left the
party” is not. An ideal LM should generalize and
predict the same continuation when the non-causal
information “when I left the party” is absent.

2However, we find it more difficult to solve Eq. 2 with a
smaller learning rate for f ◦ g. More discussions in §E.

4.2 Dataset: Macondo

We create a synthetic dataset Macondo to demon-
strate the challenge of generalizing from over-
specified training data. This dataset contains the
names of 500 villagers, where 100 villagers have
1 to 5 child(ren), and each villager has a unique
full name consisting of a random combination of
a first name and a last name. Each child has a
single-token and distinct first name. We construct
each sentence in the training set using the tem-
plate “[villager], who [desc], is the parent of
[child]”, where “[desc]” is a verb phrase about
an attribute of the villager that is irrelevant to the
parent-child relationship. As for the sentences in
the test set, they follow the template “[villager],
is the parent of [child]”. A perfect LM should
predict each child of the villager with probability
log(1/# of children). (More details in §B.1)

4.3 Experiment, Results, and Discussion

To inspect how LMs are (un)able to generalize from
over-specified training data, we fine-tune GPT-2
XL models with Macondo and test it with the test
set where irrelevant “[desc]” is absent (details
in §C). Figure 1 shows that the fine-tuned GPT-2
model has a likelihood much lower than the the-
oretical perfect likelihood (log(1/# of children)).
It indicates that it cannot generalize from over-
specification. Additionally, Figure 1 shows that
the kNN-augmented model performs better than
the vanilla model. The better generalization capa-
bility of an augmented LM may partly explain the
performance gap between augmented and vanilla
LMs. We also experiment with GPT-2 small mod-
els (Figure 3a) and find that GPT-2 XL models do
not generalize much better, suggesting that scaling
up the model may not close this generalization gap.
We observe similar performance trend when fine-
tuning a Mistral-7B-v0.1 model in Section C.1.

4.4 Experimenting with GPT-3.5-turbo

To inspect whether scaling mitigates the challenge
of generalization, we further experiment with GPT-
3.5-turbo. We construct a conversational version of
Macondo, Macondo-Conv to fit the conversational
format of GPT-3.5-turbo. In the training set, sen-
tences follow the template “User: Who is the child
of [villager], the one who [desc]? Assistant:
[child].”. The test examples follow the template
“User: Who is the child of [villager]? Assis-
tant: [child].”. The dataset contains 125 villagers

231

0 2k 4k 6k 8k 10k

−10

−8

−6

−4

−2

1 2 3 4 5 Avg

Training steps

Lo
g
 l
ik

el
ih

o
o
d

Figure 1: Test log-likelihood of children names in our
synthetic dataset Macondo predicted by a fine-tuned
GPT-2 XL model for parents with 1-5 children (average
of 5 random seeds). The dotted lines represent the re-
sults of the kNN augmented LM. The horizontal lines
represent the theoretically best log-likelihood a perfect
model can achieve (log(1/# of children)). See Table 5
for the exact statistics shown in this figure.

Macondo WikiText
LM kNN/MLP-LM LM kNN/MLP-LM

19.66 17.69 / 10.76 20.13 16.92 / 18.68

Table 2: The perplexity of LMs augmented with differ-
ent a kNN model or a MLP model (§5).

having 2 children for lower fine-tuning costs.
The result in Figure 2 shows that GPT-3.5-

turbo can not generalize to a test set without over-
specification. This suggests that scaling up the
model size alone cannot solve this generalization
challenge. This failure to generalize may be a fun-
damental limitation of LM training.

5 An Alternative to kNN-augmentation

Motivated by the results in §4.3, we explore
whether using a datastore is necessary to improve
perplexity. The success of kNN-augmentation in
§4.3 shows that it is possible to generalize better
by utilizing the intermediate representation with a
kNN module. We wonder whether we can use a
classification model instead of a kNN module.

Because deep models have been known for
their generalization ability (Neyshabur et al., 2015,
2019), we explore using an MLP model to replace
kNN retrieval. We use the key-value pairs in the
datastore for kNN retrieval to train an MLP model
to map the keys to the values (details in §D). Re-
sults in Table 2 show that interpolating the original
LM with this MLP model effectively reduces the
perplexity while requiring less than 4% of storage.
This indicates a promising future direction.

0 500 1000 1500
−5

−4

−3

−2

−1

train
test

Training steps

Lo
g
 l
ik

el
ih

o
o
d -0.168

Figure 2: GPT-3.5-turbo fine-tuned with Macondo-Conv
using OpenAI API. The results are the average of 5 runs
with 5 datasets generated with 5 random seeds. Note
that the presented loss involves special tokens, e.g., end-
of-string tokens, so the theoretical perfect likelihood is
greater than log 0.5. The gray line is the test loss we
achieve when we use the test data to train the model.

6 Related Work

LMs that solely rely on parametric knowledge
learned during training time are known to hal-
lucinate (Shuster et al., 2021; Dhuliawala et al.,
2023; Zhang et al., 2023a; Ye et al., 2023; Zhang
et al., 2023b), suffer to learn long-tail knowl-
edge (Roberts et al., 2020), and fail to adapt to
new knowledge over time (De Cao et al., 2021;
Chen et al., 2021; Kasai et al., 2022). To over-
come these limitations, recent works (Khandelwal
et al., 2020; Lewis et al., 2020; Guu et al., 2020; Yo-
gatama et al., 2021; Borgeaud et al., 2022; Izacard
et al., 2023; Zhong et al., 2022; Min et al., 2023)
include an external datastore with the parametric
model, resulting in a retrieval-augmentated model
paradigm. Meanwhile, Drozdov et al. (2022) and
Wang et al. (2023) analyzes the effect of kNN-LM
on generation tasks, while Shi et al. (2022) focuses
on using kNN-LM on few- and zero-shot classifi-
cation tasks.

The traditional LM training setup has been
shown to yield models that fail to generalize to test
data with reversed relations (Berglund et al., 2023),
respective readings (Cui et al., 2023), and longer
tasks (Anil et al., 2022). These models can also
struggle with linguistic generalization between un-
seen but related contexts (Wilson et al., 2023) and
learn shortcuts that harm generalization (McCoy
et al., 2019). Bender and Koller (2020) have also
argued that such models will necessarily be limited
due to the ungrounded nature of their training data.

7 Conclusion

We study the performance gap between vanilla and
kNN-augmented LMs. We develop an experiment
that allows us to directly inspect the bottleneck is-

232

sue and exclude the possibility that it causes the
performance gap (§3). We further identify the over-
specified scenario where vanilla LMs fail to gener-
alize while kNN-LMs generalize better (§4). We
also show with GPT-3.5-turbo that this failure of
generalization can not be solved by scaling up the
model size, suggesting that this is a fundamental
limitation of LM training. Finally, we show the
potential of augmenting LMs with an MLP model,
indicating a promising future direction (§5).

Limitations

While we gain more insights by closely inspecting
the phenomena observed by Xu et al. (2023), why
kNN augmentation is beneficial remains not fully
clear. In §3, we focus on the bottleneck issues of
the last layers f ◦ g and show that there exists an
intermediate representation z∗ such that f ◦ g(z∗)
approximates pknnlm well. However, it is unclear
why enc does not map the context to z∗. In §4, we
identify the over-specification scenario where kNN-
LMs generalize better than vanilla LMs. However,
the mechanism behind this remains unclear. In
§5, we show that augmenting LMs with another
MLP can improve the perplexity of the model but
does not fully close the gap between kNN-LM and
vanilla LM on WikiText. Further analysis is re-
quired to understand the generalization behavior of
the kNN and the MLP models.

References
Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor

Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam
Neyshabur. 2022. Exploring length generalization in
large language models.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: Llms trained
on "a is b" fail to learn "b is a".

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste

Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In Proceedings of International con-
ference on machine learning.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Advances
in Neural Information Processing Systems.

Wenhu Chen, Xinyi Wang, and William Yang Wang.
2021. A dataset for answering time-sensitive ques-
tions. In Proceedings of the Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. Palm: Scaling language
modeling with pathways. arXiv.

Ruixiang Cui, Seolhwa Lee, Daniel Hershcovich, and
Anders Søgaard. 2023. What does the failure to rea-
son with “respectively” in zero/few-shot settings tell
us about language models? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8786–8800, Toronto, Canada. Association for Com-
putational Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2023. Chain-of-verification reduces
hallucination in large language models. arXiv.

Andrew Drozdov, Shufan Wang, Razieh Rahimi, An-
drew McCallum, Hamed Zamani, and Mohit Iyyer.
2022. You can’t pick your neighbors, or can you?
when and how to rely on retrieval in the kNN-LM.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2997–3007, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
International Conference on Machine Learning.

233

http://arxiv.org/abs/2207.04901
http://arxiv.org/abs/2207.04901
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
http://arxiv.org/abs/2309.12288
http://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=9-LSfSU74n-
https://openreview.net/forum?id=9-LSfSU74n-
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/2023.acl-long.489
https://doi.org/10.18653/v1/2023.acl-long.489
https://doi.org/10.18653/v1/2023.acl-long.489
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2309.11495
https://doi.org/10.18653/v1/2022.findings-emnlp.218
https://doi.org/10.18653/v1/2022.findings-emnlp.218
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and L. Sifre. 2022. Training compute-optimal large
language models. arXiv.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi,
Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir
Radev, Noah A Smith, Yejin Choi, and Kentaro Inui.
2022. Realtime qa: What’s the answer right now?
arXiv.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In Proceedings of International Conference
on Learning Representations.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San
Diega, CA, USA.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In Advances in
Neural Information Processing Systems.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen-
tau Yih, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2023. Nonparametric masked language modeling.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 2097–2118, Toronto,
Canada. Association for Computational Linguistics.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli,
Yann LeCun, and Nathan Srebro. 2019. The role
of over-parametrization in generalization of neural
networks. In International Conference on Learning
Representations.

Behnam Neyshabur, Ryota Tomioka, and Nathan Sre-
bro. 2015. In search of the real inductive bias: On
the role of implicit regularization in deep learning.
In 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Workshop Track Proceedings.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):3027–3035.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green ai. Communications of the
ACM.

Weijia Shi, Julian Michael, Suchin Gururangan, and
Luke Zettlemoyer. 2022. Nearest neighbor zero-shot
inference. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3254–3265, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784–3803, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17,
page 4444–4451. AAAI Press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv.

234

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
http://jmlr.org/papers/v24/23-0037.html
http://jmlr.org/papers/v24/23-0037.html
https://arxiv.org/abs/2207.13332
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2023.findings-acl.132
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX
http://arxiv.org/abs/1412.6614
http://arxiv.org/abs/1412.6614
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://dl.acm.org/doi/abs/10.1145/3381831
https://doi.org/10.18653/v1/2022.emnlp-main.214
https://doi.org/10.18653/v1/2022.emnlp-main.214
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

Shufan Wang, Yixiao Song, Andrew Drozdov, Aparna
Garimella, Varun Manjunatha, and Mohit Iyyer. 2023.
Knn-lm does not improve open-ended text generation.
arXiv.

Michael Wilson, Jackson Petty, and Robert Frank. 2023.
How Abstract Is Linguistic Generalization in Large
Language Models? Experiments with Argument
Structure. Transactions of the Association for Com-
putational Linguistics, 11:1377–1395.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Frank F. Xu, Uri Alon, and Graham Neubig. 2023. Why
do nearest neighbor language models work? In Pro-
ceedings of the International Conference on Machine
Learning.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank RNN language model. In Pro-
ceedings of the International Conference on Learning
Representations.

Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and
Weiqiang Jia. 2023. Cognitive mirage: A review of
hallucinations in large language models. arXiv.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021. Adaptive semiparametric lan-
guage models. Transactions of the Association for
Computational Linguistics, 9:362–373.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting end-to-end dialogue systems with common-
sense knowledge. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial In-
telligence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu,
and Noah A Smith. 2023a. How language model
hallucinations can snowball. arXiv.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023b. Siren’s song in the ai
ocean: A survey on hallucination in large language
models. arXiv.

Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Train-
ing language models with memory augmentation.

In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
5657–5673, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

A Experiment Details of §3

A.1 Hyperparameters for the Baseline Models
We implement kNN-LM based on the package
transformers 4.34.0 (Wolf et al., 2020). We
train a 16-layer transformer model following the
hyperparameters used by Khandelwal et al. (2020)
and Xu et al. (2023). We use k = 1024, λ = 0.25
and L2 distance for kNN retrieval. Please refer
to the repository of Xu et al. (2023) (https://
github.com/frankxu2004/knnlm-why) for more
details about datastore building.

A.2 Hyperparameters for Solving Eq. 2
We use learning rate 0.1 and Adam opti-
mizer (Kingma and Ba, 2015) for solving Eq. 2
using gradient descent. We do gradient descent
until the update changes the KL-divergence is by
less than 0.001.

B Details about the Macondo Dataset

B.1 Generation Process
We construct the Macondo dataset using the tem-
plate “[villager], who [desc], is the parent of
[child]”. In each example, the “[villager]”
placeholder is replaced with a villager’s full name.
We generate the full name of a villager by ran-
domly sampling a given name from a corpora
by Mark Kantrowitz and a surname from a list
of the most common surnames under Creative
Commons Attribution 4.0 International License.
The “[villager]” placeholder is replaced with
a single-token given name from the corpora by
Mark Kantrowitz. We associate each villager with
6 attributes described below. When generating an
example in the training set, we randomly sample
one of the six attributes and replace the “[desc]”
placeholder with a relative clause describing the
attribute:

• Year of birth: “who was born in [year]”. The
year is randomly sampled between 1800 and
2005.

• City of birth: “who was born in [city]”. The
city is randomly sampled from a word city
database by simplemaps under the license Cre-
ative Commons Attribution 4.0.

235

https://arxiv.org/abs/2305.14625
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.1162/tacl_a_00608
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2301.02828
https://arxiv.org/abs/2301.02828
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://arxiv.org/abs/2309.06794
https://arxiv.org/abs/2309.06794
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371
https://arxiv.org/abs/2305.13534
https://arxiv.org/abs/2305.13534
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://doi.org/10.18653/v1/2022.emnlp-main.382
https://doi.org/10.18653/v1/2022.emnlp-main.382
https://github.com/frankxu2004/knnlm-why
https://github.com/frankxu2004/knnlm-why
https://www.cs.cmu.edu/Groups/AI/areas/nlp/corpora/names/
https://www.cs.cmu.edu/Groups/AI/areas/nlp/corpora/names/
https://github.com/fivethirtyeight/data/tree/master/most-common-name
https://simplemaps.com/data/world-cities
https://simplemaps.com/data/world-cities

• Living city: “who used to live in [city]”.
The city is randomly sampled from the word
city database by simplemaps.

• Friend: “who was a friend of [villager]”.

• Graduate from: “who graduated from
[university]”. The list of university is from
THE world university ranking.

• Marry year: “who married in [year]”. The
year is randomly sampled between 1800 and
2023 and is guaranteed to be at least 18 years
after the year of birth.

• Work: “who used to work for [company]”.
The company is randomly sampled from a list
of California Companies on Wikipedia.

Table 6 contains some examples in this dataset. We
have 1500 examples in total.

B.2 The Conversational Version

We use the tiktoken tokenizer to ensure that the
names of the villagers’ children are single-token.
Table 7 contains some examples in this dataset.

C Experiment Details of §4

We fine-tuned GPT-2 small and GPT-2 XL with
a warm-up ratio equal to 0.05, batch size 4, and
Adam optimizer (Kingma and Ba, 2015) for 50
epochs. We use the default hyperparameters of the
Trainer API of the transformers package (Wolf
et al., 2020), i.e., learning rate 1e-5, max gradient
norm 1.0, etc. We use version 0613 for our exper-
iments that use GPT-3.5 Turbo. We execute this
experiment with NVIDIA RTX A6000 GPUs.

C.1 Additional Experiments with Mistral

We report additional Macondo experiments con-
ducted on a more capable model, namely Mistral-
7B-v0.1 (Jiang et al., 2023). We follow the same
dataset setup as in 4.3, and fine-tune the Mistral
model with LoRa (Hu et al., 2021). We report
performance curves in Figure 3b, and attain quali-
tatively similar observations to those in Section 4.3.
Our experiments add favorable evidence that nei-
ther concurrent methods in pre-training language
models nor model scaling is an effective solution
for circumventing over-specification. But kNN-
augmented language models can partially reduce
the optimality gap between the backbone language
model and a perfect model.

f f ◦ g
0.07 0.10

Table 3: The minimum KL-Divergence achievable by
solving Eq 2 with gradient descent.

Original LMs pproj projected with Eq. 2
LM kNN-LM f f ◦ g f ◦ g → y

20.13 16.92 16.70 19.97 19.41

Table 4: The perplexity of projecting to LMs’ output
space as discussed in §3 when using learning rate 0.001.

Mistral Fine-Tuning Details. Following stan-
dard practices, we add LoRa adaptors to the em-
bedding matrix, to the query, key, value, and output
projections of each attention layer, as well as to
all projections of each MLP layer. We set the rank
of all update matrices to be 8, the LoRa scaling
factor to be 16, and a LoRa dropout probability of
0.05. We use a warm-up ratio of 0.05, and train
with a global batch size of 128 using the Adam
optimizer (Kingma and Ba, 2015). We use default
hyperparameters of the Hugging Face Trainer API
to fine-tune the model for 30 epochs.

D Experiment Details of §5

We use a learning rate of 1e-5 to train an MLP
model that maps the keys in the datastore to the
values. The batch size is the same as the number
of tokens in each batch when training the vanilla
language model, i.e., 3× 3072. For Macondo, we
train the model for 10 epochs. For WikiText, we
train the model for 2 epochs. The model architec-
ture is the same as the last MLP layer of the vanilla
language model, i.e.

logits = W (z + LN ◦MLP(z)),

where the MLP model has 1 hidden layer with the
hidden size 4096 and LN is the layer normalization
module (Ba et al., 2016). We execute this experi-
ment with RTX 2080Ti GPUs.

E A Potential MLP Hurdle

Even though we can solve the optimization prob-
lem in Eq. 2 with a learning rate of 0.1, we find it
more difficult to solve it for f ◦ g with a learning
rate below 0.001. Table 4 shows the perplexity of
solving Eq. 2 using a learning rate below 0.001
for 100 steps. The perplexity of projecting to the

236

https://simplemaps.com/data/world-cities
https://simplemaps.com/data/world-cities
https://www.timeshighereducation.com/world-university-rankings/2023/world-ranking
https://en.wikipedia.org/wiki/List_of_California_companies
https://en.wikipedia.org/wiki/List_of_California_companies

output space of f is much lower. We suggest that
it may cause some challenges in optimizing enc
because it seems that the gradient can not flow to
enc easily when the learning rate is small. We refer
to this as a potential MLP hurdle.

E.1 Experiment, Result, and Discussion
We inspect the effect of this MLP hurdle on model
training by conducting an experiment focusing on
the memorization process of the model. We train
two LMs with the test set of Macondo. These two
models are randomly initialized LMs following the
same architectural choices of GPT-2-small; one
has the last MLP layer removed. We compare the
log-likelihood of the children’s names every 1000
training steps. We also conducted the same experi-
ment on WikiText.

Figure 4 shows the effect of removing the MLP
layer on Macondo. The model’s log-likelihood
with the last MLP layer removed grows faster than
the original model during the first 4000 steps. As
for WikiText, Figure 5 shows that the loss decreases
faster at the early stage when its last MLP layer
is removed. This suggests that the last MLP layer
slows down the convergence rate at the early phase,
which may be a potential limitation of LM training.

0 2k 4k 6k 8k 10k

−10

−8

−6

−4

−2

1 2 3 4 5 Avg

Training steps

Lo
g
 l
ik

el
ih

o
o
d

(a) GPT-2

0 100 200 300

−10

−8

−6

−4

−2

0

1 2 3 4 5 Avg

Training steps
Lo

g
 l
ik

el
ih

o
o
d

(b) Mistral-7B-v0.1

Figure 3: Log likelihood of children names in our syn-
thetic dataset Macondo predicted by a fine-tuned GPT-
2/Mistral-7B-v0.1 model for parents with 1-5 children
(average of 5 random seeds). The dotted lines represent
the results of the k-NN augmented LM. The horizontal
lines represent the theoretically best log-likelihood a
perfect model can achieve (log(1/# of children)).

0 2000 4000 6000

−10

−8

−6

−4

−2

LM w/o MLP
kNN-LM w/o MLP
LM w/ MLP
kNN-LM w/ MLP

Training steps

Lo
g
 l
ik

el
ih

o
o
d

Figure 4: Log likelihood of the children’s names in
Macondo. The results are the average of 5 random
seeds.

0 5k 10k 15k 20k

4

5

6
LM with the last MLP
LM without the last MLP

Training steps

Lo
g
 l
ik

el
ih

o
o
d

Figure 5: The training loss on WikiText.

237

steps
of children (vanilla/k-nn LM)

1 2 3 4 5 Average

0k -10.89 -7.67 -10.69 -7.57 -10.82 -7.69 -10.67 -7.55 -10.68 -7.61 -10.75 -7.62
2k -2.66 -1.87 -3.44 -2.34 -4.13 -2.67 -4.57 -3.12 -4.75 -3.36 -3.91 -2.67
4k -0.93 -1.09 -2.59 -2.22 -3.27 -2.81 -3.46 -3.07 -3.63 -3.19 -2.78 -2.47
6k -1.13 -1.05 -3.13 -2.76 -3.54 -3.22 -3.61 -3.36 -3.67 -3.44 -3.02 -2.77
8k -1.15 -0.90 -3.30 -2.84 -4.12 -3.61 -3.95 -3.59 -3.90 -3.75 -3.28 -2.94
10k -1.09 -1.14 -3.24 -2.92 -3.75 -3.71 -3.60 -3.56 -3.78 -3.78 -3.09 -3.02
12k -1.07 -0.94 -3.28 -2.86 -3.96 -3.76 -3.77 -3.63 -3.77 -3.81 -3.17 -3.00
14k -0.98 -0.95 -3.67 -2.89 -4.22 -3.73 -4.10 -3.81 -4.21 -4.15 -3.44 -3.11
16k -1.02 -0.92 -3.67 -2.93 -4.34 -3.83 -4.17 -3.89 -4.29 -4.27 -3.50 -3.17

Table 5: The exact log likelihood of the children names shown in Figure 1.

Split Examples

train Sal Gougis, who used to live in Chichester, is the parent of Montgomery
Bethanne Renneisen, who graduated from Kocaeli Health and Technology
University, is the parent of Bryant
Bethanne Renneisen, who used to work for Fox Broadcasting Company, is the
parent of Hayward

test Sal Gougis is the parent of Montgomery
Bethanne Renneisen is the parent of Bryant
Bethanne Renneisen is the parent of Hayward

Table 6: Some examples in the Macondo dataset.

Split Examples

train User: Who is the child of Sal Gougis, the one who used to live in Chichester?
Assistant: Meta
User: Who is the child of Sal Gougis, the one who married in 2019? Assistant:
Else
User: Who is the child of Fifine Lottman, the one who used to work for
Mervyn’s? Assistant: Wat
User: Who is the child of Fifine Lottman, the one who was born in Drug?
Assistant: Tam

test User: Who is the child of Sal Gougis? Assistant: Meta
User: Who is the child of Sal Gougis? Assistant: Else
User: Who is the child of Fifine Lottman? Assistant: Wat
User: Who is the child of Fifine Lottman? Assistant: Tam

Table 7: Some examples in the conversational version of the Macondo dataset.

238

