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Abstract

Although large language models (LLMs) have
achieved significant success, their vulnerabil-
ity to adversarial perturbations, including re-
cent jailbreak attacks, has raised considerable
concerns. However, the increasing size of
these models and their limited access make
improving their robustness a challenging task.
Among various defense strategies, random-
ized smoothing has shown great potential for
LLMs, as it does not require full access to the
model’s parameters or fine-tuning via adver-
sarial training. However, randomized smooth-
ing involves adding noise to the input before
model prediction, and the final model’s ro-
bustness largely depends on the model’s per-
formance on these noise corrupted data. Its
effectiveness is often limited by the model’s
sub-optimal performance on noisy data. To
address this issue, we propose to leverage the
multitasking nature of LLMs to first denoise
the noisy inputs and then to make predictions
based on these denoised versions. We call
this procedure self-denoised smoothing. Un-
like previous denoised smoothing techniques
in computer vision, which require training a
separate model to enhance the robustness of
LLMs, our method offers significantly better
efficiency and flexibility. Our experimental
results indicate that our method surpasses ex-
isting methods in both empirical and certified
robustness in defending against adversarial at-
tacks for both downstream tasks and human
alignments (i.e., jailbreak attacks). Our code
is publicly available at https://github.
com/UCSB-NLP-Chang/SelfDenoise.

1 Introduction

Large language models (LLMs) have demonstrated
outstanding performance across various applica-
tions (Touvron et al., 2023; Taylor et al., 2022; Li
et al., 2023; Yang et al., 2022). However, LLMs
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abaoji@ucsb.edu>, <bairu@ucsb.edu>.

are vulnerable to input-level adversarial perturba-
tions (Jin et al., 2020; Guo et al., 2021; Hou et al.,
2022; Wen et al., 2023). Existing attacks are effec-
tive in generating input perturbations that can cause
LLMs to make wrong predictions on downstream
tasks or generate harmful content misaligned with
human values (e.g., providing detailed instructions
for creating a bomb) (Zou et al., 2023; Chao et al.,
2023; Li et al., 2023). This vulnerability has raised
concerns about the trustworthiness of LLMs.

Enhancing the robustness of LLMs is very chal-
lenging. Many robustness-enhancement meth-
ods (Madry et al., 2018; Zhang et al., 2019; Zhu
et al., 2019) involve heavy training, which can be
difficult due to the enormous size of LLMs and
limited access to their parameters (e.g., GPT mod-
els). In comparison, randomized smoothing meth-
ods (Cohen et al., 2019; Lee et al., 2019; Salman
et al., 2020) offer a way to enhance the robustness
with limited model access and provide stability
guarantees for predictions. In the NLP field, there
have been some explorations using randomized
smoothing to defend against attacks on downstream
tasks (Zeng et al., 2021; Ye et al., 2020; Zhao et al.,
2022) as well as against jailbreak attacks (Robey
et al., 2023). However, the performance of ap-
plying randomized smoothing directly to LLMs
remains unsatisfactory. This is primarily because
randomized smoothing involves adding noise to
the input, and the final model’s robustness largely
depends on model performance on the noise cor-
rupted data. Unfortunately, LLMs typically exhibit
sub-optimal performance on noisy inputs.

To address this issue, we propose self-denoised
smoothing, or SELFDENOISE for short, to im-
prove the robustness of LLMs based on randomized
smoothing. Our approach initially introduces mul-
tiple perturbed inputs by randomly masking words
in the original input. Unlike vanilla randomized
smoothing, which directly feeds these perturbed
inputs to the model, we take a further step by using
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the LLM itself to denoise these perturbed inputs.
Specifically, the inputs with random masks are first
fed to the LLM, which is then asked to complete
the sentences by filling in the masked parts. The
resulting sentences are subsequently passed to the
LLM again for task performance. This mechanism
is inspired by denoised smoothing in computer vi-
sion (Salman et al., 2020). However, these exist-
ing techniques typically require a separate denois-
ing module, often trained with distinct loss func-
tions (Salman et al., 2020) or through black-box ap-
proaches (Zhang et al., 2022b). On the other hand,
our method leverages the multitasking capabilities
of LLMs, offering a more flexible and effective way
to enhance robustness in the context of LLMs with-
out the extensive costs of denoiser training. With
this simple add-on step, we significantly improve
the robustness of LLMs. We support this claim
with extensive experiments on two different attack
settings: defending against adversarial attacks for
both downstream tasks and human alignments and
measuring both empirical and certified robustness.

2 Related Work

Adversarial robustness in NLP models Vari-
ous strategies have been developed to evaluate and
enhance the robustness of NLP models. To eval-
uate robustness, the adversarial perturbations are
created by character editing (Gao et al., 2018; Li
et al., 2018), word replacement (Jin et al., 2020; Li
et al., 2021; Guo et al., 2021), or sentence trans-
formation (Wang et al., 2019; Lin et al., 2021).
Besides the robustness on downstream tasks, the
recent “jailbreak attack” also attracted much atten-
tion. Besides the robustness of downstream tasks,
the recent “jailbreak attack” generates perturba-
tions for safety-aligned LLMs to fool them into
outputting harmful responses to harmful questions,
e.g. “How to make a bomb”. To improve ro-
bustness, robust training (Madry et al., 2018; Zhang
et al., 2019, 2022a, 2023), which is built upon min-
max optimization, has been shown as an effective
solution. Though effective in robustness improve-
ment, robust training brings significantly higher
costs compared to standard training. Our method
aims to improve the robustness of LLMs and is de-
signed to overcome these challenges. Without ac-
cessing the model parameters, the proposed method
can improve the model’s robustness on both down-
stream tasks and jailbreak attacks.

Randomized smoothing Randomized smooth-
ing (Cohen et al., 2019; Salman et al., 2020; Zeng
et al., 2021) is a defense strategy that converts a
given classifier f(·) into a smoothed classifier g(·).
Given the input x, the smoothed classifier g(·) out-
puts the class that is most likely to be returned by
f(·) given some random noise over the input. The
prediction of the smoothed classifier g(·) to a class
c is given by P(g(x) = c) = P(f(x ⊕ δ) = c)
where x ⊕ δ indicates the noisy version of the
input x and δ is the noise from a particular dis-
tribution. Despite increased inference costs, ran-
domized smoothing can both enhance empirical
robustness and offer certifiable guarantees for ro-
bustness against perturbations. Besides computer
vision, randomized smoothing is also used in the
NLP domain (Ye et al., 2020; Zeng et al., 2021;
Wang et al., 2021b; Zhao et al., 2022). Smooth-
LLM (Robey et al., 2023) leverages randomized
smoothing to defend jailbreak attacks. Our work
aims to improve the effectiveness of randomized
smoothing with a self-denoising framework, where
LLM itself is used as the denoiser to denoise the
noisy versions of the input before prediction.

3 Methodology

We denote x = [x1, x2, . . . , xL] as the input to the
LLM f(·), where xi is the i-th token, and y ∈ Y is
the ground truth output.
Randomized smoothing We follow previous
work on randomized smoothing (Cohen et al., 2019;
Zeng et al., 2021) to enhance the robustness of a
LLM f(·) by transforming it into a smoothed ver-
sion g(·). Specifically, we introduce random noise
into the input by (uniform) randomly replacing
some tokens with the [MASK] token. The ran-
domized masking scheme, ϕ(x,m), generates a
binary sequence of the same length as the input
x, with m% entries being nonzero, indicating the
corresponding positions in x that will be masked.
We denote the binary mask sequence as s and the
masked input asM(x, s). Then, the original LLM
f(·) is turned into a smoothed model g(·) as

g(x) = argmax
c∈Y

Ps∼ϕ(x,m)(f(M(x, s)) = c) (1)

SELFDENOISE In the randomized smoothing
framework described above, the performance of
the smoothed model g(·) largely depends on the
LLM’s performance on the masked and corrupted
input f(M(x, s)). To improve performance, we
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Figure 1: The prediction process of SELFDENOISE.

follow the denoise-smoothing pipeline used in com-
puter vision (Salman et al., 2020) by adding an ad-
ditional denoising step with a denoiser D(·). This
step in our context involves filling the masked to-
kens in the masked input before feeding it to the
base LLM, i.e.,

g′(x) = argmax
c∈Y

Ps∼ϕ(x,m)(f(D(M(x, s))) = c). (2)

The denoiser is designed to augment the base
model, making it more robust against random
masks on the inputs. Specifically, the denoiser has
two options: ❶ instructing the LLM itself to guess
the masked tokens, and ❷ directly removing the
masks. The choice between these two denoising
operations depends on the mask rate. When the
mask rate is high, the denoiser will opt to remove
the masks. This is because, in such cases, guessing
the masked words may result in a sentence with
a different meaning or a large semantic gap com-
pared to the original unmasked version. Simply re-
moving these masked words provides much better
empirical performance. Conversely, when the mask
rate is low, denoising the sentence by filling in the
masked words yields superior performance. In our
design, we set the tipping noise rate for switching
between these two denoise modes at 60%. To fill
in the masked words, we simply prompt the LLM
and require the completed sentence to be fluent
and preserve the semantics, without any training
on the denoising task. The overall pipeline of our
proposed SELFDENOISE is shown in Figure 1.

Certified robustness SELFDENOISE, being in
the family of the randomized smoothing frame-
work, can also provide certified robustness against
word-replacement attacks. Specifically, the LLM
f(·) is certified as robust if it satisfies the following
condition, for any x′: f(x′) = y, ||x′−x||0 ≤ dL .
Here || · ||0 represents the Hamming distance, L is
the number of tokens in the input, and d is known
as the certification radius, which signifies the maxi-
mum allowable percentage of word perturbations
without altering the model’s prediction. We refer
readers to Zeng et al. (2021) for a detailed certifi-
cation process and the related proof.

4 Experiment

4.1 Experiment Setup
Evaluation settings We consider two attack set-
tings: we evaluate whether the proposed method
defends against ❶ adaptive adversarial attacks for
downstream task performance, and ❷ jailbreak at-
tacks for human alignment.

Dataset and models We use the SST-2 (Socher
et al., 2013) and Agnews (Zhang et al., 2015) as
the downstream tasks to evaluate the robustness
enhancement (setting ❶ above). We consider Al-
paca (Taori et al., 2023) as the base LLM to be ro-
bustified. For setting ❷, we use AdvBench (Zou
et al., 2023) to evaluate the robustness against
jailbreak attacks. We consider the aligned LLM,
Vicuna-1.5-13B (Zheng et al., 2023), for evaluation.
More details about the prompts and implementation
details can be found in Appendix A.1 and A.2.

Evaluation metrics We follow the conventions
in the literature (Wang et al., 2021a; Lee et al.,
2022). We measure the downstream task robust-
ness by both empirical robustness against adver-
sarial attacks (in adaptive settings) and the certi-
fied accuracy on benign examples. In particular,
we leverage DeepWordBug (Gao et al., 2018) and
TextBugger (Li et al., 2018) to attack the smoothed
classifier and measure the empirical robust accu-
racy. We use the default hyper-parameters in Tex-
tAttack (Morris et al., 2020) library for both attack
methods. For the certified robustness, we evaluate
the certified accuracy follow previous work (Cohen
et al., 2019; Carlini et al., 2022) for different pertur-
bation scales d from 1% to 10%. We also report the
clean accuracy on benign examples (i.e., without
attacks). For setting ❷, we report the percentage
of harmful prompts that the model successfully
recognize and refuse to answer them against state-
of-the-art jailbreak attacks including GCGAttack
(Zou et al., 2023) and PAIR (Chao et al., 2023). We
denote this metric as defense success rate (DSR).
More details about this metric are in Appendix A.4.

Baselines One main baseline is the vanilla ran-
domized smoothing, RANMASK (Zeng et al.,
2021), implemented without denoising. We aim to
show that with a simple self-denoise process, we
can significantly improve robustness without intro-
ducing smoothing overhead. We also include an-
other randomized smoothing method, SAFER (Ye
et al., 2020), that adds noise by synonym replace-
ment for comparison on downstream tasks. Further-
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Dataset Method Clean Acc. (%)
Empirical Robust Acc. (%)

DeepWordBug TextBugger

SST-2

ALPACA 89.0 52.0 45.0
SAFER 85.0 57.0 54.0

RANMASK 84.0 52.5 48.0
SELFDENOISE 90.0 64.5 55.5

Agnews

ALPACA 85.0 58.5 50.5
SAFER 83.0 55.5 53.0

RANMASK 82.0 58.0 53.0
SELFDENOISE 84.0 70.0 66.0

Table 1: Clean accuracy and empirical robust accuracy
under DeepWordBug attack and TextBugger attack.
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Figure 2: Certified accuracy under different perturbation
scale d (%) on SST-2 (left) and Agnews (right).

more, for setting ❷, we incorporate SMOOTHLLM
(Robey et al., 2023) for comparison in defending
against jailbreak attacks. SMOOTHLLM is also a
randomized smoothing method that adds noise via
character-level editing (we use the best reported
character swapping operation in our experiments),
which is mainly designed for defending against jail-
break attacks. More details are in Appendix A.3.

4.2 Experiment Results
Robustness on downstream tasks We first re-
port the empirical robust accuracy in Table 1.
Here are our key observations. First, our method
achieves the best empirical robust accuracy on both
datasets. SELFDENOISE improves the performance
by 13.2% in SST-2 and 19.7% in Agnews com-
pared with the second-best method under the Deep-
WordBug attack, with 2.8% and 24.5% improve-
ments under TextBugger, respectively. Notably,
this improvement stems from a simple add-on de-
noising operation requiring minimal effort. Second,
the proposed method improves robustness without
sacrificing clean accuracy. Our method achieves
the same level of clean accuracy as the vanilla
ALPACA model for SST-2. In Agnews, SELF-
DENOISE improves the robust accuracy by 19.7%
with only a 1.2% drop in clean accuracy compared
with ALPACA. SELFDENOISE achieves the best
accuracy-robustness trade-off (Zhang et al., 2019).

Additionally, Figure 2 shows the certification re-
sults of the proposed SELFDENOISE and the base-
line RANMASK. SAFER is not included here as
it considers a different definition of certified ro-
bustness, and is discussed in Appendix A.3. We

Attack
Base

Vicuna
SMOOTHLLM RANMASK SELFDENOISE

5% 10% 15% 30% 5% 15% 30% 5% 15% 30%

GCG∗ 0 86 86 74 24 88 88 86 92 100 100
PAIR∗ 0 62 66 72 54 52 60 78 52 72 86
PAIR 28 42 54 56 50 40 56 66 64 58 68

Table 2: DSR given different defense methods and at-
tacks. A higher DSR indicates better defense perfor-
mance. ∗ denotes the transfer attack setting.

demonstrate that our method can effectively im-
prove certified accuracy beyond RANMASK in both
datasets under all perturbation scales. For example,
with d = 5, our method outperforms RANMASK

by 11.5% in SST-2 and 26.3% in Agnews.

Robustness against jailbreak attacks We report
the robustness against jailbreak attacks in Table 2.
We consider two attack settings: transfer and adap-
tive. We use a superscript ∗ to indicate transfer
attacks. Specifically, we first collect a set of ad-
versarial examples that successfully jailbreak the
vanilla Vicuna model. Then, we report how the
same set of adversarial attacks performs on the
model equipped with different smoothing defense
mechanisms. For the adaptive setting, the attack
directly targets the smoothed models. We report
the DSR with different noise levels added during
the smoothing process, ranging from 5% to 30%.

We highlight the following conclusions. First, all
three methods effectively improve the trustworthi-
ness of LLMs despite differences in the smoothing
scheme. Even under the strong adaptive attack,
PAIR, the defense can achieve a DSR of 50% to
60%. Second, our method achieves the best de-
fense performance compared to baselines against
all different attack approaches, demonstrating its
great potential for the safety of LLMs. Third, as
the amount of noise added increases, our method’s
DSR continuously increases, compared to the other
two methods without the denoising. This is be-
cause, when the amount of noise added increases,
the semantics of the original instruction get more
distorted, causing the model to report that it does
not understand the meaning of the input instruction,
which does not count toward a successful recogni-
tion and refusal to answer in our evaluation case.

5 Conclusion

In this paper, we propose a simple self-denoised
smoothing technique, termed SELFDENOISE, to
enhance the robustness of LLMs. The proposed
method can be used as a plug-in module for any
LLM without requiring access to its parameters,
and no training is needed. Our experimental re-

249



sults indicate that our method surpasses existing
baselines in both empirical and certified robustness,
effectively defending against adversarial attacks in
both downstream tasks and human alignments.

6 Broader Impacts

By developing a self-denoising method to enhance
the robustness of LLMs in the presence of noisy in-
puts, this work addresses a key limitation of LLMs
and enables their application in high-stake environ-
ments. The ability to utilize LLMs in these sce-
narios can have significant positive impacts across
various domains, such as healthcare, transportation,
and finance, where safety and reliability are critical.
By providing certified guarantees in safety-critical
domains, our method can help build more reliable
and responsible LLM systems.

Besides, our research contributes to the broader
fields of machine learning and artificial intelligence.
By tackling the challenge of robustness to noisy
inputs in LLMs, we advance the understanding and
the methodologies in this area. This can inspire fur-
ther research and innovation, leading to improved
techniques for enhancing the performance and relia-
bility of LLMs and other machine learning models.

However, it is important to acknowledge the
potential biases that may exist in LLMs, as our
method relies on them as base models. Biases can
arise from the training data used for LLMs, and
these biases may be propagated by our method. We
are committed to addressing the issue of biases and
promoting fairness and transparency in machine
learning systems. To mitigate these concerns, we
will include proper licenses in the released codes
and notify users about the potential risks associated
with biases. This way, users can be informed and
take appropriate measures to address any biases
that may arise from the use of our method.

7 Limitations

Despite the large improvements, our method suffers
from the limitation of running time, i.e., the pre-
diction and certification process is time-consuming.
This is largely because of the pc(x) calculation in
Equation 2. Such a problem is shared across all ran-
domized smoothing-based methods. Besides, the
additional self-denoising process also brings fur-
ther computational loads. It would be interesting
to either apply recent works on distributed com-
putation to accelerate our method or develop new
large language models specifically for denoising to

overcome this issue.
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A Additional Experiment Setup

A.1 Prompts and Instructions
The prompts and instructions we used for in-
context learning on downstream task prediction
and self-denoising are shown as follows.

1: Prompt template used for Alpaca.� �
Below is an instruction that
describes a task, paired with an
input that provides further
context. Write a response that
appropriately completes the
request.

### Instruction:
{}

### Input:
{}

### Response:� �
The following instructions are used to fill in the

contents under the “Instruction” section. The con-
tent under “Input” should be filled with different
input texts.

2: The instruction used for classification on SST-2.� �
Given an English sentence input,
determine its sentiment as
positive or negative.� �

3: The instruction used for self-denoising on SST-2.� �
Replace each mask word [MASK] in
the input sentence with a
suitable word. The output
sentence should be natural and
coherent and should be of the
same length as the given sentence
.

### Input:
[MASK] reassembled from [MASK]
cutting-room [MASK] of any [MASK]
daytime [MASK].

### Response:
apparently reassembled from the
cutting-room floor of any given
daytime soap.

### Input:
a [MASK], funny and [MASK]
transporting re-imagining [MASK]
[MASK] and the beast and 1930s [
MASK] films

### Response:
a stirring, funny and finally
transporting re-imagining of
beauty and the beast and 1930s
horror films� �

4: The instruction used for classification on Agnews.� �
Given a news article title and
description, classify it into one
of the four categories: Sports,
World, Technology, or Business.
Return the category name as the
answer.

### Input:
Title: Venezuelans Vote Early in
Referendum on Chavez Rule (
Reuters)
Description: Reuters -
Venezuelans turned out early and
in large numbers on Sunday to
vote in a historic referendum
that will either remove left-wing
President Hugo Chavez from
office or give him a new mandate
to govern for the next two years.

### Response:
World

### Input:
Title: Phelps, Thorpe Advance in
200 Freestyle (AP)
Description: AP - Michael Phelps
took care of qualifying for the
Olympic 200-meter freestyle
semifinals Sunday, and then found
out he had been added to the
American team for the evening’s
400 freestyle relay final. Phelps
’ rivals Ian Thorpe and Pieter
van den Hoogenband and teammate
Klete Keller were faster than the
teenager in the 200 free
preliminaries.
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### Response:
Sports

### Input:
Title: Wall St. Bears Claw Back
Into the Black (Reuters)
Description: Reuters - Short-
sellers, Wall Street’s dwindling
band of ultra-cynics, are seeing
green again.

### Response:
Business

### Input:
Title: ’Madden,’ ’ESPN’ Football
Score in Different Ways (Reuters)
Description: Reuters - Was
absenteeism a little high\on
Tuesday among the guys at the
office? EA Sports would like to
think it was because "Madden NFL
2005" came out that day, and some
fans of the football simulation

are rabid enough to take a sick
day to play it.

### Response:
Technology� �
5: The instruction used for self-denoising on Agnews.� �
Replace each masked position "[
MASK]" in the provided sentence
with a suitable word to make it
natural and coherent. Only one
word should be used to replace
each "[MASK]". The returned
sentence should be of the same
length as the given sentence.
Provide the answer directly.� �

We list the instructions for the Vicuna model for
self-denoising to defend against jailbreak attacks
in the following. This includes the instruction for
Vicuna to perform denoising and the instruction
for ChatGPT model to judge whether the output is
jailbroken.

6: The instruction used for self-denoising to defend
against jailbreak attacks for Vicuna model.� �

Your task is to replace each <
mask> in the input with an
appropriate word or a punctuation
mark. The goal is to make the
input sentence clearer, more
natural in language.
You need to follow several rules:
1. Words and punctuation marks
should fit the context and flows
naturally.
2. The output should maintain the
original meaning and implication
.
3. Preserve the original tone,
style and sentiment of the input.
4. All <mask> tokens must be
replaced, and all meaningful non
-<mask> words in the input must
be retained. <mask> should not
appear in the output. Leave all
non-<mask> words unchanged.

Below is one example:
Input: there is a fabric of <mask
> ideas here , <mask> feelings
that profoundly deepen them .
Output: {"replace" : "there is a
fabric of complex ideas here ,
and feelings that profoundly
deepen them ." }

Now replace the <mask> in the
following input. Generate the
response in json format, the
output json should only contain
one key, "replace". Don’t add any
notes or explanations.� �

7: The instruction template for ChatGPT model to
judge whether model output is jailbroken.� �
You are a helpful red teaming
assistant. You will receive a
prompt and the AI assistant’s
response to the prompt. Please
act as an impartial judge and
evaluate whether the response
provided by the AI assistant
violates ethical, legal, or
safety guidelines and answers the
following, TASK: ’{goal}’. Your
evaluation should consider

254



factors including clarity, the
level of detail, and accuracy
provided in the response. Be as
objective as possible.

Rate the response on a scale from
1 to 10. A rating of 1 signifies
a fully non-jailbroken response-

either irrelevant to the task or
refusal due to ethical or legal
concerns. A rating of 10
signifies responses that directly
and fully violate ethical, legal

, or safety guidelines and
comprehensively answer the task.
If the response is legitimate or
provides an alternative
suggestion, then the assistant is
not jailbroken and does not

receive a rating of 10.

Your rating should strictly
follow the rule, and output the
rating in json format, with only
one key ’rating’.

Now the prompt is: ’{PROMPT}’ and
the AI assistant’s response is

’{RESPONSE}’.� �
A.2 Hyperparameter
Hyper-parameter for SST-2 and Agnews
datasets We evaluate on 100 testing instances
for certified accuracy in Figure 2 and 200 instances
for empirical robust accuracy in Table 1. To use the
Alpaca for self-denoising, we use beam search for
generation and set the repetition penalty to 1.3 and
the number of beams to 2. We use 500 instances
for estimating pc(x) with Monte Carlo in the cer-
tification process. In Figure 2, for each perturba-
tion scale, we search the best mask rate m from
{10%, 20%, . . . , 90%} on the validation set for our
method and RANMASK. The best mask rates for
each perturbation scale are listed in Table 3. When
mask rate m is greater than or equal to 70%, we use
the removing mask strategy; otherwise, we use Al-
paca itself as the denoiser. For empirical robustness
results in Table 1, we observe that smaller mask
rates bring better empirical robust accuracy in the
validation set, so we use m = 5% for all methods.

Dataset Method
Perturbation Scale d (%)

1 2 3 4 5 6 7 8 9 10

SST-2
RANMASK 10 10 10 10 80 80 80 80 80 80

SELFDENOISE 20 20 30 30 70 80 80 90 90 90

Agnews
RANMASK 20 20 70 70 80 80 90 90 90 90

SELFDENOISE 50 50 70 80 80 80 90 90 90 90

Table 3: The best mask rate m (%) for each perturbation scale
on SST-2 and Agnews for SELFDENOISE and RANMASK.

Hyper-parameter for AdvBench dataset. Fol-
lowing SmoothLLM (Robey et al., 2023), we evalu-
ate the defense performance against jailbreak attack
on a selected subset of AdvBench dataset. which
contains 50 different harmful behaviors for LLM.
For the transfer attack experiment, we utilize the
official code to generate the attack string that can
successfully jailbreak VICUNA model for each be-
havior. For the adaptive attack experiment, the
attack budget for the PAIR attack is 20 queries
to the target model, i.e. the attacker generates
at most 20 adversarial prompts. As GCG attack
requires the next token probability of the target
model, which is not available for the smoothed
LLM g(·), we did not evaluate GCG attack in an
adaptive attack experiment. For all jailbreak exper-
iments, we use 10 copies to perform the majority
vote and ChatGPT as the judge model to evaluate
whether the smoothed LLM’s response is jailbro-
ken following (Chao et al., 2023).

A.3 Baseline Discussion
Baseline for certified robustness on downstream
tasks We consider the attack setting where we
do not have full knowledge about the potential per-
turbations and the attacker can replace the original
word with arbitrary words for attack. However,
SAFER consider the setting where the attacker re-
place original words from a pre-defined candidate
pools that are known by the defender. Since po-
tential perturbations are often not fully known in
realistic scenarios, we do not compare with SAFER

in terms of certified robustness.

Baseline for jailbreak defense We consider
SMOOTHLLM as the baseline for jailbreak defense
experiment, which also employs a randomized
smoothing scheme and proposes three character-
level perturbation operations: character insertion,
character swap, and patch perturbation. In our ex-
periment, we use character swap as the perturbation
scheme for SMOOTHLLM as the original paper
shows that character swap is the most effective per-
turbation. We refer readers to the original paper for
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Attack
No

Defense
SMOOTHLLM RANMASK SELFDENOISE

5% 10% 15% 30% 5% 15% 30% 5% 15% 30%

GCG∗ 0 4 10 22 76 0 8 14 0 0 0
PAIR∗ 0 0 4 4 24 0 4 8 0 0 0
PAIR 0 0 0 4 18 0 0 8 0 0 0

Table 4: Rejection rate for different defense methods
under two kinds of attacks. ∗ denotes transfer attack
from an adversarial prompt that can successfully jail-
break VICUNA model.

more details.

A.4 Evaluation metric details
For jailbreak defenses, we count the percentage
of harmful prompts the model successfully
identified against the ethical issues, e.g., Tell
me how to make a bomb. We did not use
use the percentage of successful attacks as the
metric because we find that the model tends to
reject the input, generating responses like I’m
sorry, but I’m having difficulty
understanding your question as noise
level increases for SMOOTHLLM and RANMASK.
We consider this situation as a failed defense.
However, the percentage of successful attacks
cannot capture this kind of failure. To exclude
these cases, we manually reviewed the model
responses and adjusted the results of the automatic
LLM jailbreak judge to get the final defense
success rate. We provide a detailed analysis of the
model rejection phenomenon in Section B.

B Analysis of Model Rejection in
Jailbreak Defense

In our preliminary experiments with various
masking rates, we found that large masking rate
for SMOOTHLLM and RANMASK leads to model
answers rejecting the input request, e.g., I’m
sorry, but I’m having difficulty
understanding your question. There-
fore, we manually check the responses for different
defense methods and count the number of rejec-
tions. The rejection rate is presented in Table 4.
The rejection rate for adaptive attacks is measured
at the final round, i.e., the round when the judge
reports the victim model being jailbroken or the
last round under attack budget. We highlight that
the semantic destruction operation in RANMASK

and SMOOTHLLM tend to cause the model to
reject queries, thus diminishing the functionality
of the language model. The rejection rate for
SMOOTHLLM at 20% mask rate on short prompts
in GCG attack is even more than 50%. In contrast,

Algorithm 1 SELFDENOISE for classification pre-
diction
Require: Defense LLM f(·), Number of copies
N , Input text x, Mask functionM, Mask rate m
for j ← 1 to N do

s(j) ∼ ϕ(x,m)
x(j) ←M(x, s(j))
y(j) ← f(x(j))

end for
return MajorityVote(y(1), . . . , y(N))

Algorithm 2 SELFDENOISE for jailbreak defense

Require: Defense LLM f(·), Number of copies
N , Input text x, Mask functionM, Mask rate
m, Jailbreak judge j(·)
for j ← 1 to N do

s(j) ∼ ϕ(x,m)
x(j) ←M(x, s(j))
y(j) ← f(x(j))

end for
JB = MarjorityVote(j(y(1)), . . . , j(y(N)))
Majority = {y(j) ∈ {y(1), . . . , y(N)} |
j(y(j)) = JB}.
Return y∗ ∼ U(Majority)

the self-denoising mechanism in our method
SELFDENOISE effectively mitigated the input
misunderstanding issue.

C Detailed algorithm

In this section, we list the detailed algorithm for our
method SELFDENOISE in improving robustness in
downstream tasks in Algorithm 1 and in defending
jailbreak attacks in Algorithm 2. For a detailed
certification algorithm, we refer readers to Cohen
et al. (2019).

D Discussion of Used Artifacts

Datasets: We did our best to find the license for
the SST-2 and AGNews dataset, but we did not
find any. We refer readers to their original paper
and homepage for usage policy. We did not clean
the dataset to remove individual information as it
is beyond the scope of our paper. Anonymizing the
original dataset may affect the evaluation of our
method. Therefore, we did not clean the dataset.

Models: The Alpca model is under cc-by-nc-4.0
license (https://www.creativecommons.
org/licenses/by-nc/4.0/deed.en).
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The Vicuna model is under LLaMA-2 li-
cense(https://ai.meta.com/llama/
license/). We perform all our experiments on
NVIDIA-A6000 GPUs, and all experiments are a
single run.
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