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Abstract

Retrieval-augmented language models pose
a promising alternative to standard language
modeling. During pretraining, these models
search in a corpus of documents for contex-
tually relevant information that could aid the
language modeling objective. We introduce
an ‘ideal retrieval’ methodology to study these
models in a fully controllable setting. We
conduct an extensive evaluation to examine
how retrieval augmentation affects the behav-
ior of the underlying language model. Among
other things, we observe that these models:
i) save substantially less world knowledge in
their weights, ii) are better at understanding
local context and inter-word dependencies, but
iii) are worse at comprehending global context.

1 Introduction

Retrieval-augmented language models combine the
strengths of self-supervised pretraining with infor-
mation retrieval techniques to allow for informa-
tion extraction from a nonparametric memory. Dur-
ing pretraining, the prediction of masked tokens
is conditioned not only on the immediate context
but also on information found to be contextually
relevant by a similarity search over a knowledge
database. These models are typically proven ef-
fective in knowledge-intensive tasks, such as an-
swering open-domain questions (Guu et al., 2020;
Lewis et al., 2022; Izacard et al., 2023).

However, little emphasis has been put into un-
derstanding what this type of training scheme does
to the underlying language model when analyzed
as a standalone – separated from the overall re-
trieval pipeline. Retrieval augmentation is often
proposed as a better alternative to standard pretrain-
ing, without much evidence of its advantages and
disadvantages. The behavior of the entire pipeline
depends on the qualities of the retrieved database
and the qualities of the standalone language model.
While the database is relatively easy to control, the
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Figure 1: The aggregated absolute differences from
the baseline across three categories of benchmarks, the
models exhibit consistent differences for each category.

performance of the language model can be hard to
estimate. This paper aims to shed more light on the
expected qualities of the language model, separated
from the database retrieval.

In total, we evaluate the effect of retrieval on 9
language models with 8 sets of zero-shot, probing
and finetuning tasks to empirically show that:

1. Retrieval augmentation separates linguis-
tic knowledge from world knowledge, to
some extent – the language model alone im-
proves syntactic understanding while delegat-
ing world knowledge to the retrieval module.
This separation becomes larger with scale.

2. Retrieval augmentation negatively impacts
NLU performance – the stand-alone lan-
guage model performs worse in multi-
sentence language understanding, which is
concerning for general-use language models.

3. Poor retrieval quality does not negatively
impact pretraining – the model behavior
gets closer to the baseline no-retrieval perfor-
mance, without overall quality degradation.
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2 Related work

Evaluation of retrieval augmentation While
there has been a lot of effort put into developing dif-
ferent retrieval-augmented language models (Guu
et al., 2020; Borgeaud et al., 2022; Izacard et al.,
2023), little emphasis has been put on analyzing
the limitations and abilities of current methods. Re-
cently, Norlund et al. (2023) found that the reliance
on surface-level similarities between the retrieval
database and test data has been somewhat under-
stated in the literature, finding that token-level over-
lap accounts for some of the reported performance
in the popular RETRO architecture (Borgeaud
et al., 2022); similarly, Wang et al. (2023b) shows
that even though retrieval augmentation improves
the perplexity of language models, it does not im-
prove their generation quality. Some have focused
on the retrieval part of the pipeline, with Doost-
mohammadi et al. (2023) reporting that a sparse
retrieval index can decrease perplexity for retrieval-
augmented language models. Charpentier et al.
(2023) found that retrieval-augmented pretraining
can improve context utilization.

From-scratch pretraining Most current
retrieval-augmented models are created by finetun-
ing or continual training (retrofitting) of an already
pretrained model. As shown in Wang et al. (2023a),
only RETRO trains a retrieval-augmented model
from scratch. While Borgeaud et al. (2022) focus
on improving the perplexity and text generation
with retrieval assistance, we want to look at
whether pretraining with retrieval leads to models
having better syntactic understanding while
retaining less world knowledge. This builds on the
intuition that retrieval should free up parameter
space for linguistic knowledge, as the relevant
world-knowledge information is continuously
supplied in the retrieved input. This hypothesis can
be tested only by pretraining a blank model from
scratch.

3 Controlled retrieval augmentation

This study examines the general implications of
retrieval augmentation in language modeling, in a
fully controllable ‘laboratory’ setting and without
relying on a particular retrieval model or parame-
ters. All existing retrieval models are noisy (not
always retrieving relevant context) and the noise
might not only have a large impact on the down-
stream performance but also it is hard to measure

and control. Therefore, we use an impractical,1 but
fully controllable, perfect retrieval in the form of
paraphrased inputs, as illustrated in Figure 2. Our
goal is to study the effect of retrieval augmenta-
tion on the stand-alone language model, and this
setup allows us to separate the effect of retrieval
type, retrieval accuracy or frequency of retrieved
duplicates. As discussed later, we also provide the
results of retrieval augmentation with a controlled
amount of noise to get closer to a realistic scenario.

Simplified retrieval-augmented LM We base
our experiments on masked language models as
they offer greater flexibility for evaluation (Devlin
et al., 2019; Rogers et al., 2020). The retrieval
augmentation is substantially simplified thanks to
paraphrase-based pretraining. As a whole, the
model is an encoder-decoder transformer (Vaswani
et al., 2017), where the encoder embeds the re-
trieved context and the decoder is a language
model (Figure 2). Specifically, the decoder is given
masked text segments, its training objective is to
unmask it (Devlin et al., 2019) and the encoder is
provided with a paraphrase of the unmasked seg-
ment.

Paraphrased training data We utilize the En-
glish Wikipedia as a clean and information-rich
text corpus. Due to the cost of paraphrasing, we
select only the top 10% most visited articles by
page view count in the last year (about 400 mil-
lion words). The paraphrases are generated by a
prompted instruction-tuned Mistral 7B language
model (Jiang et al., 2023), as described in Ap-
pendix A.2

Quality of paraphrases It is essential to train
the models on good paraphrases to avoid retrieval
of irrelevant context and unwanted data leakage.
For this study, a good paraphrase should have the
same meaning as the original but be completely
different lexically and syntactically. In that way,
the retrieval can provide relevant context and world
knowledge without inhibiting the training signal by
allowing the model to simply copy the paraphrased
document word-by-word.

Firstly, we utilize deep contextualized sentence
embeddings to measure the preservation of mean-
ing as the average semantic similarity of every

1As in ‘only useful for a theoretic study’.
2Such a dataset might be useful for tasks out-

side the scope of this paper and we openly release
it at https://huggingface.co/datasets/ltg/
en-wiki-paraphrased.
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Figure 2: Illustration of the full evaluation process. 1 Pretraining of a retrieval-augmented language model, using
an encoder-decoder transformer architecture. The retrieval mechanism is greatly simplified with paraphrase-based
retrieval augmentation. The language model learns to recover a partially masked text while having access to its
unmasked but paraphrased version. 2 To evaluate the standalone language model (in blue), we have to remove the
retrieval augmentation (in red) and replace the cross-attention module with a simple linear projection (in purple).

3 Only the patched language model is used during the evaluation to investigate its stand-alone features.

original-paraphrase pair (Reimers and Gurevych,
2019). Specifically, the average cosine similarity
is 0.88,3 indicating that the paraphrases are almost
semantically identical to the original texts.4

Secondly, we measure the lexical (and to some
extent syntactic) similarity as the BLEU score be-
tween paraphrased and original texts (Papineni
et al., 2002; Post, 2018; Niu et al., 2021). The
average BLEU score is 13% for the raw pairs and
7% for pairs with removed named entities and dig-
its – this shows that the paraphrases should not leak
surface-level information.

Noise injection The paraphrasing allows us to
test the effect of a perfectly accurate retriever. How-
ever, a real retriever does not always provide rel-
evant context. To also evaluate a more realistic
retrieval setting, we sometimes inject a randomly
sampled context, according to a given noise proba-
bility.

Linear patching We need to separate the lan-
guage model from its retrieval augmentation to
measure its independent performance. However,

3According to all-mpnet-base-v2, the best
SentenceTransformers model as of December 2023:
https://www.sbert.net/docs/pretrained_
models.html.

4As a reference, note that the illustrative example in Fig-
ure 2 has a slightly lower semantic similarity of 0.85.

when removed naively, the separated language
model exhibits poor performance because it expects
nonzero vectors from the cross-attention mecha-
nism. Therefore, we replace the retrieval augmen-
tation with a simple linear layer and continue pre-
training with all other parameters frozen, as illus-
trated in Figure 2. In Appendix B, we empirically
prove that (i) the patching is necessary and that (ii)
the linear patches are weak enough to not provide
additional knowledge.

4 Evaluation

The experiments in this section evaluate how re-
trieval augmentation, size and retrieval quality af-
fect world knowledge, syntactic knowledge and
language understanding of language models.

Evaluated language models We follow the LTG-
BERT architecture and training choices for pretrain-
ing the masked language models; this method is
designed to work competitively in low-resource
settings, making it suitable for our study (Samuel
et al., 2023). In total, we pretrain eight models:
three sizes: X-SMALL (8.5M parameters), SMALL

(27.7M) and BASE (98.2M), and each size with &
without retrieval augmentation. We also experi-
ment with the noise injection for the BASE model,
we train two additional models with 25 and 50%
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(MRR ↑) (MRR ↑) (MRR ↑) (LAS ↑) (UUAS ↑) (Acc. ↑) (LBS ↑) (Acc. ↑) (Avg. ↑) (F1 ↑)

REFERENCE MODEL (110M)

bert-base-cased 26.0 34.0 62.0 82.0 45.1 85.6 -0.10 44.8 82.1 88.4

BASE (98M)

− retrieval 20.3 32.1 53.6 78.1 48.0 82.9 -0.47 46.0 82.2 91.2
+ retrieval (50% noise) 17.7 23.2 49.1 79.8 51.3 81.3 -0.37 43.2 82.0 90.7

+ retrieval (25% noise) 18.1 23.4 48.3 79.9 51.6 82.7 -0.38 40.6 81.9 90.2

+ retrieval (0% noise) 14.9 15.8 41.5 80.2 51.8 83.2 -0.37 37.5 81.2 89.7

SMALL (28M)

− retrieval 17.2 28.3 47.4 71.2 49.7 78.6 -0.56 35.1 78.0 88.6
+ retrieval 11.8 15.3 36.3 71.7 50.4 78.8 -0.53 26.2 78.4 86.2

X-SMALL (9M)

− retrieval 9.9 14.7 39.2 63.3 45.5 73.4 -0.55 25.3 75.2 81.1
+ retrieval 7.5 10.6 23.4 63.6 49.2 73.3 -0.57 19.3 76.0 78.7

Model

WORLD KNOWLEDGE SYNTACTIC KNOWLEDGE LANGUAGE UNDERSTANDING

Concept
Net

SQuAD TREx
linear

probing
attention
probing BLiMP MSGS LAMBADA GLUE SQuAD

Table 1: The overall evaluation scores for all sets of tasks, are divided into three categories. + denotes models
pretrained with retrieval augmentation while − denotes standard models pretrained without retriever; note that the
evaluation is done without any retrieval mechanism for all models (see Section 4). We divide the models into three
subsets based on their size and also give the reference scores of the official bert-base-cased model evaluated
with our pipeline. We highlight the best results for each model size in boldface and measure the average score
across 5 runs, when applicable. The red color indicates worse results than the no-retrieval baseline and vice-versa
for the blue color.

noise probability. The pretraining details are listed
in Appendix C. We openly release all pretrained
models, as well as the training code, online.5

Evaluation method As stated previously, our
objective is to evaluate the effect of pretraining
with retrieval augmentation on a standalone lan-
guage model. Therefore, all evaluation tests are
performed without any retrieval mechanism and
on tasks that do not benefit from retrieval. We use
linear patching (Figure 2) to remove the retrieval
augmentation.

World knowledge To evaluate the knowledge
capacity of a language model, we evaluate it in a
zero-shot setting on the Language Model Analysis
probe (LAMA; Petroni et al., 2019). The probe
provides cloze-style statements of factual informa-
tion from different sources. We evaluate all models
on the subsets extracted from SQuAD (Rajpurkar
et al., 2016), from the ConceptNet knowledge
graph (Speer et al., 2017) and from the Wikipedia-
based T-REx (Elsahar et al., 2018).

Syntactic knowledge There are many ways of
measuring the syntactic understanding of a lan-
guage model, each with its disadvantages (Be-
linkov, 2022). We aim for a robust evaluation

5https://github.com/ltgoslo/
more-room-for-language

and thus measure the syntactic knowledge on four
different types of benchmarks. First, with linear
probing, we test how easy it is to extract syn-
tactic dependencies between words from contex-
tualized subword embeddings (Shi et al., 2016;
Alain and Bengio, 2017; Liu et al., 2019). Sec-
ond, attention probing measures how well we can
construct dependency trees directly from attention
probabilities (Mareček and Rosa, 2018; Raganato
and Tiedemann, 2018; Ravishankar et al., 2021).
Then BLiMP tests if a language model prefers
well-formed grammatical sentences (Warstadt et al.,
2020a; Salazar et al., 2020). Finally, MSGS lever-
ages the poverty of the stimulus design (Wilson,
2006) to measure the level of linguistic generaliza-
tion (Warstadt et al., 2020b).

Language understanding The third set of bench-
marks evaluates different aspects of general lan-
guage understanding. LAMBADA tests the ability
to understand long passages of text and form long-
range dependencies (Paperno et al., 2016). GLUE
is a multitask benchmark for fine-tuning and eval-
uating language models on diverse downstream
tasks (Wang et al., 2018a). SQuAD measures the
degree of reading comprehension using an extrac-
tive question-answering dataset (Rajpurkar et al.,
2016).
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Results We present the overall results in Table 1
and Figure 1. Fine-grained per-task results with sig-
nificance tests (when applicable), and an in-depth
explanation of the evaluated tasks and our setup are
provided in Appendix D.

5 Discussion

Retrieval augmentation separates linguistic
knowledge from world knowledge There is a
clear trend in the evaluated performance between
the world knowledge tasks and the linguistic tasks
– when a language model can rely more on retrieval
during pretraining (with decreased retrieval noise),
it remembers fewer facts and gets progressively
worse on all evaluated world knowledge tasks; but,
on the other hand, its syntactic understanding con-
sistently improves (Table 1).

This strongly suggests that a language model
with retrieval does not allocate as many parameters
to store world knowledge and instead uses the freed
parameters for other features, such as understand-
ing syntax. As a result, retrieval-augmented pre-
training leads to a clear separation between world
knowledge (in the retriever) and syntactic knowl-
edge (in the language model). This modular sys-
tem allows one to easily update factual knowledge
by updating the retrieval database, without risking
any side effects from updating neural parameters
(De Cao et al., 2021; Yao et al., 2023).

The positive results on syntactic tasks suggest
that retrieval-based pretraining can be a promising
avenue for efficient language modeling, as far as
the goal is to train a small model that understands
syntax well. Another notable finding is that the
linguistic advantages of retrieval-pretrained models
over standard models grow with the size of these
models (Table 1).

Retrieval augmentation negatively impacts NLU
performance Contrary to the mostly local syn-
tactic understanding, language understanding gets
worse with retrieval-augmented pretraining (Ta-
ble 1). The fine-grained GLUE results in Table 9
show that this affects tasks that require global inter-
sentence comprehension tasks (NLI) more than
short-range local tasks (CoLA or SST-2).

We argue that this is in part caused by the lack of
factual knowledge (which can help to resolve am-
biguous cases), but that it is also indirectly caused
by the way retrieval-augmented pretraining works.
When searching for the global context, the lan-
guage model is incentivized to trust the retrieved

document more than the partially masked input,
which pushes the mechanism of long-range resolu-
tion out of the language model itself. We further
investigate this in an additional experiment in Ap-
pendix E, where we also utilize the retriever aug-
mentation during evaluation – this setting clearly
improves the performance of long-range context
resolution on LAMBADA, which suggests that the
processing of global context is mainly delegated
out of the language model itself to its retrieval aug-
mentation.

This behavior poses a challenge to using retrieval
augmentation for pretraining general-purpose lan-
guage models. It makes retrieval finetuning (as
opposed to full pretraining) not only less costly but
also a more performant alternative.

Poor retrieval quality does not negatively impact
pretraining Noisy retrieval pretraining does not
lead to an overall drop in performance; instead,
it interpolates the behavior of standard pretraining
and of pretraining with a perfect retrieval (Table 1) –
more noise makes the retrieved context less reliable
and the language model has to act more indepen-
dently, akin to the standard no-retrieval setting.

While a high-quality retrieval mechanism is crit-
ical during inference, our results could suggest
that a subpar (but computationally inexpensive)
retrieval during training does not negatively impact
the overall performance.

6 Conclusion

We introduced a novel theoretical framework for
studying the properties of retrieval-augmented lan-
guage models. Specifically, through this paper,
we were able to show that using retrieval during
pretraining leads models to learn less world knowl-
edge while gaining better syntactic knowledge; this
separation is especially pronounced for larger mod-
els. However, this improvement comes at the cost
of performance in general language understanding
and in resolving long-range context dependency.
Due to the model relying on the retrieved spans,
the global context resolution seems to be delegated
to the retrieval module. We also performed an
ablation on the effect of noisy retrieval and saw
that it only slightly affects the syntactic capabil-
ities of the model while substantially improving
both its language understanding skills and world
knowledge. We make all resources used in the
paper openly available at https://github.com/
ltgoslo/more-room-for-language.
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Limitations

Pretraining corpus We pretrain all language
models on the texts from the English Wikipedia
– which is an information-rich and high-quality cor-
pus, but also one that is monolingual and not very
stylistically diverse. More typical web-crawl-based
corpora are not as rich in factual information and
the differences in evaluation of world knowledge
might not be as pronounced for them. Similarly,
we only evaluate the syntactic knowledge of an En-
glish knowledge model, and the results might differ
for a typologically different language.

Model scale Due to our computational con-
straints, we decided to limit the size of the pre-
trained language models to 100M parameters.
While our results show a consistent trend from the
smallest to the largest models, there is a possibility
that this suddenly changes in the billion-parameter
scale.

Masked language modeling This study only
evaluates the performance of masked language
models, primarily due to a larger and more diverse
set of benchmarks and also due to their ability to
perform well even at a modest scale. We believe
that most of our findings hold for causal language
models, too; and we look forward to future work
that evaluates these (typically much larger) models.

Need of paraphrasing Our evaluation frame-
work relies on pretraining on a parallel corpus of
masked texts and their paraphrases. Generating
the paraphrases by autoregressive decoding from
a language model is costly; in turn, this cost limits
the size of the pretraining corpus that can be tested.
This is why we decided to use a relatively small
corpus of 400M words in this work.
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A Mistral 7B paraphrase generation

We use the mistralai/Mistral-7B-Instruct-v0.1 checkpoint available on HuggingFace
(Wolf et al., 2020).6 We use a combination of nucleus sampling and top-k sampling with temperature
of 0.9, p of 0.9 and k of 50 (Holtzman et al., 2020). We also utilize a repetition penalty of 1.2 to avoid
degenerate outputs. We release the resulting parallel corpus online.7

The instructive prompt template for paraphrasing is the following Python f-string:

1 """<s>[INST] Paraphrase the following paragraphs, try to be very
creative and make it look as different as possible without
changing any meaning or losing any information. Don't be afraid
to change the order of words or sentences. Don't add any new
information that is not already in the text.

↪→

↪→

↪→

↪→

2

3 {original_unmasked_segment} [/INST]"""

Digression: issues of safety alignment We chose Mistral because of its state-of-the-art size-to-power
performance (Jiang et al., 2023), and its consistent and reliable outputs – but also because of its light
safety alignment. Other, much more safety-aligned language models, sometimes refused to paraphrase
Wikipedia articles about problematic topics, such as the development of nuclear bombs or the biography
of Adolf Hitler; yet we have not encountered such issues with Mistral. We note that while there are good
arguments for restricting the capabilities of language models for the general public, the ‘safe’ language
models can be limiting for scientific research. As an example, this is the output of Llama-2-7b by Touvron
et al. (2023) when asked to paraphrase a seemingly controversial Wikipedia article:

“It is not appropriate or ethical to provide information or assistance that promotes or glorifies
harmful or hateful ideologies, individuals, or actions. Therefore, I cannot paraphrase the given
text about Adolf Hitler as it would be inappropriate and potentially harmful to do so. Instead, I
suggest focusing on topics that promote positivity, inclusivity, and respect for all individuals. Is
there anything else I can assist you with?”

B Effect of linear patching

As discussed in Section 3, we have to apply a linear patch in order to conduct a fair evaluation of the
separated language model, the whole process is also illustrated in the following figure – we add a liner
layer (called a linear patch) between the self-attention and feed-forward network of each layer of the
encoder as a proxy to the missing cross-attention:

The purpose of this section is to empirically show that the linear patching is necessary and that it does not
bias the results by providing any additional knowledge to the patched model. For that, we will use the
detailed results from Appendix D that compare the performance of the patched and unpatched models.

B.1 Patching is necessary for the retrieval models

The results clearly show that when we evaluate the separated language model pretrained with retrieval,
it completely fails without patching when evaluated on tasks that do not involve any finetuning. While
this effect is clear across all tasks (Appendices D.1, D.2 and D.4), we will illustrate it specifically on the

6Online link: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
7Available on HuggingFace: https://huggingface.co/datasets/ltg/en-wiki-paraphrased
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LAMBADA task from Appendix D.6. There, the X-SMALL, SMALL and BASE retrieval models achieve
0%, 0% and 23% accuracy without a patch, which is substantially less than the 19%, 26% and 38%
accuracy with a simple linear patch. The naive removal of the cross-entropy modules (Figure 2) hinders
the language model and the linear patching is able to remove this handicap. Note that the naive removal is
not a problem for a model that is further finetuned – for example, the no-patch to patch SQuAD F1 scores
stay very stable for the retrieval models: 78.7→ 78.7, 86.2→ 86.3 and 89.7→ 89.7 (Appendix D.8).

B.2 Linear patches do not provide any additional knowledge

The linear patch is apparently needed and helps with the removal of the retrieval augmentation – however,
it is not acceptable to use a patch, which is doing more than ‘patching’ and which adds some additional
knowledge to the language model. This might even invalidate the positive results of retrieval-augmented
pretraining on syntactic understanding. We will therefore focus on these tasks in this section.

We can test if the patch provides additional knowledge by examining models that work well without it –
for them, patching should essentially be a no-operation that does not boost the performance. In our case,
the models pretrained without any retrieval are the ones that do not need patching – as they never use
cross-attention. Looking at the X-SMALL, SMALL and BASE no-retrieval model, we can see that adding
the linear patch does not lead to a better performance on linear probing: with the LAS scores 63.3→ 63.4,
71.2→ 69.9 and 78.1→ 77.9 (Table 5). The same applies for the average BLiMP results: 73.4→ 73.2,
78.6 → 78.6 and 82.9 → 82.8 (Table 6); as well as for the average MSGS results: −0.55 → −0.57,
−0.52→ −0.56 and −0.47→ −0.40 (Table 7). The last result is the only exception, but we believe that
it might be caused by the high variation of the MSGS results (as visible in Figure 4). In addition, the
trend applied for the world knowledge and language understanding tasks – linear patching does not give
a consistent advantage to the ‘no-retrieval’ model. We therefore conclude that the separated language
model do not gain an unfair advantage by using linear patching.

C Pretraining details

We pretrained a number of masked language models on a relatively small dataset of about 400 million
words. That is why we follow the optimized LTG-BERT training recipe from Samuel et al. (2023), which
showed to be effective for a low-resource setting.

We use WordPiece as the subword tokenizer (Wu et al., 2016) and set its vocabulary size to 16 384,
following LTG-BERT. We represent the text as a sequence of UTF-8 bytes instead of Unicode characters,
as proposed by Radford et al. (2019).

The training time is sped up by parallelization over multiple GPUs. The computationally most expensive
models are the BASE-sized retrieval-augmented models, these are pretrained on 128 AMD MI250X GPUs
for 414 minutes. All the experiments were run on the LUMI supercomputer.8.

D Evaluation details

D.1 LAMA probing

We calculate rank-based metrics for all subsets: mean precision at k (P@k) and mean reciprocal rank
(MRR). For a given statement, we count a fact as correctly predicted if the object is ranked among the top
k results, and wrong otherwise. As the models are trained on a relatively small corpus in a narrow domain,
the vocabulary is smaller than a typical language model. To account for this during evaluation, we remove
all statements where the correct token is not in the models’ vocabularies.

8https://www.lumi-supercomputer.eu/sustainable-future/
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Hyperparameter X-SMALL / SMALL / BASE

Number of layers 12 / 12 / 12
Hidden size 192 / 384 / 768
FF intermediate size 512 / 1 024 / 2 048
Vocabulary size 16 384
Attention heads 3 / 6 / 12
Dropout 0.1
Attention dropout 0.1
Training steps 15 625
Batch size 32 768
Sequence length 128
Warmup steps 250 (1.6% steps)
Initial learning rate 0.01
Final learning rate 0.001
Learning rate decay cosine
Weight decay 0.1
Layer norm ϵ 1e-7
Optimizer LAMB
LAMB ϵ 1e-6
LAMB β1 0.9
LAMB β2 0.98
Gradient clipping 2.0

Table 2: Pre-training hyperparameters for all three model sizes. The retrieval and no-retrieval models use the same
hyperparameters.

Both baselines and models trained with retrieval have the same vocabulary, so we do not need to account
for differences between the two with respect to OOV words. However, as our models are trained only
on a subset of Wikipedia, the proportion of OOV words with respect to the gold tokens in the LAMA
probe is significant. We account for this by removing all statements where the correct token is not in the
models’ vocabularies. Table 3 shows the number of original statements and how many were included in
the evaluations.

Dataset # Facts # Facts evaluated on

SQuAD 305 221

ConceptNet 29 774 16 997

TREx 34 039 22 550

Table 3: Statistics about the number of facts in the different subsets of LAMA (Petroni et al., 2019)

D.2 Linear probing

With linear probing, we are measuring how much information about a downstream task can be extracted
from the hidden representations with a simple linear transformation. The reasoning is that a model with
a better syntactic understanding should encode more of the syntactic information in the latent vectors.
However, note that the results also depend on the accessibility of the syntactic information, because we do
not use any nonlinear transformations. The reason for avoiding non-linearities is that we want to measure
the amount of knowledge already stored in the language model, not the knowledge learned by the complex
nonlinear transformation.

In order to parse an input, we first extract subword representations si,k from a frozen language model, for
all positions i and layers k. To get a vector representation ht for the tth word-span, we apply two pooling
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P@1 P@10 P@100 MRR P@1 P@10 P@100 MRR P@1 P@10 P@100 MRR

REFERENCE MODEL

bert-base-cased 17.20 44.31 70.59 26.00 21.71 65.15 79.63 34.00 52.55 80.08 92.27 62.00

BASE

− retrieval pretraining (patch) 12.97 37.46 60.15 20.48 21.71 65.15 72.39 31.98 43.31 75.11 88.72 53.84
− retrieval pretraining (no patch) 13.03 36.62 60.06 20.34 21.17 65.15 72.39 32.09 42.82 75.11 88.67 53.62

+ retrieval pretraining (50% noise, patch) 10.80 33.51 56.63 17.74 14.47 43.43 65.15 23.15 37.38 72.92 87.91 49.09

+ retrieval pretraining (25% noise, patch) 11.16 31.72 56.78 18.08 14.47 36.19 72.39 23.44 36.26 72.76 87.15 48.29

+ retrieval pretraining (0% noise, patch) 9.30 27.81 54.71 14.93 7.23 43.43 72.39 15.75 29.62 66.08 85.77 41.51

+ retrieval pretraining (0% noise, no patch) 5.54 19.35 40.99 9.78 7.23 14.47 50.67 10.50 20.41 55.09 79.13 31.42

SMALL

− retrieval pretraining (patch) 10.24 29.89 54.04 16.64 14.47 57.91 72.39 25.59 37.13 68.86 86.36 47.62
− retrieval pretraining (no patch) 10.90 30.42 54.89 17.25 21.71 50.67 79.63 28.29 36.77 69.19 85.97 47.44

+ retrieval pretraining (0% noise, patch) 6.57 22.77 48.51 11.77 7.23 28.95 65.15 15.38 25.71 58.71 81.47 36.31

+ retrieval pretraining (0% noise, no patch) 1.21 5.83 18.52 2.72 0.0 7.23 21.17 3.92 5.58 15.44 34.48 8.88

X-SMALL

− retrieval pretraining (patch) 5.82 21.52 45.03 10.67 7.23 36.19 65.15 14.57 27.44 61.10 83.13 38.48

− retrieval pretraining (no patch) 5.26 21.33 45.60 9.91 7.23 43.43 72.39 14.74 27.92 61.11 83.45 39.17
+ retrieval pretraining (0% noise, patch) 4.3 14.80 37.45 7.47 7.23 14.47 57.91 10.64 14.03 45.12 73.80 23.42

+ retrieval pretraining (0% noise, no patch) 0.0 0.0 1.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Model
ConceptNet SQuAD TREx

Table 4: Results on zero-shot evaluation on different subsets of the LAMA probe. MRR is calculated at k = 100.
The bold numbers represent the best model at each size, while the underline is the second best.

operations on the subword-token representations st,k: first, we pool the vectors at all layers by taking a
learned convex combination:

ŝt =
L∑

k=1

γkst,k,

where γk ∈ R (based on the observation that the syntactic information is present more strongly in some
layers (Kondratyuk and Straka, 2019; Rogers et al., 2020), we allow the model to select the most useful
combination of layers). Next, since one word-span can be split into multiple subwords, we average the
respective subword representation and get the final contextualized representation ht.

Finally, to predict the dependency tree, we take a similar approach to Dozat and Manning (2017) and
employ a shallow bilinear attention mechanism – without any nonlinear activations. The logit of an arc
between words at positions i and j is defined as:

arci→j = hiUhj + hiuhead + hjudep + b,

where U, uhead, udep and b are learnable parameters; the original parameters of the language model remain
frozen. Then we apply the Chu-Liu-Edmonds maximum spanning tree algorithm on the directed graph of
arc probabilities (Chu and Liu, 1965). The edge-label prediction also follows Dozat and Manning (2017)
in a similar manner.

We use the gold standard dependency corpus for English (Silveira et al., 2014), specifically its conversion
to Universal Dependencies 2.12 (Nivre et al., 2017).9

Significance test In order to test the statistical significance of the improvement by retrieval pretraining,
we use the Almost Stochastic Order test (ASO; Del Barrio et al., 2018; Dror et al., 2019) implemented
by Ulmer et al. (2022). We compare the ‘− retrieval pretraining (no patch)’ results with ‘+ retrieval
pretraining (patch)’ results (Table 5). All models were finetuned on five random seeds and we use ASO
with a confidence level of α = 0.05. The almost stochastic dominance (ϵmin < τ with τ = 0.2) on the

9Available online: https://github.com/UniversalDependencies/UD_English-EWT.
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primary LAS metric is achieved by all three sizes of models,10 which shows that the improvement is
statistically significant.

Model UAS LAS CLAS

REFERENCE MODEL

bert-base-cased 85.01±0.08 81.96±0.11 77.98±0.16

BASE

− retrieval pretraining (patch) 81.19±0.09 77.90±0.07 73.93±0.11

− retrieval pretraining (no patch) 81.42±0.08 78.06±0.09 74.14±0.11

+ retrieval pretraining (50% noise, patch) 82.95±0.12 79.82±0.10 76.18±0.09

+ retrieval pretraining (25% noise, patch) 83.06±0.08 79.94±0.12 76.46±0.15

+ retrieval pretraining (0% noise, patch) 83.41±0.09 80.25±0.11 76.72±0.17

+ retrieval pretraining (0% noise, no patch) 81.28±0.08 78.07±0.07 74.17±0.14

SMALL

− retrieval pretraining (patch) 73.15±0.02 69.93±0.01 64.63±0.05

− retrieval pretraining (no patch) 74.34±0.09 71.17±0.11 66.03±0.19

+ retrieval pretraining (patch) 74.91±0.07 71.72±0.12 66.40±0.17

+ retrieval pretraining (no patch) 67.86±0.07 64.57±0.09 58.25±0.11

X-SMALL

− retrieval pretraining (patch) 67.24±0.03 63.41±0.05 57.01±0.11

− retrieval pretraining (no patch) 67.13±0.07 63.31±0.07 56.86±0.13

+ retrieval pretraining (patch) 67.46±0.18 63.61±0.13 56.96±0.15

+ retrieval pretraining (no patch) 50.26±0.08 46.23±0.08 40.51±0.18

Table 5: The results of linear probing for dependency parsing. We evaluate the predictions with three standard
metric: the unlabeled attachment score (UAS), the labeled attachment score (LAS) and the content-word labeled
attachment score (CLAS; Nivre and Fang, 2017).The bold numbers represent the best model at each size, while the
underline is the second best.

D.3 Attention probing

We mostly follow Raganato and Tiedemann (2018), and Ravishankar et al. (2021) in their evaluation setup
of attention probing. Our goal is to decode dependency trees directly from the attention weights – with
the idea that a language model with better syntactic understanding should better utilize the hierarchical
syntactic structure in its attention mechanism.

First, given a sentence of length T , we pass it through the language model and separately save the attention
probabilities Aℓ,h ∈ RT×T for every layer ℓ and attention head h. To get elements that correspond to
the surface words (not the tokenized subwords), we remove the rows and columns that correspond to
the special [CLS] and [SEP] tokens, and we take the sum of the columns and the mean of the rows
that correspond to one word split into multiple subwords. Then we make the attention matrix symmetric
by multiplying it element-wise with its transpose: Aℓ,h ← Aℓ,h ·A⊺

ℓ,h. Finally, we interpret Aℓ,h as the
weighted adjacency matrix of a fully-connected undirected graph and extract the dependency tree by
finding the maximum spanning tree of that graph (Borůvka, 1926). The fitness the decoded graph is then
measured via the undirected unlabeled attachment score (UUAS; Htut et al., 2019).

As per Ravishankar et al. (2021), we report the best head score as the primary metric in Table 1. However,
fine-grained results for all heads are given in Figure 3.

10This is clearly achieved with ϵmin of 0.0, 0.0 and 0.0016 for the BASE, SMALL and X-SMALL sizes, respectively.
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layer 1 33.3 33.2 35.6 19.1 17.6 34.3 18.2 26.2 22.6 26.1 33.6 37.8 34.9

layer 2 34.2 33.6 34.3 27.6 18.7 25.1 29.9 34.3 48.0 28.4 8.4 29.2 39.1

layer 3 10.4 32.9 42.2 21.2 26.2 31.2 26.1 22.8 34.9 34.5 29.1 37.0 44.5

layer 4 31.5 11.9 36.8 19.0 27.7 33.3 11.9 19.7 43.3 42.8 32.7 9.0 42.8

layer 5 7.7 31.6 12.2 10.4 15.2 11.4 18.3 34.0 37.1 34.5 20.9 32.8 26.4

layer 6 14.9 20.3 40.4 18.4 31.0 28.2 8.6 15.8 9.8 8.1 41.0 12.6 38.0

layer 7 14.5 18.6 18.9 12.2 8.9 29.1 29.0 31.6 21.7 38.8 33.4 32.0 36.7

layer 8 36.3 20.4 20.4 11.9 31.5 26.2 33.0 13.4 21.8 26.8 29.0 21.7 37.7

layer 9 24.3 16.2 12.7 13.1 18.3 25.1 39.2 22.9 16.1 15.7 9.6 33.2 27.0

layer 10 24.8 15.9 23.5 24.7 16.6 22.4 22.4 9.8 24.8 26.5 13.9 29.9 31.5

layer 11 13.1 25.0 8.5 25.1 10.8 20.1 36.2 9.2 30.4 13.2 13.7 34.6 28.2

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 8.8 15.4 15.1 25.5 9.3 13.4 10.0 8.9 24.5 13.6 14.2 25.4

layer
average

18.9

full
average

36.6

(a) BASE: no retrieval pretraining.

layer 1 22.0 32.6 31.4 23.3 27.2 35.0 29.9 29.7 31.7 24.3 34.1 31.5 35.5

layer 2 34.7 16.3 35.9 39.7 46.0 28.1 41.6 29.0 30.2 8.4 7.6 21.1 40.8

layer 3 47.9 32.8 8.8 34.5 35.3 19.4 10.1 18.1 35.5 39.6 31.9 17.8 45.5

layer 4 51.8 12.2 13.0 25.2 16.8 12.8 31.9 30.1 7.2 38.4 29.8 29.9 41.1

layer 5 35.9 19.7 11.0 38.7 30.2 30.8 26.9 25.5 8.0 12.5 30.4 11.3 39.2

layer 6 7.3 14.8 35.3 27.4 8.0 41.7 27.7 23.5 7.4 13.2 13.0 35.2 35.1

layer 7 19.9 11.6 12.3 36.6 20.2 28.3 36.0 16.0 35.8 32.6 15.0 29.0 37.8

layer 8 14.0 19.9 27.9 31.1 38.5 7.9 36.0 9.7 38.2 38.4 16.5 36.7 42.2

layer 9 23.9 31.5 13.6 23.8 11.6 16.7 39.6 15.8 29.2 34.5 28.9 26.0 39.0

layer 10 12.2 18.6 35.2 33.8 25.9 15.4 41.3 20.0 33.4 25.3 29.9 15.5 40.6

layer 11 28.9 15.0 26.0 34.0 23.7 22.5 31.1 27.6 27.8 28.9 7.2 34.2 37.2

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 24.9 22.3 24.4 6.3 35.6 31.5 35.7 31.6 32.9 20.8 32.1 33.3

layer
average

34.7

full
average

38.7

(b) BASE: retrieval-augmented pretraining.

layer 1 30.6 30.4 32.3 29.7 19.5 35.8 37.0 24.1 31.1 25.4 29.9 24.2 35.4

layer 2 32.2 19.7 38.8 35.4 42.5 41.2 35.7 30.4 35.7 7.9 8.7 22.0 40.7

layer 3 19.9 37.0 16.7 17.2 37.1 25.0 10.3 32.9 34.5 41.5 51.6 28.0 45.8

layer 4 47.1 14.4 18.7 23.3 18.7 33.7 25.3 9.9 7.5 36.4 37.9 27.8 41.6

layer 5 36.1 9.8 8.1 34.7 27.2 26.9 17.0 29.8 18.5 29.5 30.5 11.1 37.2

layer 6 9.3 9.5 33.9 27.9 12.2 17.9 25.7 28.2 23.1 17.9 13.7 35.1 33.6

layer 7 10.8 12.1 13.1 30.1 17.3 26.7 38.0 31.7 28.7 15.5 31.5 32.2 36.9

layer 8 15.5 28.3 16.3 24.1 42.5 9.2 33.1 9.3 37.4 16.8 28.7 36.6 41.2

layer 9 18.3 33.4 14.4 28.3 13.0 35.9 33.8 25.0 26.5 23.1 20.2 22.6 36.4

layer 10 16.1 33.2 35.7 34.7 20.7 21.0 35.8 12.2 10.4 24.5 31.1 33.6 40.0

layer 11 19.9 21.0 33.0 42.2 19.0 31.3 20.0 34.6 22.8 28.3 8.5 31.4 36.5

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 29.2 28.0 32.6 18.7 34.6 24.5 36.1 29.6 35.5 18.8 27.7 35.0

layer
average

35.5

full
average

39.0

(c) BASE: retrieval-augmented pretraining with 25% noise.

layer 1 33.2 30.7 29.8 32.8 17.3 33.3 35.6 28.9 23.2 25.4 33.2 25.6 35.5

layer 2 28.2 20.8 37.1 34.1 39.1 36.0 33.7 29.4 34.3 7.1 10.3 34.0 38.0

layer 3 38.9 24.5 12.8 34.4 32.4 19.9 11.3 29.0 13.8 51.3 31.7 28.4 45.9

layer 4 36.8 18.2 13.9 9.6 25.2 17.0 24.0 10.6 8.1 34.8 44.3 28.2 39.8

layer 5 43.3 9.4 9.7 32.3 24.4 16.1 19.9 40.9 23.5 21.7 37.5 10.0 39.4

layer 6 14.6 11.0 33.3 18.8 16.3 20.4 26.1 23.3 36.0 24.2 11.9 30.1 36.1

layer 7 20.7 14.9 11.9 34.6 11.2 26.7 33.2 24.1 31.3 16.3 8.9 21.8 31.9

layer 8 19.3 13.1 19.0 33.4 43.0 7.4 20.0 11.8 34.3 33.4 35.7 41.4 41.0

layer 9 16.3 29.5 24.2 31.3 11.3 26.3 28.1 17.1 39.2 18.1 19.6 28.0 36.2

layer 10 20.0 23.5 29.3 35.8 16.8 18.4 26.1 10.2 27.0 22.6 9.3 37.8 39.7

layer 11 31.6 22.2 25.9 43.8 17.4 18.8 27.4 30.8 14.1 29.8 20.4 14.4 34.3

head 1 head 2 head 3 head 4 head 5 head 6 head 7 head 8 head 9 head 10 head 11 head 12

layer 12 25.4 23.9 33.1 27.2 23.0 34.6 34.8 25.6 36.4 21.1 29.6 32.0

layer
average

35.6

full
average

39.3

(d) BASE: retrieval-augmented pretraining with 50% noise.

layer 1 31.0 36.0 37.8 23.3 34.1 19.9 34.9

layer 2 9.6 36.6 35.9 48.6 36.4 19.6 38.2

layer 3 38.4 33.2 31.7 27.9 33.4 45.7 40.4

layer 4 39.4 12.3 8.9 34.7 16.9 39.0 38.6

layer 5 36.2 13.9 27.8 48.2 33.9 11.3 36.9

layer 6 14.9 34.7 31.3 49.7 37.5 26.2 46.5

layer 7 36.8 14.6 33.9 34.0 35.1 19.1 35.7

layer 8 18.0 37.7 28.6 23.8 35.5 12.0 35.1

layer 9 36.8 36.1 14.4 27.4 38.8 33.9 38.5

layer 10 28.0 22.7 35.9 30.2 28.9 45.8 45.0

layer 11 28.4 30.2 36.5 45.6 30.2 36.4 38.9

head 1 head 2 head 3 head 4 head 5 head 6

layer 12 19.2 17.2 24.6 35.0 36.0 34.7

layer
average

35.1

full
average

39.6

(e) SMALL: no retrieval pretrain-
ing.

layer 1 32.5 35.8 24.1 31.6 30.0 34.7 35.3

layer 2 8.0 37.8 31.1 31.0 39.5 49.2 45.5

layer 3 14.9 34.7 31.0 34.1 13.2 32.4 35.3

layer 4 9.9 35.2 8.3 15.6 42.0 31.9 38.5

layer 5 18.4 21.6 35.5 17.4 11.2 34.1 31.4

layer 6 10.7 7.8 18.7 25.8 50.4 36.4 39.0

layer 7 36.0 32.2 33.8 36.2 22.6 19.1 38.1

layer 8 30.5 20.0 14.4 21.7 38.6 40.2 38.3

layer 9 33.4 24.5 37.6 36.3 21.8 37.6 37.7

layer 10 41.2 36.0 23.9 32.8 25.5 38.0 39.9

layer 11 35.2 29.0 39.9 28.0 21.2 36.9 35.1

head 1 head 2 head 3 head 4 head 5 head 6

layer 12 25.7 20.1 38.7 28.5 24.5 36.0

layer
average

37.3

full
average

38.2

(f) SMALL: retrieval-augmented
pretraining.

layer 1 30.1 35.8 36.1 35.7

layer 2 38.4 11.0 36.0 33.6

layer 3 43.4 24.4 45.5 41.4

layer 4 45.5 34.4 38.1 38.8

layer 5 11.5 13.9 20.6 16.7

layer 6 35.5 30.9 34.6 39.8

layer 7 17.7 16.3 39.3 25.8

layer 8 19.7 21.5 40.1 29.2

layer 9 26.2 32.9 35.9 36.4

layer 10 39.1 43.5 39.9 43.1

layer 11 13.5 34.6 21.3 32.2

head 1 head 2 head 3

layer 12 27.2 36.2 35.3

layer
average

35.7

full
average

37.8

(g) X-SMALL: no re-
trieval pretraining.

layer 1 33.2 35.9 25.3 34.3

layer 2 46.0 38.4 31.4 41.4

layer 3 39.3 12.4 36.5 35.9

layer 4 8.0 41.9 38.7 36.5

layer 5 14.3 14.8 35.4 23.8

layer 6 37.9 16.9 32.3 33.4

layer 7 36.5 11.9 24.9 33.6

layer 8 33.0 33.7 16.3 30.4

layer 9 41.5 36.4 25.1 37.8

layer 10 49.2 32.7 34.5 47.9

layer 11 36.6 36.0 26.6 36.2

head 1 head 2 head 3

layer 12 36.6 31.7 23.1

layer
average

34.6

full
average

37.2

(h) X-SMALL: retrieval-
augmented pretraining.

Figure 3: The undirected unlabeled attachment scores (UUAS) of attention probing with every head and layer
combination. The plot also shows the UUAS scores of attention matrices averaged across each layer and across the
whole language model.
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D.4 BLiMP

The Benchmark of Linguistic Minimal Pairs for English (Warstadt et al., 2020a) attempts to measure the
linguistic knowledge of a language model in a zero-shot manner – without any additional training. It
consists of 67 tasks, each focuses on a specific linguistic feature, which is tested with 1 000 automatically
generated sentence pairs. Each pair of sentences differs minimally on the surface level, but only one of the
sentences is grammatically valid. The tasks are clustered into the following subgroups, with descriptions
taken from Warstadt et al. (2020a):

• ANAPHOR AGREEMENT (AA): the requirement that reflexive pronouns like herself (also known as
anaphora) agree with their antecedents in person, number, gender, and animacy.

• ARGUMENT STRUCTURE (AS): the ability of different verbs to appear with different types of
arguments. For instance, different verbs can appear with a direct object, participate in the causative
alternation, or take an inanimate argument.

• BINDING (B): the structural relationship between a pronoun and its antecedent.

• CONTROL/RAISING (CR): syntactic and semantic differences between various types of predicates
that embed an infinitival VP. This includes control, raising, and tough-movement predicates.

• DETERMINER-NOUN AGREEMENT (DNA): number agreement between demonstrative determiners
(e.g., this/these) and the associated noun.

• ELLIPSIS (E): the possibility of omitting expressions from a sentence. Because this is difficult to
illustrate with sentences of equal length, our paradigms cover only special cases of noun phrase
ellipsis that meet this constraint.

• FILLER-GAP (FG): dependencies arising from phrasal movement in, for example, wh-questions.

• IRREGULAR FORMS (IF): irregular morphology on English past participles (e.g., awoken).

• ISLAND EFFECTS (IE): restrictions on syntactic environments where the gap in a filler-gap depen-
dency may occur.

• NPI LICENSING (NL): restrictions on the distribution of negative polarity items like any and ever
limited to, for example, the scope of negation and only.

• QUANTIFIERS (Q): restrictions on the distribution of quantifiers. Two such restrictions are covered:
superlative quantifiers (e.g., at least) cannot be embedded under negation, and definite quantifiers
and determiners cannot be subjects in existential-there constructions.

• SUBJECT-VERB AGREEMENT (SVA): subjects and present tense verbs must agree in number.

We use the intrinsic ability of language models to estimate the probability of any text segment, and
measure how often the evaluated language model assigns a higher probability to the grammatically correct
sentence. Specifically we employ the pseudo-log-likelihood score by Wang and Cho (2019) and Salazar
et al. (2020) to rank the sentences with a masked language model. We also follow the observation by
Samuel (2023, Appendix A) that the results on BLiMP greatly depend on temperature scaling – to do
a fair comparison between different types of language models, they proposed to search for the optimal
temperature value for each evaluated model.

Table 6 shows the detailed results of each model for each subgroup mentioned above. At all sizes, we
observe that retrieval pre-trained models perform better with quantifiers and binding.
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Model AS Q IF FGD IE AA NL SVA E B CR DNA Average

REFERENCE MODEL

bert-base-cased 86.22 60.80 97.95 87.49 71.79 97.45 86.50 94.53 89.80 82.20 85.58 97.56 85.56

BASE

− retrieval pretraining (patch) 81.97 65.85 95.35 86.50 65.86 97.90 84.77 94.57 91.75 72.77 79.52 96.76 82.77

− retrieval pretraining (no patch) 82.14 65.90 95.50 86.59 66.39 97.85 84.89 94.17 91.65 73.10 79.26 96.85 82.87

+ retrieval pretraining (50% noise, patch) 81.26 62.25 94.40 85.84 63.76 98.40 80.49 93.57 89.40 70.40 79.80 96.94 81.31

+ retrieval pretraining (25% noise, patch) 82.67 65.33 94.30 87.33 68.73 98.10 82.97 93.38 89.20 69.63 81.72 97.09 82.74

+ retrieval pretraining (0% noise, patch) 82.99 68.70 95.65 87.81 67.70 96.50 83.11 95.35 90.45 69.33 81.68 97.55 83.15
+ retrieval pretraining (0% noise, no patch) 79.28 68.45 90.25 86.89 66.03 92.30 74.10 89.22 88.70 74.20 79.88 95.78 80.67

SMALL

− retrieval pretraining (patch) 78.99 64.08 94.50 80.71 57.91 96.75 74.87 91.78 89.35 68.03 77.86 95.95 78.58

− retrieval pretraining (no patch) 79.50 62.50 92.70 82.41 57.73 97.35 75.60 90.80 88.05 67.84 77.62 95.94 78.58

+ retrieval pretraining (0% noise, patch) 76.71 62.88 93.45 80.99 56.00 92.75 80.04 91.07 90.90 71.41 78.94 95.75 78.78
+ retrieval pretraining (0% noise, no patch) 69.87 68.70 89.50 74.66 49.51 89.75 75.77 83.28 85.00 75.27 72.08 92.70 74.77

X-SMALL

− retrieval pretraining (patch) 71.22 65.58 93.25 71.36 46.58 93.70 70.00 87.75 86.75 68.03 69.48 92.54 73.18

− retrieval pretraining (no patch) 72.17 64.60 94.30 70.96 44.95 93.75 70.19 88.45 85.80 69.04 70.26 93.34 73.36
+ retrieval pretraining (0% noise, patch) 72.22 64.08 90.10 74.30 51.15 87.20 68.96 84.15 85.45 69.43 68.66 91.74 73.31

+ retrieval pretraining (0% noise, no patch) 58.82 68.85 52.90 56.86 51.41 75.00 50.50 63.30 36.95 66.00 61.38 61.75 58.81

Table 6: Fine-grained BLiMP results. AS = argument structure, Q = quantifiers, IF = irregular forms, FGD = filler
gap dependency, IE = island effects, AA = anaphor agreement, NL = NPI licensing, SVA = subject-verb agreement,
E = ellipsis, B = binding, CR = control raising and DNA = determiner-noun agreement. The bold numbers represent
the best model at each size, while the underline is the second best.

D.5 MSGS

The MSGS benchmark (Warstadt et al., 2020b) evaluates whether the model biases linguistic features
or surface features. A score of 1 means only using the linguistic features, while a score of -1 is surface
features only. To evaluate the performance we use the Mathews Correlation Coefficient (MCC), also called
Linguistic Bias Score (LBS). The surface features in this dataset are (definitions taken from Warstadt et al.
(2020b)):

• ABSOLUTE TOKEN POSITION (ATP): This feature is 1 iff the is the first token of the sentence.

• LENGTH (L): This feature is 1 iff the sentence contains more than n (3) words.

• LEXICAL CONTENT (LCT): This feature is 1 iff the sentence contains the.

• RELATIVE TOKEN POSITION (RTP): This feature is 1 when the precedes a, and 0 when a precedes
the.

• ORTHOGRAPHY (TC): This feature is 1 iff the sentence is in title case.

The linguistic features are (definitions taken from Warstadt et al. (2020b)):

• SYNTACTIC CONSTRUCTION (CR): This feature has value 1 iff the sentence contains the control
construction.

• MORPHOLOGY (IF): This feature is 1 iff the sentence contains an irregular verb in the past tense.

• SYNTACTIC POSITION (MV): This feature is 1 iff the sentence’s main verb is in the -ing form.

• SYNTACTIC CATEGORY (SC): This feature is 1 iff the sentence contains an adjective.
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For every model, we run five different seeds: 34, 42, 74, 2395, and 10801 at four different learning rates:
1e-5, 3e-5, 5e-5, 1e-4. Figure 4 shows the distribution of all our runs for the base models from Table 1.
Table 7 shows the LBS results over each feature. From this table, we see that our retrieval pre-trained
models are better at biasing the morphology feature and biasing less the lexical content feature while
biasing more the length feature compared to the regular pretrained models. In general, the length task is
the hardest surface task to detect while morphology is the easiest linguistic task to detect.
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Figure 4: The dots in each sub-plot represent the LBS score of each run of each model. Each model has 20 different
runs for each combination of surface and linguistic features. NR = Model pre-trained without retrieval, R50 = Model
pre-trained with 50% noisy retrieval, R25 = Model pre-trained with 25% noisy retrieval, R = Model pre-trained with
0% noisy retrieval

D.6 LAMBADA

LAMBADA is a zero-shot language modeling task that focuses on resolving long-range dependencies in
text (Paperno et al., 2016); we used its detokenized version from Radford et al. (2019). While it has been
traditionally used for evaluating autoregressive language models, we adapt the task for masked language
models.11 Note that this adaptation does not allow for a direct comparison with the autoregressive models.
An illustrative sample from this dataset looks as follows:

Prompt: "Give me a minute to change and I’ll meet you at the docks." She’d forced those words through
her teeth. "No need to change. We won’t be that long." Shane gripped her arm and started leading her to
the dock. "I can make it there on my own, {answer}."

Gold answer: Shane

We insert the whole tokenized prompt to the evaluated language model and replace the missing answer by
11We made this version of LAMBADA openly available at https://huggingface.co/datasets/ltg/

lambada-context.
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Model ATP L LCT RTP TC CR IF MV SC Average

REFERENCE MODEL

bert-base-cased -0.55 0.66 0.28 0.05 -0.95 -0.36 0.31 -0.19 -0.17 -0.10

BASE

− retrieval pretraining (patch) -0.96 0.70 -0.37 -0.40 -1.00 -0.62 -0.06 -0.59 -0.35 -0.40

− retrieval pretraining (no patch) -0.95 0.68 -0.63 -0.30 -1.00 -0.62 -0.20 -0.57 -0.46 -0.47

+ retrieval pretraining (50% noise, patch) -1.00 0.65 -0.42 -0.07 -1.00 -0.52 -0.21 -0.24 -0.50 † -0.37
+ retrieval pretraining (25% noise, patch) -1.00 0.64 -0.30 -0.25 -1.00 -0.58 -0.09 -0.36 -0.51 † -0.38

+ retrieval pretraining (0% noise, patch) -1.00 0.65 -0.30 -0.19 -1.00 -0.58 0.06 -0.49 -0.47 -0.37
+ retrieval pretraining (0% noise, no patch) -1.00 0.57 -0.88 -0.30 -1.00 -0.56 -0.29 -0.57 -0.67 -0.52

SMALL

− retrieval pretraining (patch) -1.00 0.56 -0.81 -0.53 -1.00 -0.59 -0.29 -0.62 -0.73 -0.56

− retrieval pretraining (no patch) -1.00 0.59 -0.77 -0.43 -1.00 -0.56 -0.31 -0.62 -0.60 -0.52

+ retrieval pretraining (0% noise, patch) -1.00 0.54 -0.75 -0.43 -1.00 -0.60 -0.22 -0.63 -0.66 -0.53

+ retrieval pretraining (0% noise, no patch) -1.00 0.54 -0.66 -0.44 -1.00 -0.59 -0.14 -0.64 -0.64 † -0.50

X-SMALL

− retrieval pretraining (patch) -1.00 0.36 -0.73 -0.45 -1.00 -0.60 -0.28 -0.67 -0.71 -0.57

− retrieval pretraining (no patch) -1.00 0.44 -0.79 -0.42 -1.00 -0.60 -0.30 -0.64 -0.69 -0.55
+ retrieval pretraining (0% noise, patch) -1.00 0.33 -0.76 -0.44 -1.00 -0.58 -0.32 -0.71 -0.69 -0.57

+ retrieval pretraining (0% noise, no patch) -1.00 0.22 -0.69 -0.47 -1.00 -0.56 -0.24 -0.81 -0.74 -0.59

SURFACE FEATURES LINGUISTICS FEATURES

Table 7: Fine-grained MSGS results. ATP = Absolute Token Position, L = Length, LCT = Lexical Content, RTP
= Relative Token Position, TC = Orthography, CR = Syntactic Construction, IF = Morphology, MV = Syntactic
Position, and SC = Syntactic Category. The bold numbers represent the best model at each size, while the underline
is the second best. † indicates that the result is significantly better than the no-retrieval model based on the ASO test.

k mask tokens, where k is the length of the tokenized gold answer. Then we evaluate the exact-match
accuracy of predicting filling in the correct continuation and also the mean perplexity.

D.7 GLUE

To judge one of the facets of language understanding we use most of the GLUE benchmark (Wang et al.,
2018b). The benchmark is composed of the following tasks:

• Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) evaluated with the Matthews
correlation coefficient (MCC; Matthews, 1975).

• The Stanford Sentiment Treebank (SST-2; Socher et al., 2013), evaluated with accuracy.

• The Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005), evaluated with
both F1-score (originally also evaluated with accuracy).

• The Quora Question Pairs (QQP),12 evaluated with F1-score (originally evaluated with accuracy).

• The Multi-Genre Natural Language Inference Corpus (MNLI; Williams et al., 2018). Its devel-
opment set consists of two parts: matched, sampled from the same data source as the training set,
and mismatched, which is sampled from a different domain. Both parts are evaluated with accuracy.

• Question-answering Natural Language Inference (QNLI) constructed from the Stanford Question
Answering Dataset (SQuAD; Rajpurkar et al., 2016), evaluated with accuracy.

12https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Model Accuracy Perplexity

REFERENCE MODEL

bert-base-cased 44.77 26.95

BASE

− retrieval pretraining (patch) 47.00 17.60
− retrieval pretraining (no patch) 46.09 18.56
+ retrieval pretraining (50% noise, patch) 43.22 24.40
+ retrieval pretraining (25% noise, patch) 40.58 29.62
+ retrieval pretraining (0% noise, patch) 37.59 39.84
+ retrieval pretraining (0% noise, no patch) 22.63 141.62

SMALL

− retrieval pretraining (patch) 35.11 44.81
− retrieval pretraining (no patch) 35.84 41.25
+ retrieval pretraining (0% noise, patch) 26.24 135.94
+ retrieval pretraining (0% noise, no patch) 0.43 37183.08

X-SMALL

− retrieval pretraining (patch) 25.42 133.44
− retrieval pretraining (no patch) 25.33 137.73
+ retrieval pretraining (0% noise, patch) 19.33 329.90
+ retrieval pretraining (0% noise, no patch) 0.00 1.88× 1011

Table 8: Fine-grained LAMBADA results. The bold numbers represent the best model in each size, while the
underline is the second best.

• The Recognizing Textual Entailment datasets (RTE; Dagan et al., 2006; Bar-Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009), evaluated with accuracy.

• The Semantic Textual Similarity Benchmark (STS-B; Cer et al., 2017) is a collection of sentence
pairs drawn from news headlines, video and image captions, and natural language inference data.
Each pair is human-annotated with a similarity score from 1 to 5; the task is to predict these scores.
We evaluate using Pearson and Spearman correlation coefficients.

• Winograd Schema Challenge (WSC; Levesque et al., 2011) evaluated with accuracy.

We omit the Winograd Schema Challenge due to the lack of training and test data leading to all our models
underperforming compared to the majority label.

Table 9 shows the detailed results of each of the GLUE tasks. We see that independent of model size, the
retrieval pre-trained models perform better on the CoLA dataset, although the difference between the
models shrinks as the model size grows. In addition, we see inversions in the MNLI, RTE and STS-B
tasks with the XS model performing better, the Small model on par and the Base model performing worse.

We did an extensive hyperparameter search for the retrieval pre-trained patched base and xs models as
well as the regular pre-trained base and xs models. For the small version, we limited our learning rates to
be in between those of the base and xs models. For the noisy versions, we combined the hyperparameters
of the retrieval and regular pre-trained model and divided them by the amount of noise. In other words,
the values of the learning rate for 25% noise are 25% of the way from the retrieval parameters going to
the regular parameters, while keeping the batch size and warmup ratio the same as the retrieval version
(although we made a mistake and did the opposite but to save compute, we have not re-run them correctly).
For the 50% noise, we took the half-point values for all three hyperparameters. Finally, we used the
hyperparameters of the base regular pre-trained models for BERT-BASE-CASED. The detailed list of the
hyperparameters can be found in Table 10.
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Model CoLA SST-2 MRPC QQP MNLI MNLI-mm QNLI RTE STS-B Average

REFERENCE MODEL

bert-base-cased 57.4±0.6 91.3±0.5 89.2±0.6 87.2±0.2 82.5±0.3 82.9±0.3 89.2±0.2 63.9±3.5 88.9±0.6/88.5±0.7 82.1±1.2

BASE

− retrieval pretraining (patch) 51.9±1.1 91.8±0.9 90.5±0.4 88.2±0.1 84.2±0.2 84.4±0.3 91.4±0.3 62.1±3.8 87.9±0.3/87.7±0.3 82.0±1.3

− retrieval pretraining (no patch) 51.9±1.5 91.3±0.5 90.6±0.5 88.2±0.2 84.4±0.1 84.4±0.2 91.5±0.2 64.4±3.9 87.8±0.4/87.6±0.4 82.2±1.4

+ retrieval pretraining (50% noise, patch) 51.7±1.5 91.2±0.9 90.3±0.9 88.0±0.1 83.9±0.1 83.9±0.1 91.3±0.1 64.9±3.5 87.7±0.3/87.5±0.3 82.0±1.3

+ retrieval pretraining (25% noise, patch) 51.8±0.5 91.4±0.2 90.6±0.6 87.9±0.1 83.9±0.3 83.8±0.2 91.1±0.1 63.5±1.4 87.7±0.4/87.4±0.4 81.9±0.6

+ retrieval pretraining (0% noise, patch) 51.4±1.8 91.3±0.8 90.1±1.2 87.8±0.2 83.3±0.1 83.4±0.2 90.2±0.3 61.1±3.6 86.8±0.3/86.6±0.3 81.2±1.4

+ retrieval pretraining (0% noise, no patch) 53.1±0.4 90.6±0.4 88.0±1.0 87.8±0.1 83.2±0.2 83.4±0.3 89.5±0.2 55.8±1.7 86.5±0.3/86.1±0.3 80.4±0.7

SMALL

− retrieval pretraining (patch) 35.3±1.8 89.1±0.8 88.3±1.2 86.6±0.1 81.7±0.2 82.0±0.3 89.4±0.5 53.4±3.3 84.2±0.5/83.8±0.5 77.4±1.3

− retrieval pretraining (no patch) 37.5±2.8 89.8±0.5 88.4±0.7 86.9±0.1 82.0±0.1 82.6±0.1 89.5±0.3 53.3±2.3 85.1±0.5/84.7±0.5 78.0±1.2

+ retrieval pretraining (0% noise, patch) 40.4±2.1 90.6±0.5 88.3±1.2 86.6±0.1 81.8±0.2 82.0±0.2 89.0±0.3 55.8±1.4 85.1±0.4/84.7±0.4 † 78.5±0.9

+ retrieval pretraining (0% noise, no patch) 40.9±1.8 89.7±0.4 86.5±0.6 86.5±0.2 81.5±0.3 81.9±0.3 87.8±0.4 53.4±2.0 84.4±0.5/84.1±0.4 77.7±0.9

X-SMALL

− retrieval pretraining (patch) 25.5±1.5 88.1±0.5 88.3±0.7 84.6±0.2 78.3±0.2 79.3±0.2 86.4±0.2 51.1±4.7 82.4±0.5/82.0±0.5 74.6±1.6

− retrieval pretraining (no patch) 25.0±3.7 88.6±0.4 88.7±0.9 85.0±0.1 78.8±0.3 79.7±0.1 86.9±0.4 54.1±1.4 82.8±0.2/82.3±0.2 75.2±1.3

+ retrieval pretraining (0% noise, patch) 32.7±2.4 88.6±0.7 87.3±1.0 84.9±0.1 79.6±0.3 80.0±0.3 86.8±0.2 55.4±2.2 82.5±0.7/82.3±0.7 † 76.0±1.1

+ retrieval pretraining (0% noise, no patch) 25.4±2.2 89.0±0.6 85.0±1.0 84.7±0.2 79.5±0.1 80.2±0.2 85.2±0.5 52.0±3.3 82.9±0.4/82.7±0.4 74.6±1.3

Table 9: Fine-grained GLUE results. The CoLA metric is MCC, the F1-score is used for MRPC and QQP, and the
other tasks are evaluated with accuracy. The results are reported as the mean and the standard deviation from 5
seeded runs. The bold numbers represent the best model at each size, while the underline is the second best. †
indicates that the result is significantly better than the no-retrieval model based on the ASO test.

D.8 SQuAD

SQuAD is an extractive question answering dataset with 107,785 question-answer pairs. The task is to
answer questions by providing the span of the correct answer string from a provided passage that is known
to answer the question. We finetune all models over three epochs, using a learning rate of 5e− 5, a batch
size of 16, and a weight decay of 0.01. Models are evaluated on the original development set, with no
additional data used. We report the percentage of token-level exact matches (EM) and F1-score. The full
set of results can be seen in Table 11.

We observe that retrieval impairs performance for all model sizes. For the base versions, the absolute
performance decrease follow the amount of retrieved documents given to the model, showing that the
closer one gets to a "perfect" set of retrieved documents, the worse the language model performs on the
task of extractive QA. Furthermore, we observe that the addition of our patched linear layer has little
effect on SQuAD for all model sizes, which we hypothesize is due to the size of the dataset; with over
100k examples, finetuning allows the model to fully "recover", making the patch obsolete.

E Retrieval effect - Long-range context resolution

Using the LAMBADA task, we evaluate whether using the paraphrase encoder as retrieval helps the model
understand long-range context dependencies. To this end, we use the LAMBADA prompt without the
answer as "paraphrase" to encode and pass through cross-attention to the encoder model. The results can
be seen in Table 12.

As we can see, the results show that the retrieval component of the model potentially encodes long-range
context dependencies. We also ran the retrieval-augmented models with the full prompt as retrieved text
and got performances close to 1 perplexity (1.11 – 1.04) and accuracy near 100% (97.15 – 98.74).
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Hyperparameter CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B

SHARED

Epochs 10 10 10 4 4 10 10 10

Weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Learning Rate Scheduler linear linear linear linear linear linear linear linear

Attention Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Classifier Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Adam Epsilon 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

BASE − RETRIEVAL & REFERENCE MODEL

Learning rate 2e-5 2e-5 5e-5 5e-5 5e-5 5e-5 1e-4 1.2e-4

Batch size 16 16 16 16 16 16 32 32

Warmup Ratio 0.1 0.06 0.1 0.06 0.1 0.06 0.06 0.1

BASE + RETRIEVAL(50% NOISE)

Learning rate 3.5e-5 2e-5 7.5e-5 5e-5 5e-5 3.5e-5 1e-4 1.35e-4

Batch size 24 16 24 16 24 16 32 24

Warmup Ratio 0.08 0.06 0.1 0.08 0.1 0.08 0.06 0.1

BASE + RETRIEVAL (25% NOISE)

Learning rate 2.75e-5 2e-5 6.25e-5 5e-5 5e-5 4.25e-5 1e-4 1.275e-4

Batch size 16 16 16 16 16 16 32 32

Warmup Ratio 0.1 0.06 0.1 0.06 0.1 0.06 0.06 0.1

BASE + RETRIEVAL

Learning rate 5e-5 2e-5 1e-4 5e-5 5e-5 2e-5 1e-4 1.5e-4

Batch size 32 16 32 16 32 16 32 16

Warmup Ratio 0.06 0.06 0.1 0.1 0.1 0.1 0.06 0.1

SMALL − RETRIEVAL

Learning rate 1.5e-4 2e-4 1e-4 1.5e-4 1e-4 5e-5 1e-4 1.8e-4

Batch size 32 32 8 32 32 16 8 8

Warmup Ratio 0.03 0.1 0.1 0.06 0.1 0.06 0.03 0.06

SMALL + RETRIEVAL

Learning rate 1e-4 1e-4 1.25e-4 1e-4 1e-4 3e-5 1.25e-4 2e-4

Batch size 32 32 16 16 32 16 16 32

Warmup Ratio 0.03 0.06 0.06 0.06 0.06 0.06 0.06 0.12

XS − RETRIEVAL

Learning rate 1.5e-4 2e-4 1e-4 1.5e-4 2e-4 5e-5 5e-5 2e-4

Batch size 16 16 32 16 32 16 8 8

Warmup Ratio 0.1 0.1 0.06 0.1 0.15 0.06 0.06 0.03

XS + RETRIEVAL

Learning rate 1e-4 2.8e-4 1.5e-4 2.2e-4 1.8e-4 5e-5 1.5e-4 2e-4

Batch size 8 32 16 32 32 16 16 32

Warmup Ratio 0.12 0.1 0.06 0.06 0.1 0.1 0.06 0.06

Table 10: Fine-tuning hyperparameter details of GLUE, these are the optimal values found by the grid search
described in Appendix D.7.
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Model Exact Match F1 score

REFERENCE MODEL

bert-base-cased 80.6±0.2 88.4±0.3

BASE

− retrieval pretraining (patch) 84.6±0.2 91.3±0.1

− retrieval pretraining (no patch) † 84.4±0.4 † 91.2±0.2

+ retrieval pretraining (50% noise, patch) 83.9±0.1 90.7±0.2

+ retrieval pretraining (25% noise, patch) 83.3±0.5 90.2±0.2

+ retrieval pretraining (0% noise, patch) 82.8±0.1 89.7±0.2

+ retrieval pretraining (0% noise, no patch) 82.2±0.1 89.7±0.2

SMALL

− retrieval pretraining (patch) 81.5±0.2 88.6±0.2

− retrieval pretraining (no patch) † 81.7±0.3 † 88.6±0.2

+ retrieval pretraining (0% noise, patch) 78.9±0.1 86.3±0.2

+ retrieval pretraining (0% noise, no patch) 78.9±0.1 86.2±0.2

X-SMALL

− retrieval pretraining (patch) 73.5±0.2 81.8±0.2

− retrieval pretraining (no patch) † 73.6±0.3 † 81.8±0.2

+ retrieval pretraining (0% noise, patch) 69.9±0.2 78.7±0.1

+ retrieval pretraining (0% noise, no patch) 70.0±0.2 78.7±0.1

Table 11: Results on SQuAD 1.1. Results are reported as the mean and standard deviation over three random seeds.
The bold numbers represent the best model at each size, while the underline is the second best. † indicates that the
result is significantly better than the retrieval model (no noise, patch) based on the ASO test.

Model Accuracy Perplexity

BASE

− retrieval pretraining 46.09 18.56
+ retrieval pretraining (retrieval-augmented) 40.91 30.46
+ retrieval pretraining (patch) 37.59 39.84

SMALL

− retrieval pretraining 35.84 41.25
+ retrieval pretraining (retrieval-augmented) 32.49 71.85
+ retrieval pretraining (patch) 26.24 135.94

X-SMALL

− retrieval pretraining 25.33 137.73
+ retrieval pretraining (retrieval-augmented) 29.26 160.45
+ retrieval pretraining (patch) 19.33 329.90

Table 12: Fine-grained LAMBADA results of the patched and retrieval-augmented retrieval pre-trained models and
the model trained without retrieval pre-training. We used the prompt without the answer as the retrieved text for the
retrieval-augmented models. The bold numbers represent the best model in each size, while the underline is the
second best.
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