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Abstract

Geocoding is the task of converting location
mentions in text into structured geospatial data.
We propose a new prompt-based paradigm for
geocoding, where the machine learning algo-
rithm encodes only the location mention and its
context. We design a transformer network for
predicting the country, state, and feature class
of a location mention, and a deterministic algo-
rithm that leverages the country, state, and fea-
ture class predictions as constraints in a search
for compatible entries in the ontology. Our
architecture, GeoPLACE, achieves new state-
of-the-art performance on multiple datasets.
Code and models are available at https:
//github.com/clulab/geonorm.

1 Introduction

Geocoding is the task of matching locations in
text to geospatial coordinates or entries in a ge-
ographical database. Geocoding systems support
document categorization and retrieval (Bhargava
et al., 2017), historical event analysis (Tateosian
et al., 2017), monitoring the spread of infectious
diseases (Hay et al., 2013), and disaster response
mechanisms (Ashktorab et al., 2014; de Bruijn
et al., 2018). Geocoding is challenging because
identical place names may refer to different geo-
graphical locations (e.g., San Jose in Costa Rica vs.
San Jose in California, USA), while distinct names
can represent the same geographical location (e.g.,
Leeuwarden and Ljouwert in the Netherlands).

The traditional paradigm for geocoding systems
is to train machine learning algorithms that en-
code the location mention, its context, and the
geographical ontology entries together when pre-
dicting a label for the mention. CamCoder (Gritta
et al., 2018), ReFinED (Ayoola et al., 2022), and
GeoNorm (Zhang and Bethard, 2023) all take this
approach, with the latter showing that explicit coun-
tries and states in the context are especially helpful
in this paradigm. However, these approaches are

not able to take advantage of implicit context, such
as countries and states that are not mentioned in
the text but are inferrable from it.

We propose an novel prompt-based approach to
geocoding that automatically identifies the implicit
geographic information necessary to resolve loca-
tion mentions. In this new paradigm for geocoding,
we first apply a text classification approach that
takes a prompt containing the location mention and
some document context as input and predicts ontol-
ogy attributes such as the location’s enclosing coun-
try and state. For example, our approach would
predict that Paris in a document about Texas would
have the attributes “a Populated Place located in
Texas in the United States.” The constraints im-
plied by these predictions are used to determinis-
tically filter the ontology entries. Our novel archi-
tecture, GEOgraphical normalization by Predicting
Location Attributes to Constrain ontology Entries
(GeoPLACE) is illustrated in Figure 1.

Our work makes the following contributions:

• We introduce a new paradigm for geocoding,
predicting implicit geographic information to
enable deterministic filtering of the ontology.

• We design a transformer network for predict-
ing the country, state, and feature class of a lo-
cation mention, combining a novel prompt for
geographic text classification with a masked lan-
guage modeling objective.

• We introduce a novel deterministic algorithm
that leverages the country, state, and feature class
predictions as constraints in a search for compat-
ible entries in the ontology.

• Our proposed approach achieves new state-of-
the-art performance on multiple datasets.

2 Related Work

Prior work in geocoding included models based
on hand-crafted rules and heuristics (Grover et al.,
2010; Tobin et al., 2010; Lieberman et al., 2010;
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Figure 1: The architecture of our model: GEOgraphical normalization by Predicting Attributes to Constrain
Ontology Entries (GeoPLACE). The figure shows how GeoPLACE normalizes a mention of Paris.

Lieberman and Samet, 2011; Berico Technolo-
gies, 2012; Karimzadeh et al., 2013), and tradi-
tional machine learning models such as support
vector machines (Martins et al., 2010; Freire et al.,
2011; Lieberman and Samet, 2012; Speriosu and
Baldridge, 2013; Zhang and Gelernter, 2014; De-
Lozier et al., 2015; Kamalloo and Rafiei, 2018;
Wang et al., 2019). However, most recent ap-
proaches to geocoding use neural networks.

Neural network based models have approached
geocoding both as a ranking problem, trying to sort
ontology entries by their appropriateness as a la-
bel for a location mention (Hosseini et al., 2020;
Ardanuy et al., 2020; Ayoola et al., 2022; Zhang
and Bethard, 2023) and as a classification problem,
trying to map a location mention directly to one of
an N ×N grid of tiles covering the Earth’s surface
(Gritta et al., 2018; Cardoso et al., 2019; Kulka-
rni et al., 2021). The most successful approaches
encode not just the mention and ontology entry
names, but also context around the mention and
information from the ontology such as population
(Gritta et al., 2018; Ayoola et al., 2022; Zhang and
Bethard, 2023). Many neural architectures have
been considered, including convolutional (Gritta
et al., 2018; Kulkarni et al., 2021), recurrent (Car-
doso et al., 2019), and transformer networks (Ay-
oola et al., 2022; Zhang and Bethard, 2023).

In contrast to these approaches, we predict geo-
graphical attributes (e.g., enclosing state) and use
those to deterministically select an ontology entry.

3 Proposed Methods

The problem of geocoding can be formalized as
defining a function f(m|T,M,E) = ê where T
is the text of a document, M ⊂ T is the location
mentions in the document, E is the set of geograph-

ical database entries, m ∈M is the mention under
consideration, and ê ∈ E is the entry predicted
by f for m. In our paradigm for geocoding, we
formulate f to first predict the country, state, and
feature of m, next query the ontology with m to
find candidate entries, then select the entry that vio-
lates the fewest constraints implied by the predicted
attributes as the prediction ê. Formally:

Ĉm, Ŝm, F̂m = ATTRIBUTEPREDICTOR(m,M)

Ê = CANDIDATEGENERATOR(m,E)

f(m|T,M,E) = CONSTRAINER(Ê, Ĉm, Ŝm, F̂m)

where Cm, Sm, Fm are the lists of predicted coun-
tries, states, and feature classes for m. The AT-

TRIBUTEPREDICTOR (see section 3.1) is a novel for-
mulation of geographical text classification, the
CANDIDATEGENERATOR (see section 3.2) is the best
ranking system from prior work, and the CON-

STRAINER (see section 3.3) is a novel deterministic
constraint-based algorithm.

3.1 Attribute Predictor
This function predicts the country, state, and fea-
ture class of m. It is formulated as a text classifica-
tion model, based on a novel input prompt coupled
with a masked language modeling objective. The
prediction targets are defined as:

Feature Class is one of the nine types defined
by GeoNames: A, Administrative boundaries
(e.g., countries, states, provinces); P , Populated
places (e.g., cities, towns, villages); U , Undersea
features (e.g., oceanic ridges, trenches), etc.

State is the canonical name of one of the 3871
first-order administrative divisions in GeoNames,
such as states, provinces, or regions.

Country is the canonical name of one of the 252
countries in GeoNames.
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We implement prediction of these targets as:

Z = TRANSFORMER(TOINPUT(m,M))

Ĉm = softmax(ZcWc)

Ŝm = softmax(ZsWs)

F̂m = softmax(ZfWf )

where TOINPUT discards all of m’s context T
except for the location mentions M and pro-
duces text of the form [CLS] This document

discusses these location mentions: m1,

m2, ..., m|M| in which m is [MASK]

located in [MASK] of [MASK] [SEP]1; f , s,
c, are the indexes of the three [MASK] tokens;
Wc,Ws,Wf ∈ RN×H are the learnable parame-
ters of the three classification heads; N is the size
of the transformer tokenizer’s vocabulary; and H is
the size of the transformer’s contextualized repre-
sentations. We add new tokens to the transformer’s
tokenizer to ensure that every country, state, and
feature class is a single token in the classifier
output, e.g., making United States a single token.
This single-token prediction approach compares
favorably to a multi-token sequence-to-sequence
prediction approach, as shown in section 4.

The model is trained on the labeled data in the
toponym datasets with cross-entropy loss:

L = Cmlog(Ĉm) + Smlog(Ŝm) + Fmlog(F̂m)

where Cm, Sm, and Fm are one-hot vectors of
size N representing the true country, state, and
feature class for mention m. At prediction time, we
constrain the outputs of the softmax to the subset
of the vocabulary appropriate for each prediction
type. For example, when the model predicts the
word for the country [MASK], only the 252 country
names are allowed to be non-zero.

We also pre-train (before the fine-tuning) on data
we synthesize from the GeoNames ontology. We
collect all entries that are cities, states, or countries
(filtering out those with less than 100 population)
or are in the feature classes H (stream, lake), L
(parks, area), or T (mountain, hill, rock). To con-
struct a synthetic training example for a selected
entry e, we use the prompt format of TOINPUT, with
the canonical name of e as the mention m and the
canonical names of a randomly selected set of en-
tries in the same country as e as the other document
mentions M .

1This prompt dramatically reduces the size of the input
while still providing most of the critical document-level infor-
mation for disambiguating toponyms

Algorithm 1: Constrained Entry Selection
Input: a list of candidate entries, Êm

top 3 predicted countries, Ĉm

top 3 predicted states, Ŝm

top 3 predicted feature classes, F̂m

Output: selected candidate entry ê

1 Def SCORE(x, L):
2 if x = L0 then return 2
3 else return x ∈ L
4 Def ENTRYKEY(e):
5 c← COUNTRY(e)
6 s← STATE(e)
7 f ← FEATURE(e)

8 key1 ← SCORE(c, Ĉm) · SCORE(s, Ŝm)

9 key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · SCORE(f, F̂m)
10 return (key1, key2)

11 return MAX(Êm, KEY = ENTRYKEY)

3.2 Candidate Generator

We adopt the candidate generator of Zhang and
Bethard (2023), which outperformed prior candi-
date generators and some end-to-end systems. It
uses Lucene to index GeoNames entries by their
canonical and alternative names, selects entries for
a mention by applying a series of searches includ-
ing exact string matching and character 3-gram
matching, and sorts the resulting entries to place
most populous countries at the top of the list.

3.3 Constrainer

Figure 2 illustrates how our constrainer sorts the
output of the candidate generator (entries) using the
output of the attribute predictor (countries, states,
and feature classes). Algorithm 1 formally defines
this process. We define the SCORE of a prediction
as 2 if it was the top ranked prediction, 1 if it was
the second or third ranked prediction, and 0 oth-
erwise. Entries are then sorted by the product of
the country and state SCOREs, with the SCORE of
the feature class used to break ties. Intuitively, if
the attribute predictor predicts C and S as the most
probable country and state, then the constrainer
will rank entries from GeoNames that are within
country C and state S higher than other entries. We
use a stable sort, so candidates that are assigned the
same score retain their population-based sorting
from the candidate generator.

3.4 Model selection

Before evaluating on the test sets, we performed
model selection on the development sets.

For the attribute predictor, we explored a small
number of learning rates (1e-6, 2e-6, 5e-6, 1e-5)
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Figure 2: Illustration of the constrainer applied to Paris in the context It’s a northeast Texas thing, not just a Paris
thing. . . Dallas media stations reported the same message as a hoax as early as Wednesday night..

and number of epochs (10, 20, 30, 40).The best
learning rate and number of epochs was selected
based on accuracy on the attribute prediction task
(not on the full geocoding task).

For the constrainer, we explored different ways
to define key1 and key2 and different ways to de-
fine the number of predictions to consider in the
constrainer. See appendix A.2 for details.

Additional implementation details of our models
are in appendix A.3.

4 Experiments

We conduct primary experiments on three toponym
resolution datasets: Local Global Lexicon (LGL;
Lieberman et al., 2010), a collection 588 news arti-
cles from local and small U.S. news sources; Geo-
WebNews (Gritta et al., 2019) a collection of 200
articles from 200 globally distributed news sites;
and TR-News (Kamalloo and Rafiei, 2018) a col-
lection 118 articles from various global and local
news sources. All datasets use as their ontology
GeoNames, a crowdsourced database of almost
7 million entries that contains geographic coordi-
nates (latitude and longitude), alternative names,
feature class (country, city, river, mountain, etc.),
population, elevation, and positions within a polit-
ical geographic hierarchy. See appendix A.1 for
statistics of the datasets.

We adopt the train, development, and test splits
and evaluation metrics of prior work (Zhang and
Bethard, 2023). We refer the reader to that paper for
details, but briefly, accuracy measures how often
the correct database entry was predicted, while

accuracy@161km, mean error distance, and area
under the curve all give some partial credit for
predicting entries that are wrong but geographically
close to the correct entry.

We compare to the state-of-the-art geocoders:

ReFinED is an end-to-end Wikipedia-linking
model that matches transformer-generated em-
beddings for tokens in the text to embeddings
of ontology entries via dot products (Ayoola
et al., 2022). ReFinED was originally trained
on Wikipedia, but Zhang and Bethard (2023)
leveraged the existing links to GeoNames IDs
to fine-tune it for toponym resolution. It is the
Wikipedia-linking model with the best reported
performance on our evaluation datasets.

GeoNorm Zhang and Bethard (2023) uses Lucene
to index and generate candidate entries from the
ontology, applies a transformer network jointly
over the mention and each candidate entry to
predict a single entry, and applies a two-stage
process to first resolve countries and states and
use them as context to resolve other mentions.

GeoPLACE (+seq2seq) is a variant of our model
that replaces our masked language modeling ob-
jective with a generative objective, asking the
model to directly produce is <feature-type>

located in <state> of <country>. See ap-
pendix A.3 for prompting details.

5 Results

The top of table 1 compares our model to the ex-
isting state-of-the-art on LGL, GeoWebNews, and
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LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

ReFinED (Ayoola et al., 2022) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned by Zhang and Bethard, 2023) .786 - - - .782 - - - .858 - - -
Candidate Generator (Zhang and Bethard, 2023) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (Zhang and Bethard, 2023) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
GeoPLACE (ours) .863 .894 21 .084 .822 .878 57 .112 .947 .957 18 .038

GeoPLACE (-synthesized pre-training) .851 .886 24 .093 .809 .864 63 .123 .904 .922 20 .062
GeoPLACE (+seq2seq, +generative fine-tuned BART) .633 .696 111 .250 .704 .776 92 .191 .727 .812 95 .167
GeoPLACE (+seq2seq, +generative zero-shot GPT-3) .733 .795 80 .176 .719 .811 85 .171 .830 .869 63 .115

Table 1: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower is
better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based metrics
for ReFinED as it does not make predictions for all mentions. The best performance in each column is in bold.

Example Candidate Rank

Name Pop. Type State Country GeoNorm GeoPLACE

1 But the Mt. Pleasant
News has reviewed legal
documents......he writes,
as do my efforts to in-
sure New London is a
safe community.

New London County 274055 ADM2 Connecticut United States 1 2
New London 27179 PPL Connecticut United States 2 3
New London 7172 PPL Wisconsin United States 3 4
New London 1882 PPL Iowa United States 4 1

2 John-Paul Delaney (18),
is charged with assault,
assault causing harm and
theft of a mobile phone
at Main Street, Tipperary,
on the same date.

Tipperary 159553 ADM2 Munster Ireland 1
Tipperary 4979 PPL Munster Ireland 2
Tipperary 0 HMSD Western Australia Australia 3
Tipperary 0 HMSD New South Wales Australia 4

Table 2: Examples of predictions from GeoNorm (Zhang and Bethard, 2023) and our new SOTA model, GeoPLACE.
Target location mentions are underlined. Human annotated ontology entries are in bold. (ADM2 represents a county,
PPL represents a city, HMSD represents a residence specific to Australia and New Zealand)

TR-News. (See appendices A.4 to A.6 for com-
parisons against other models and results on other
datasets.) GeoPLACE outperforms prior work by
large margins (more than 30% error reduction) on
LGL and TR-News, while achieving similar perfor-
mance on GeoWebNews.

Table 2 presents a qualitative analysis of errors
encountered by GeoNorm (Zhang and Bethard,
2023) and our latest state-of-the-art model, Geo-
PLACE. The first row displays an example where
GeoNorm falls short while GeoPLACE excels.
This can be attributed to GeoPLACE’s ability to
accurately predict the countries, states, and feature
codes of toponyms in the text prior to resolution.

The second row portrays an instance where our
most proficient model, GeoPLACE, experiences
a failure. This occurs because predicting feature
codes with the aid of a masked language model
proves to be more challenging compared to pre-
dicting countries and states. Thoroughly resolving
this problem is likely to necessitate improvements

in the prediction performance for all types of geo-
graphical metadata.

The bottom of table 1 shows an ablation of
our model. Pre-training on synthesized data pro-
vides small but consistent gains across all datasets.
The Seq2Seq approach yields worse performance
than our masked language modeling approach
both when fine-tuning BART-large and when using
GPT3 in zero-shot mode.

We release our model for English geocod-
ing under the Apache License v2.0, for off-the-
shelf use at https://github.com/clulab/
geonorm.

6 Conclusion

We introduced a new paradigm for geocoding
where we predict implicit geographical attributes
and use those to deterministically constrain the set
of valid ontology entries. Our approach leads to
large error reduction over the current state-of-the-
art on the LGL and TR-News datasets.
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7 Limitations

The possible space of prompts is large, and while
our novel location-based prompt worked well with
our masked language modeling approach, it did
not work well for generative models like BART.
It is possible that more intensive exploration of
alternative prompts could bring the performance
of these generative models up to the performance
of our masked language modelling approach. We
also only explored zero-shot approaches for GPT-
3, and though full fine-tuning BART did not yield
acceptable performance, it is possible that few-shot
approaches or fully fine-tuning GPT-3 would.

GeoPLACE is limited by its training and evalua-
tion data, which covers only thousands of English
toponyms from news articles, while there are many
millions of toponyms across the world. It is likely
that there are regional differences in GeoPLACE’s
accuracy that will need to be addressed by future
research.

GeoPLACE is currently limited to geocoding.
To apply this approach to other entity linking prob-
lems, one would need to identify the attributes that
help constrain the search from the ontology, and
then explore a few definitions of keys as we have
in section 3.4. This would be an interesting area
for future research.
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A Appendix

A.1 Dataset details
The number of toponyms and articles in each of the
splits of each of the datasets is shown in table A1.

A.2 Constrainer Variants
For the constrainer, we explored three different
ways to define key1 and key2.

alg3 defines key1 and key2 as in alg. 1.
alg2 allows scores to range from 0 to the length of

the list, rather than just from 0 to 2. It defines:

key1 ← RINDEX(c, Ĉm) · RINDEX(s, Ŝm)

key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · RINDEX(f, F̂m)

Def RINDEX(x, L) : if x ̸∈ L then 0

else |L| − lst.index(val)

alg1 prioritizes matching the first country, and also
allows scores to range from 0 to the length of the
list. It defines:

key1 ← (c = Ĉm0) · RINDEX(s, Ŝm)

key2 ← (c ∈ Ĉm) · (s ∈ Ŝm) · RINDEX(f, F̂m)

We also explored four different ways to define
the number of predictions to consider in the con-
strainer.

top3 Only the top 3 countries, states, and feature
classes are considered

top4 Only the top 4 countries, states, and feature
classes are considered

top5 Only the top 5 countries, states, and feature
classes are considered

top553 The top 5 countries, top 5 states, and top 3
feature classes are considered

Table A2 shows that there were not large differ-
ences between the key algorithms nor the number
of prediction algorithms in terms of accuracy, but
alg3 top3 performed slightly better. Table A2 also
shows that pre-training on synthesized data consis-
tently helped on LGL and GeoWebNews but led to
small drops in performance on TR-News.

A.3 Implementation details
We adopt the candidate reranker of Zhang and
Bethard (2023). We implement the attribute predic-
tor with the PyTorch2 v1.7.0 APIs in Huggingface
Transformers v2.11.0 (Wolf et al., 2020), using
bert-base. We train with the AdamW optimizer,

2https://pytorch.org/

a learning rate of 5e-6, a maximum sequence length
of 256 tokens, and a number of epochs of 40. When
training, we use one NVIDIA A100 GPU with 40G
memory and a batch size of 64. The total number of
parameters in our model is 112M and the training
time is about 0.15 hours.

When synthesizing data from the geographical
ontology for pre-training, most of the hyperparame-
ters are same with finetuning except that batch size
is 32 and training epochs is 10.

When using a generative sequence-to-sequence
objective instead of a masked language modeling
objective, we utilize bart-large with the PyTorch
v2.0.0 APIs in Huggingface Transformers v4.11.3
(Wolf et al., 2020) and FAIRSEQ v0.12.2 (Ott
et al., 2019). We train with the AdamW optimizer,
a initial learning rate of 1e-5, a learning rate sched-
uler type of polynomial, a maximum sequence
length of 1024 tokens, and the steps of training
of 40000. When training, we use one NVIDIA
A100 GPU with 40G memory and a batch size of
8. During evaluation, we use beam search with a
beam size of 5. The total number of parameters
in our model is 406M and the training time is
about 1.3 hours. We use one model to generate
only one attribute, when we generate the country
name, we use the prompt [CLS] This document

discusses these location mentions: m1,

m2, ..., m|M|. Which country is START

m END located ?, the prefix prompt for output
generation is m is located in. When we
generate the state name, we use the prompt [CLS]
This document discusses these location

mentions: m1, m2, ..., m|M|. Which

state is START m END located ?, the prefix
prompt for output generation is m is located

in. When we generate the feature class, we use
the prompt [CLS] This document discusses

these location mentions: m1, m2, ...,

m|M|. Which feature class does START m

END belong to ?, the prefix prompt for output
generation is m belong to

A.4 EUPEG results
We also report results using the Extensible and Uni-
fied Platform for Evaluating Geoparsers (EUPEG;
Wang and Hu, 2019). This platform evaluates not
geocoders, but geoparsers, where a model must
both detect locations and match them to ontology
entries. So we couple our geocoder with the best
location detection model on EUPEG, the Stanford-
NER system.
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Dataset Train Dev. Test

Toponyms Articles Toponyms Articles Toponyms Articles

LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table A1: Numbers of articles and manually annotated toponyms in the train, development, and test splits of the
toponym resolution corpora.

Accuracy

Model LGL (dev) GeoWebNews (dev) TR-News (dev)

GeoPLACE (alg1 top553) .885 .811 .926
GeoPLACE (alg1 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg2 top553) .885 .815 .926
GeoPLACE (alg2 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top553) .900 .815 .926
GeoPLACE (alg3 top553 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top555) .900 .815 .926
GeoPLACE (alg3 top555 synthesized pre-training) .902 .872 .912
GeoPLACE (alg3 top444) .893 .815 .941
GeoPLACE (alg3 top444 synthesized pre-training) .912 .872 .912
GeoPLACE (alg3 top333) .893 .826 .941
GeoPLACE (alg3 top333 synthesized pre-training) .912 .868 .926

Table A2: Model selection on the development sets. The top performance on each dataset is in bold, the second best
performance is underlined.

This platform reports several metrics that are
incomparable across systems. Accuracy, accu-
racy@161km, mean error, and area under the error
distances curve are all calculated only over loca-
tions that were detected, so that a model that detects
only 1% of locations but matches 100% of them
to their correct ontology entries would get perfect
values for these scores, while a model that detects
100% of locations and matches 90% of them to
their correct ontology entries would score lower.
We nonetheless report these incomparable metrics
as EUPEG provides no alternative. EUPEG results
are shown in table A3.

A.5 Recall of Geographical Attributes
Prediction

Table A4 shows the performance of the geographi-
cal attribute prediction classifiers alone, i.e., as clas-
sifiers rather than as components in a geocoding
system. We report recall@3 since the constrainer
considers the top 3 predictions of the attribute pre-
dictor. Performance across all datasets and all clas-
sifiers is 0.84 or higher.

A.6 Full table of Test Performance
Table A5 compares GeoPLACE to other systems
that, due to space limitations, we could not include
in table 1.
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LGL (test) GeoWebNews (test)

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .776 .353 .486 .775 60 .187 .787 .520 .626 .944 33 .056
StanfordNER + Pop .762 .635 .692 .592 135 .360 .866 .648 .741 .673 86 .257
StanfordNER + GeoPLACE .762 .635 .692 .888 23 .109 .866 .648 .741 .929 30 .072

TR-News (test) GeoVirus

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .752 .592 .663 .844 78 .121 .860 .559 .678 .807 44 .319
StanfordNER + Pop .906 .752 .822 .651 119 .287 .927 .903 .915 .655 79 .378
StanfordNER + GeoPLACE .906 .752 .822 .967 15 .033 .927 .903 .915 .837 23 .297

WikToR GeoCorpora

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .230 .298 .259 .591 217 .378 .832 .505 .628 .848 96 .140
StanfordNER + Pop .209 .540 .301 .184 460 .702 .899 .526 .664 .676 106 .270
StanfordNER + GeoPLACE .209 .540 .301 .629 171 .342 .899 .526 .664 .875 48 .122

Hu2014 Ju2016

Model Pre Rec F1 A161 Err AUC Pre Rec F1 A161 Err AUC

Edinburgh .486 .656 .559 .114 86 .607 .000 .000 .000 — – —
StanfordNER + Pop .504 .788 .615 .000 228 .758 .162 .010 .019 0.0 203 .743
StanfordNER + GeoPLACE .504 .788 .615 .071 92 .632 .162 .010 .019 .046 354 .768

Table A3: Performance on the test sets. Precision (Pre), Recall (Rec), and F1 are on the location detection task,
while the other metrics are on the geocoding task Higher is better for accuracy (Acc) and accuracy@161km (A161).
Lower is better for mean error (Err) and area under the error distances curve (AUC). The best performance on each
dataset and geocoding metric is in bold.

Model LGL (test) GeoWebNews (test) TR-News (test)

Country .992 .932 .891
State .929 .873 .849
Feature Class .996 .944 .996

Table A4: Geographical Attribute Prediction Performance of Recall@3 on the test sets.

LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

Edinburgh (Grover et al., 2010) .611 - - - .738 - - - .750 - - -
CamCoder (Gritta et al., 2018) .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai (Halterman, 2017) .322 .375 926 .594 .291 .333 1072 .633 .472 .553 6558 .427
DeezyMatch (Hosseini et al., 2020) .172 .182 654 .704 .262 .323 537 .601 .206 .220 741 .705
SAPBERT (Liu et al., 2021) .245 .260 566 .630 .428 .499 357 .446 .355 .362 595 .568
ReFinED (Ayoola et al., 2022) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned by Zhang and Bethard, 2023) .786 - - - .782 - - - .858 - - -
Candidate Generator (Zhang and Bethard, 2023) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (Zhang and Bethard, 2023) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
GeoPLACE (ours) .863 .894 21 .084 .822 .878 57 .112 .947 .957 18 .038

Table A5: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower
is better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based
metrics for ReFinED as this extraction+disambiguation system does not make predictions for all mentions. The best
performance on each dataset+metric is in bold.
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