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Abstract

In recent studies, linear recurrent neural net-
works (LRNNs) have achieved Transformer-
level performance in natural language and
long-range modeling, while offering rapid par-
allel training and constant inference cost. With
the resurgence of interest in LRNNs, we study
whether they can learn the hidden rules in
training sequences, such as the grammatical
structures of regular language. We theoreti-
cally analyze some existing LRNNs and dis-
cover their limitations in modeling regular lan-
guage. Motivated by this analysis, we propose
a new LRNN equipped with a block-diagonal
and input-dependent transition matrix. Ex-
periments suggest that the proposed model is
the only LRNN capable of performing length
extrapolation on regular language tasks such
as Sum, Even Pair, and Modular Arithmetic.
The code is released at https://github.
com/tinghanf/RegluarLRNN.

1 Introduction

There is a recent surge in the use of LRNNs (Gu
et al., 2022; Peng et al., 2023; Orvieto et al., 2023)
as alternatives to the de-facto Transformer archi-
tecture (Vaswani et al., 2017; Radford et al., 2019),
which is ingrained in the field of natural language
processing. LRNNs depart from the inter-timestep
non-linearity design principle of classic RNNs (El-
man, 1990; Jordan, 1997; Hochreiter and Schmid-
huber, 1997; Cho et al., 2014), while at the same
time: 1. achieving Transformer-level performance
on the task of natural language modeling (Fu et al.,
2023; Poli et al., 2023) and even better perfor-
mance on synthetic long-range modeling tasks (Gu
et al., 2022; Gupta et al., 2022; Orvieto et al., 2023;
Hasani et al., 2023; Smith et al., 2023). 2. hav-
ing the added benefits of fast parallelizable train-
ing (Martin and Cundy, 2018) and constant infer-
ence cost.

∗
Equal contribution

In spite of the remarkable empirical performance
on natural language tasks, there has been no re-
search on LRNNs’ ability to model regular lan-
guage. Regular language is a type of language that
strictly follows certain rules like grammar.1 The
successful modeling of a regular language is im-
portant since it implies a model’s ability to learn
the underlying rules of the data. For example, if
the training data are arithmetic operations such
as 1 + 2 × 3, a model should learn the rules of
a+ b, a× b, and that × has a higher priority than
+. Learning unambiguous rules behind the data
is a critical step toward sequence modeling with
regulated output.

In this paper, we aim to determine if existing
LRNNs are competent to learn the correct gram-
mar of regular language by testing their language
transduction capability under the length extrapo-
lation setting. Concretely, a model is trained only
to predict the desired outputs on a set of short se-
quences of length Ltr. It then needs to predict
the correct outputs for longer testing sequences of
length Lex � Ltr. Adopting the length extrap-
olation setting is essential to mitigate the risk of
a model learning spurious shortcut solutions (Liu
et al., 2023).

We theoretically show that some of the recently
proposed LRNNs lack the expressiveness to en-
code certain arithmetic operations used in the tasks
of regular language. In light of this observation,
we propose a new LRNN equipped with a block-
diagonal and input-dependent transition matrix,
which enable the successful modeling of regular
language. Experiments show that the proposed
model is the only LRNN architecture that can ex-
trapolate well on regular language tasks such as
Sum, Even Pair, and Modular Arithmetic.

LRNNs in this work have the following general

1Formally speaking, the rules are defined/recognized by
the underlying finite-state machine.
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formulation:

xk = Akxk−1 +Buk

yk = h(xk).
(1)

Ak is a matrix that defines the recurrence relation.
Ak may or may not depend on the input uk. When
it is input-independent, Ak is reduced to A; oth-
erwise, Ak = g(uk) for some function g. The
first line encodes a linear recurrence in the state
xk. The second line is an output yk that depends
on xk. To control the expressiveness, the function
h may or may not be a linear operation. Since the
existing LRNNs differ in their linear recurrence
relations (Eq. (2), (3), and (4)), we mainly focus
on analyzing these relations.

2 Limitations of Most LRNNs

In this section, we theoretically show that most
LRNNs are unable to represent arithmetic oper-
ations. The analysis serves as a motivation to
study input-dependent transition matrices with con-
straints on their column norm.

2.1 Input-independent LRNN
To begin with, state-space models (in discrete-time
format) follow the standard LRNN recurrence rela-
tion:

xk = Axk−1 +Buk (2)

Eq. (2) encapsulates the recurrence relation of
S4 (Gu et al., 2022; Gupta et al., 2022), S5 (Smith
et al., 2023), and Linear Recurrent Unit (Orvieto
et al., 2023). For example, A represents the HiPPO
matrix family (Gu et al., 2023) of S4 or a complex
diagonal matrix of Linear Recurrent Unit. We show
in Proposition 1 that such an input-independent ma-
trix A cannot represent subtraction.

Proposition 1. An input-independent LRNN is in-
consistent in representing subtraction.

Proof. Denote u0, u−, and u1 as the input vector
w.r.t. input characters 0, -, and 1. Denote z as the
initial state vector. The sequences "0-1" and "1-0"
are represented as

x0−1 = A3z +A2u0 +Au− + u1, for "0-1"

x1−0 = A3z +A2u1 +Au− + u0, for "1-0"

Because 0− 1 6= 1− 0, by forcing x0−1 6= x1−0,
we have

A2u0 +Au− + u1 6= A2u1 +Au− + u0.

On the other hand, let x0− = A2z +Au0 + u− be
the vector representation for "0-". The sequences
"0-0-1" and "0-1-0" are represented as

x0−0−1 = A3x0− +A2u0 +Au− + u1

x0−1−0 = A3x0− +A2u1 +Au− + u0.

Notice x0−0−1 is for "0-0-1" while x0−1−0 for "0-
1-0". Enforcing x0−0−1 = x0−1−0, we have

A2u0 +Au− + u1 = A2u1 +Au− + u0,

which is a contradiction.

The limitation described by Proposition 1 also
applies to models adopting diagonal linear recur-
rence relations (Gupta et al., 2022; Smith et al.,
2023; Orvieto et al., 2023). The failure to repre-
sent regular language will be corroborated by the
inferior length extrapolation performance reported
later in § 4.

3 Proposed Method

Now that input-independent LRNNs struggle with
representing arithmetic operations, we review
the paradigms known to model regular language,
which is the type of formal language recognized by
a Finite State Automata (FSA) (Chomsky, 1956).
An FSA is described by a 5-tuple (Q,Σ, δ, q0, F ).
Q and Σ are non-empty sets of states and input
symbols. q0 ∈ Q is an initial state. δ : Q×Σ→ Q
is an input-dependent transition function; F ⊆ Q
is a set of final states.

We hypothesize that an LRNN could model reg-
ular language if it can simulate an FSA, whose
transition function has the following two key prop-
erties:

• It is input-dependent.

• If represented in the matrix form, its column
vectors all have unit norm (in ‖ · ‖1).

3.1 Diagonal Input-dependent LRNN
Let us first examine the simplest input-dependent
LRNN:

xk = diag(vk)xk−1 +Buk, (3)

where vk = f(uk) is a vector that depends on
uk. Unfortunately, we show that a diagonal input-
dependent LRNN still cannot represent subtraction
in Proposition 2.
Proposition 2. A diagonal input-dependent LRNN
is inconsistent in representing subtraction.
The proof is essentially a generalization of Propo-
sition 1 and is deferred to Appendix A.1.
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3.2 Improved Expressiveness: Liquid-S4
To improve the expressiveness of Eq. (3), we note
that the recently proposed liquid-S4 (Hasani et al.,
2023) model has the following recurrence relation:

xk = Axk−1 + (Buk)� xk−1 +Buk

= (A+ diag(Buk))xk−1 +Buk,
(4)

where � denotes the Hadamard product and
diag(w) constructs a diagonal matrix from w. Al-
though Liquid-S4 does not suffer from the limita-
tion outlined in Proposition 2, our experiments in
§ 4.4 show that Liquid-S4 still cannot extrapolate
on regular language tasks.

3.3 Block-diagonal Input-dependent LRNN
Finally, we decide to push the expressiveness of
Ak to the limit and make it fully input-dependent:

xk = Akxk−1 +Buk, (5)

where Ak = g(uk) is a block diagonal matrix in
practice for the sake of efficiency. Ak depends on
uk but not previous timesteps. g is an arbitrary
function with the output being the size of Ak.

Eq. (5) is numerically unstable because the prod-
uct

∏k
i=1Ai could produce large numbers. The

solution is to impose additional constraints on the
norm of Ak:

Ak = diag
(
A

(1)
k , ..., A

(h)
k

)
∈ Rbh×bh

A
(i)
k =

[
v
(i,1)
k . . . v

(i,b)
k

]
∈ Rb×b

‖v(i,j)k ‖p ≤ 1, i ∈ [1, ..., h], j ∈ [1, ..., b],

(6)

where ‖ · ‖p denotes the vector p-norm and v(i,j)k is
a column vector that depends on uk. For any vector
v, we can derive another vector v′ to satisfy the
p-norm constraint through v′ = v/max(1, ‖v‖p).
Because ‖v‖p ≥ ‖v‖q when p ≤ q, a smaller p
imposes a stronger constraint on the columns of
A

(i)
k . In other words, we can stabilize Eq. (5) by

selecting a sufficiently small p.
Take p = 1 as an example. Every block A(i)

k is
a matrix that none of its column norm is greater
than 1 in ‖ · ‖1. This implies A(i)

k+1A
(i)
k is the same

kind of matrix. Specifically, let v(1), ..., v(b) be the
columns of A(i)

k+1A
(i)
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[
‖v(1)‖1 . . . ‖v(b)‖1

]
= 1

>
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(i)
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(7)

Note that 1 is a column vector of all ones. | · | and
≤ are element-wise absolute value and inequality
operations. The last two inequalities holds since
the column norm of A(i)

k+1 and A(i)
k ’s are no greater

than 1 in ‖ · ‖1.
Eq. (7) demonstrates that p = 1 can stabilize the

proposed block-diagonal recurrence, Eq. (5). How-
ever, a small p restricts a model’s expressiveness.
In § 4.4, we will show that p = 1.2 is small enough
to yield good empirical performance.

3.4 Efficient Implementation via Parallel
Scan

We implement LRNNs in the parallel scan
(PScan) mode as shown in Fig. 1. The idea of
PScan is to group similar operations together,
run them in parallel, and deliver the same re-
sults as those in the sequential (Sequential)
for loop mode. For example, to compute x3 =
A3A2A1u0+A3A2u1+A3u2+u3, Sequential
runs this in three steps. On the other hand, PScan
decomposes the computation into two steps:

• Step 1: Compute A1u0 + u1 and A3u2 + u3.
Because these two operations are similar, we can
compute them in parallel.

• Step 2: x3 = A3A2(A1u0 + u1) + (A3u2 + u3).

Generally speaking, a length-L generation
takes dlog2 Le steps using PScan. However,
each step requires careful handling of the in-
termediate matrices. As illustrated in Fig. 1,
for a length-8 generation, the first step re-
quires [A1, A3, A5, A7], the second step requires
[A2, A3A2, A6, A7A6], and the third step requires
[A4, A5A4, A6A5A4, A7A6A5A4]. To this end,
we present an algorithm to generate the interme-
diate matrices in Appendix A.2.1. We integrate
these intermediate matrices in PScan and show
that PScan is equivalent to Sequential in Ap-
pendix A.2.2.

The computational complexity of our model is
O(b3h log(T )), where b, h, and T represent the
block size, number of blocks, and sequence length,
respectively. With the embedding dimension held
fixed as bh, the complexity scales quadratically
w.r.t the block size.

4 Experiments

4.1 Regular Language Tasks
We evaulate the models using the regular language
transduction tasks introduced in Deletang et al.
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u0 u1 u2 u3 u4 u5 u6 u7

x0 x1 x2 x3 x4 x5 x6 x7

A1                                              A3                                             A5                                            A7                 

     A2             A3A2                                                                           A6             A7A6

    A4               A5A4          A6A5A4          A7A6A5A4

Figure 1: Illustration of Parallel Scan for a length-8 generation.

(2023). We prioritize language transduction over
language recognition as the former can be more use-
ful in practice Deletang et al. (2023). We are par-
ticularly interested in Sum(5), EvenPair(5), and
ModArith(5).

Sum(M) The input is a string {si}n−1i=0 of num-
bers in [0, ...,M − 1]. The output is their sum
modulo M:

∑n−1
i=0 si mod M . For example, when

M = 5, the input 0324 corresponds to the output
4 because 0 + 3 + 2 + 4 mod 5 = 4. Notably,
Sum(2) is the famous PARITY problem that eval-
uates whether there is an odd number of 1s in a
bit string. Thus, Sum(M) is a generalization of
PARITY and shares the same characteristic: If one
error occurs during the summation, the output will
be wrong.

EvenPair(M) The input is a string {si}n−1i=0 of
numbers in [0, ...,M − 1]. The output is 1 if
sn−1 = s0 and 0 otherwise. For example, when
M = 5, the input 0320 corresponds to the output
1 because the first entry equals the last entry. Since
EvenPair(M) only cares about the first and last en-
tries, a model should learn to remember the first en-
try and forget the remaining ones i ∈ [1, .., n− 2].

ModArith(M) The input is a string {si}n−1i=0 of
odd length (i.e., n is odd). The even entries
(i ∈ [0, 2, ...]) are numbers in [0, ...,M − 1];
The odd entries (i ∈ [1, 3, ...]) are symbols in

{+,−,×}. The output is the answer of a math-
ematical expression under modulo M. For example,
when M = 5, the input 1+2-3×4 corresponds
to the output 1 because 1 + 2 − 3 × 4 mod 5 =
−9 mod 5 = 1. ModArith(M) is much more com-
plicated than Sum(M) and EvenPair(M) because
a model should learn to prioritize multiplication
over addition and subtraction.

4.2 Length Extrapolation
In our pilot experiments, we discovered that all
models can achieve near-perfect same-length test-
ing accuracy; i.e., testing with Lex = Ltr. This
is not impossible since a large enough model can
memorize all training sequences in its parameters.
To evaluate whether a model truly learns the under-
lying rules of a language, we first train a model on
sequences of length Ltr generated by an FSA; It is
then evaluated on sequences of length Lex > Ltr
generated by the same FSA.

Table 1 summarizes the extrapolation setting.
We mostly follow the requirements in Deletang
et al. (2023), where the training and extrapola-
tion lengths are 40 and 500. The lengths for
ModArith(5) are 39 and 499 because this task re-
quires odd-length inputs.

4.3 Baseline Models
We select baseline LRNNs such as S4 (Gu et al.,
2022), S4D (Gupta et al., 2022), and Liquid-S4
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Sum(5) EvenPair(5) ModArith(5)
Ltr 40 40 39
Lex 500 500 499

Table 1: Training and Extrapolation Settings. Ltr

and Lex represent the training and extrapolation se-
quence lengths, respectively.

(Hasani et al., 2023) using the released codebase2

under Apache-2.0 license. These models are cho-
sen since they are the most stable and theoretically
grounded LRNN design thanks to the careful pa-
rameterization of their state transition matrices. We
also experiment with RWKV (Peng et al., 2023)
and a vanilla LRNN without S4’s parameterization.
Unfortunately, their performance lags behind S4
on the reported tasks.

4.4 Experimental Results

For the proposed method, we set p = 1.2
in Eq. (6) and train the block-diagonal input-
dependent LRNN with (b, h) = (8, 8). Because
ModArith is more complicated than Sum and
EvenPair, ModArith uses 3 layers while the oth-
ers take 1 layer. Each layer is a full pass of LRNN
as described in Eq. (1).

Table 2 compares the length extrapolation capa-
bility of our model with other LRNN baselines on
regular language tasks. As we can see, the pro-
posed model is the only LRNN that can extrapolate
well on regular language. The inferior performance
of S4 and S4D is expected since they cannot rep-
resent subtraction as illustrated in Prop. 1. As for
Liquid-S4, despite the usage of input-dependent
block matrices (discussed in § 3.2), it still cannot
extrapolate well on regular language. We believe
this can be explained by its low expressiveness
(Eq. (4)) compared to the proposed model (Eq. (5)
and (6)). Overall, we can see that the combination
of input dependency and sufficient expressiveness
plays an important role in terms of regular language
modeling.

4.5 Speed Comparison

We conduct our experiments using a Quadro RTX
8000 GPU. To provide context for the aforemen-
tioned complexity analysis in § 3.4, we take the
Sum(5) task and set T = 40 during the train-
ing stage. Sequential requires 0.033s per in-
stance, while PScan completes the task in 0.021s.

2https://github.com/HazyResearch/state-spaces

Ours S4 S4D Liquid-S4
Sum(5) 1.00 0.27 0.27 0.27
EvenPair(5) 0.99 0.81 0.82 0.72
ModArith(5) 1.00 0.27 0.27 0.27

Table 2: Length Extrapolation Performance on Reg-
ular Language Tasks. Each reported number is an av-
erage of five random trials. Each random trial returns
the best testing accuracy over 40,000 gradient updates.

During the testing stage, we set T = 500, where
both Sequential and PScan take 0.03s per in-
stance. One might anticipate PScan to outperform
Sequential during testing. However, in prac-
tice, this is not the case, as the complexity incurred
by b3 counteracts the speedup offered by log(T ).
To validate our hypothesis, we set b = 1 and re-
assess the speed. Subsequently, PScan achieves
0.0008s per instance, whereas Sequential takes
0.002s. Regarding why PScan demonstrates a no-
table speedup during the training stage, we hypoth-
esize that it is due to the improved backpropagation
path enabled by PScan.

5 Conclusion

In this work, we explored LRNNs in the realm
of regular language modeling. We discovered
that existing LRNNs cannot effectively represent
subtraction. Consequently, we proposed a new
LRNN equipped with a block-diagonal and input-
dependent transition matrix. Our experiments con-
firmed the proposed model’s capability to model
various regular language tasks, including Sum,
Even Pair, and Modular Arithmetic, under the chal-
lenging length extrapolation setting.

Limitations

The limitations of this work stem from several fac-
tors: (a) our evaluation is confined to only three
regular language tasks; (b) the scope of our work
excludes natural language; and (c) the proposed
model introduces new hyperparameters such as the
block size and the p-norm.

For (a), it is possible to discuss the average
performance over randomly generated regular lan-
guage, as demonstrated in Valvoda et al. (2022).
Regarding (b), while natural language falls beyond
the scope of our study, we believe the proposed
model is at least as effective as prior linear RNN
models on natural language, owing to its enhanced
expressiveness. Concerning (c), the block size typi-
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cally increases with the complexity of the problem.
Nonetheless, it is feasible to maintain the same
block size if more layers are employed (e.g., as
described in § 4.4). Additionally, the p-norm pa-
rameter is chosen to be close to 1 to ensure stability;
longer sequences correspond to smaller values of
p.

Ethics Statement

Our work lays the groundwork for developing
LRNNs in underexplored languages, such as regu-
lar language. Inappropriate usage of our technique
might have negative societal impacts, including po-
tential losses due to wrong predictions and ethical
challenges regarding the improper use of the model.
These implications apply to most language process-
ing research and are not unique to this specific
work.
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A Additional Proofs

A.1 Proof of Proposition 2
Denote (A0, u0), (A−, u−), and (A1, u1) as the
pairs of (transition matrix, input vector) w.r.t. input
characters 0, −, and 1. Note that A0, A−, and A1

are diagonal matrices by assumption.
Denote z as the initial state vector. The se-

quences 0-1 and 1-0 are represented as

x0−1 = A1A−A0z +A1A−u0 +A1u− + u1

x1−0 = A0A−A1z +A0A−u1 +A0u− + u0.

Note that x0−1 is 0-1 and x1−0 is 1-0. Because
the A matrices are diagonal, we know A1A−A0 =
A0A−A1. Because 0 − 1 6= 1 − 0, by enforcing
x0−1 6= x1−0, we have

A1A−u0 +A1u−+u1 6= A0A−u1 +A0u−+u0.
(8)

On the other hand, let x0− = A−A0z+A−u0+u−
be the vector representation for "0-". Consider two
other sequences 0-0-1 and 0-1-0, their vector
representations are

x0−0−1 = A1A−A0x0− +A1A−u0 +A1u− + u1

x0−1−0 = A0A−A1x0− +A0A−u1 +A0u− + u0.

Note x0−0−1 is 0-0-1 and x0−1−0 is 0-1-0.
Similarly, because the A matrices are diagonal and
0 − 0 − 1 = 0 − 1 − 0, by enforcing x0−0−1 =
x0−1−0, we have

A1A−u0 +A1u−+u1 = A0A−u1 +A0u−+u0.
(9)

Because Eq. (8) contradicts Eq. (9), the two rela-
tions x0−1 6= x1−0 and x0−0−1 = x0−1−0 can-
not co-exist. We hence conclude that an input-
dependent diagonal linear RNN is inconsistent in
representing subtraction.

A.2 Code for PScan
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A.2.1 Illustration of Matrix Generation

import numpy as np
seq_len = 2**3 - 1

arr = np.array(['A' + str(i) for i in range(1,seq_len +1)]).reshape(-1,1)

def spt(x):

assert len(x)%2 == 1, 'works when len(x)== 2**k -1 for k>=1'

coef = x[::2]

remain = x[1::2]

coef_remain = np.core.defchararray.add(coef[1:], remain[:,-1:])

remain = np.concatenate([remain, coef_remain], axis=1)

return coef, remain

for i in range( int(np.ceil(np.log2(seq_len))) ):

coef, arr = spt(arr)

print(coef)

The below output shows the function spt() can generate the intermediate matrices during PScan.
[ [ ' A1 ' ]

[ ' A3 ' ]
[ ' A5 ' ]
[ ' A7 ' ] ]

[ [ ' A2 ' ' A3A2 ' ]
[ ' A6 ' ' A7A6 ' ] ]

[ [ ' A4 ' ' A5A4 ' ' A6A5A4 ' ' A7A6A5A4 ' ] ]

A.2.2 Testing the Equivalence of Sequential and PScan

import numpy as np
import torch
import torch.nn as nn
torch.manual_seed(1)

emb_dim = 2

seq_len = 7

bs = 1

A = torch.randn(bs, seq_len, emb_dim, emb_dim)

u = torch.randn(bs, seq_len, emb_dim)

x0 = torch.randn(1, emb_dim)

# sequential

x = x0.expand(bs, emb_dim)

all_x = [x[:,None,:]]

for i in range(seq_len):

x = torch.einsum('bij,bj->bi', A[:,i], x) + u[:,i]

all_x.append(x[:,None,:])

all_x = torch.cat(all_x, dim=1)

print('sequential mode')

print(all_x)

# parallel scan

def scan(x, As):

c = As.shape[2]*2

x = x.view(bs, L//c, c, -1)

x1, x2 = x[:,:,:c//2], x[:,:,c//2:]

# x2.shape = (bs, group nums, group size, emb_dim)

# As.shape = (bs, group nums*2-1, group size, emb_dim, emb_dim)

assert As.shape[1]%2==1, 'works when As.shape[1]== 2**k -1 for k>=1'

coef = As[:,::2]

remain = As[:,1::2]

prodd = torch.einsum('bncij,bnjk->bncik', coef[:,1:], remain[:,:,-1])

remain = torch.cat([remain, prodd], dim=2)

# coef.shape = (bs, group nums, group size, emb_dim, emb_dim)

# apply a group of matrix (e.g., ['A2' 'A3A2']) to the last element of x2 in each group,

# and add together
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x2 = x2 + torch.einsum('bncij,bnj->bnci', coef, x1[:,:,-1])

x = torch.cat([x1, x2], dim=2)

return x, remain

log2_L = int(np.ceil(np.log2(seq_len+1)))

L = 2**log2_L # the length after zero padding

n_zero = L - seq_len - 1

eu = torch.cat([x0.expand(bs,-1)[:,None,:], u], dim=1)

eu = nn.functional.pad(eu, (0,0,0, n_zero))

x = eu

As = nn.functional.pad(A, (0,0,0,0,0, n_zero))[:,:,None,:,:]

for i in range(log2_L):

x, As = scan(x, As)

x = x.view(bs, L, emb_dim)[:,:seq_len+1,:]

print('parallel mode')

print(x)

The below shows that Sequential and PScan are equivalent as they generate the same outputs.
s e q u e n t i a l mode
t e n s o r ( [ [ [ 0 . 8 3 1 0 , − 0 . 2 4 7 7 ] ,

[ 0 . 5 1 6 7 , − 1 . 4 21 8 ] ,
[ 1 . 1 3 9 9 , 1 . 3 0 2 4 ] ,
[ 0 . 9 6 2 8 , 1 . 3 1 5 0 ] ,
[ − 1 . 5 3 0 8 , − 1 . 6 9 0 3 ] ,
[ − 3 . 6 6 3 1 , 1 . 6 0 8 2 ] ,
[ 1 . 7 8 0 5 , 7 . 1 6 5 9 ] ,
[ 2 . 5 0 6 8 , − 0 . 6 2 5 6 ] ] ] )

p a r a l l e l mode
t e n s o r ( [ [ [ 0 . 8 3 1 0 , − 0 . 2 4 7 7 ] ,

[ 0 . 5 1 6 7 , − 1 . 4 21 8 ] ,
[ 1 . 1 3 9 9 , 1 . 3 0 2 4 ] ,
[ 0 . 9 6 2 8 , 1 . 3 1 5 0 ] ,
[ − 1 . 5 3 0 8 , − 1 . 6 9 0 3 ] ,
[ − 3 . 6 6 3 1 , 1 . 6 0 8 2 ] ,
[ 1 . 7 8 0 5 , 7 . 1 6 5 9 ] ,
[ 2 . 5 0 6 8 , − 0 . 6 2 5 6 ] ] ] )
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