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Abstract

An effective method for combining frozen large
language models (LLM) and visual encoders in-
volves a resampler module that creates a ‘visual
prompt’ which is provided to the LLM, along
with the textual prompt. While this approach
has enabled impressive performance across
many coarse-grained tasks like image caption-
ing and visual question answering, (Alayrac
et al., 2022; Dai et al., 2023), more fine-grained
tasks that require spatial understanding have
not been thoroughly examined. In this paper,
we use diagnostic classifiers to measure the
extent to which the visual prompt produced
by the resampler encodes spatial information.
Our results show that this information is largely
absent from the resampler output when kept
frozen during training of the classifiers. How-
ever, when the resampler and classifier are
trained jointly, we observe a significant perfor-
mance boost. This shows that the compression
achieved by the resamplers can in principle en-
code the requisite spatial information, but that
more object-aware objectives are needed at the
pretraining stage to facilitate this capability1.

1 Introduction

Recent approaches for developing Vision and Lan-
guage (V&L) models leverage existing vision (Rad-
ford et al., 2021; Fang et al., 2023b,a), and lan-
guage experts (Touvron et al., 2023a; Zhang et al.,
2022; Touvron et al., 2023b) and try to learn a map-
ping between them (Alayrac et al., 2022; Li et al.,
2023b; Dai et al., 2023; You et al., 2023; Liu et al.,
2023c,b). In most cases, the experts are kept frozen
while the only learnable component is the mapping
between the visual and the language expert.

The simplest approach uses a linear projection
layer that matches the dimensionality of the visual
and textual embeddings before feeding them to the
LLM (Liu et al., 2023c,b). A more sophisticated

1Code available here
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Figure 1: Explicit (left) and implicit (right) probing for
spatial understanding. In the explicit setting, we probe
for region localization, while in the implicit setting,
the probe is trained to classify whether a description
involving an image region is true of the image.

method is to use a resampler to compress the visual
embeddings into a compact ‘visual prompt’ that is
then fed to the LLM either at the input level along
with the text prompt (Li et al., 2023b; Dai et al.,
2023) or via cross attention layers (Alayrac et al.,
2022; Li et al., 2023a). From a practical standpoint,
the resampler may accelerate training and infer-
ence as it significantly reduces the sequence length,
but also facilitates in-context learning capabilities
since additional examples can fit into the context
window of the LLM. As a result, these approaches
have demonstrated impressive performance across
multiple ‘coarse-grained’ tasks such as image cap-
tioning, and visual question answering.

However, fine-grained tasks such as visual
grounding and spatial understanding are relatively
underexplored. Resamplers are usually pretrained
on pairs of image-text data using contrastive learn-
ing (Li et al., 2023b; Dai et al., 2023), and/or mul-
timodal masked language modeling (Laurençon
et al., 2023; Alayrac et al., 2022), without relying
on object-aware objectives. Given the importance
of resamplers for the development of V&L mod-
els, we ask whether this compression preserves
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fine-grained spatial information. Do the contrastive
and language modeling objectives retain the overall
scene structure, or is this information lost due to
the absence of object-aware pretraining objectives?

To address these questions, we train diagnostic
classifiers to probe two different resampler mod-
ules for explicit and implicit spatial understand-
ing — see Figure 1. Our results indicate that the
multimodal resamplers do not facilitate spatial un-
derstanding. Nevertheless, in all settings, jointly
fine-tuning the diagnostic classifiers and the resam-
plers significantly boosts performance, demonstrat-
ing that the compression achieved by the resam-
plers can in principle encode the requisite spatial
information, but that more object-aware pretraining
objectives are needed to facilitate this.

2 Related Work

Resamplers The idea of the resampler is inspired
primarily by computer vision, where an attention
mechanism is used to compress visual features into
learnable queries (often referred to as slots) (Carion
et al., 2020; Kamath et al., 2021; Locatello et al.,
2020). More recently, resamplers have been ap-
plied to more multimodal tasks. Flamingo (Alayrac
et al., 2022) and subsequent open-source variants
(Laurençon et al., 2023; Li et al., 2023a) are based
on the Perceiver Resampler (Jaegle et al., 2022),
with cross-attention between the latent queries and
the visual embeddings followed by a stack of self-
attention blocks that operate on the latent queries.
In the Q-Former (Li et al., 2023b; Dai et al., 2023),
the latent queries are also informed by the input
text and, therefore, create a more ‘linguistically
informed’ visual prompt.

Probing Probing is a class of methods for inter-
preting neural models by assessing whether the
model representations encode specific kinds of in-
formation at different processing stages (Belinkov,
2022). The concept of probing is straightforward;
we extract representations from a model that is al-
ready trained on some task(s), and use a lightweight
diagnostic classifier on top of these representations
to solve a probing task that reflects the information
that we seek to find. The classifier’s performance
is then taken to correlate with the extent to which
that information is encoded by the model (Conneau
et al., 2018; Hupkes et al., 2018). Many within
(multimodal) NLP have thus adopted probing to
interpret model behavior (Kajic and Nematzadeh,
2022; Salin et al., 2022; Lindström et al., 2020).

3 Experiments

Is spatial understanding a property of V&L re-
samplers? We experiment with three different
spatial understanding tasks. In RefCOCOg (Mao
et al., 2016), the objective is to predict the coor-
dinates of the region that is described by the in-
put phrase. Secondly, we use the ‘random split’
from the VSR dataset (Liu et al., 2023a), where
the model has to assess the validity of a caption de-
scribing a spatial relationship between two entities.
Finally, we introduce the Region Cell Matching
(RCM) task, which follows the VSR formulation
but is designed to test for a more rudimentary form
of spatial understanding regarding the location of
one entity in the image. Inspired by CAPTCHAs,
an image is divided into a 3x3 grid, and each grid
cell is assigned a location description (such as top
left or middle). We generate synthetic captions by
combining RefCOCOg descriptions with the cell
location as shown in the implicit probing exam-
ple of Figure 1. To ensure that performance is not
influenced by frequency biases, we balanced the
distribution of positive and negative examples. Ap-
pendix A contains further details about the dataset.

In our experiments, we use the Q-Former from
the first pretraining stage of BLIP2 (Li et al., 2023b)
and InstructBLIP (Dai et al., 2023). To probe
the resamplers, we follow past work (Belinkov,
2022) and use a single linear layer after flatten-
ing the embeddings of the query tokens. For Ref-
COCOg, the linear layer predicts the normalized
coordinates of the region that matches the refer-
ring expression. We use the bounding box loss
from (M)DETR (Carion et al., 2020; Kamath et al.,
2021): a weighted sum of the Generalised IoU and
L1 losses. Similarly, for VSR and the RCM task,
we use a linear layer that predicts the probabil-
ity that the query matches the image trained using
binary cross entropy. We tune the learning rate,
number of epochs, and loss weights (only for Ref-
COCOg) using Bayesian hyperparameter optimiza-
tion (Bergstra et al., 2013) for at least ten iterations.
For further implementation details, see Appendix B.
In all cases, we evaluate the best model in terms of
validation performance.

We compare the two resamplers against
similarly-sized models that employ patch repre-
sentations. We avoid comparison against models
with object-centric visual encoding because the
task of visual grounding is significantly easier in
these models as they need to select the correct can-
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RefCOCOg VSR random RCM

Validation Test Validation Test Validation Test

Random - - - 50.00 50.00 50.00
Human - - - 95.40 - 92.29

MDETR (Kamath et al., 2021) 83.35 83.31 - - - -
CLIP∗ (Radford et al., 2021) - - - 56.0 - -
Unitab (Yang et al., 2022) 84.58 84.70 - - - -
ViLT (Kim et al., 2021) 69.14 68.93 71.38 71.53 83.16 83.25

^ Q-Former 30.39 30.26 66.91 64.97 70.12 69.49
t Q-Former 71.47 71.72 80.86 80.50 81.68 81.35
^ IBLIP Q-Former 20.00 19.92 58.07 55.72 64.58 63.08
t IBLIP Q-Former 68.89 69.34 78.40 76.99 83.11 80.86

Table 1: Linear probing results. ^/t denotes that the resampler is frozen/unfrozen. ∗ results from Liu et al. (2023a).
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Figure 2: Performance on (a) VSR per intermediate layer, (b) RefCOCOg per MSCOCO super-category.

didate bounding box provided from the detector as
opposed to explicit image region prediction. Addi-
tionally, we provide results where the linear clas-
sifier is jointly trained along with the resampler as
an upper bound for the performance with frozen
representations.

Table 1 shows the results for the models that we
are considering. We observe that both resamplers
perform poorly on RefCOCOg when kept frozen,
and, therefore, are unable to perform explicit visual
grounding. A possible counter-argument could be
that predicting raw coordinates within the image
is too difficult to solve with a single linear layer.
However, we observe similar trends with VSR and
RCM, which test for spatial understanding in an
easier binary classification setup. While the resam-
plers perform better than random baselines in these
tasks, there is a significant gap between the per-

formance of the frozen and fine-tuned backbones.
We believe this is an outcome of the pretraining
objectives of the Q-Former that do not explicitly fa-
cilitate fine-grained object-centric representations.
This is in line with previous work, which found that
V&L models trained with contrastive objectives act
as bag-of-words and do not preserve spatial infor-
mation (Yuksekgonul et al., 2022). On the other
hand, the significant boost achieved by unfreezing
the resamplers shows that the compression of the
input embeddings is, in principle, able to capture
spatial information and, therefore, that the resam-
pler as an architectural choice does not necessarily
constitute a bottleneck.

Is spatial information encoded in earlier layers
but discarded in deeper layers? We previously
observed that resamplers have poor performance in
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Category Adjacency Directional Orientation Projective Proximity Topological Unallocated

^ Q-Former 61.94 42.05 56.93 62.87 60.15 74.56 68.42
t Q-Former 68.86 75.00 67.15 78.29 81.95 83.94 72.37
^ IBLIP Q-Former 57.44 38.64 58.39 54.21 40.60 66.14 52.63
t IBLIP Q-Former 62.98 68.18 67.88 74.61 78.95 83.15 77.63

Table 2: VSR results per model for different categories of spatial relationships. ^/t denotes that the resampler is
frozen/unfrozen.

spatial understanding tasks when using represen-
tations from the last layer. Next, we examine if
the representations from intermediate layers better
encode spatial information. Intuitively, represen-
tations from earlier layers could lead to greater
probing performance as they are closer to the vi-
sual encoder’s output. Figure 2a shows the results
on VSR after probing representations from interme-
diate layers. Overall, intermediate layer represen-
tations do not provide performance gains. There
is a clear upward trend regarding the performance
of the Q-Former from BLIP2, whereas for Instruct-
BLIP we observe fluctuations within a small range
across layers. A similar trend is observed in the Re-
fCOCOg results which are included in Appendix C.

Scaling the Probing Classifier Additionally, we
experiment with scaling the probe classifier by in-
troducing non-linearities. In particular, we use
2-layer and 4-layer classifiers with SwiGLU ac-
tivation functions. We refrain from using more
complex classifiers because they may infer features
that are not actually used by the underlying model
(Hupkes et al., 2018). For training, we used the
same setup as with our previous experiments.

Table 3 illustrates the results with increasing
prompt complexity. While we observe a common
trend of increasing performance when we make
the probe more complex, the accuracy of the non-
linear probes does not indicate that the resampler
encodes spatial information which can be easily
retrieved. Additionally, the performance gap be-
tween the simplest and the most complex probe in
the case of InstructBLIP indicates that fine-grained
spatial understanding is ‘built-up’ within the probe
and is not necessarily a property of the resampler
component.

3.1 Discussion
Performance analysis per object category Fig-
ure 2b illustrates the Q-Former’s performance on
RefCOCOg per MSCOCO (Lin et al., 2014) super-
category. We observe that the frozen/unfrozen
resamplers behave differently but also have sig-

Model #Layers RefCOCOg VSR random RCM

^ Q-Former
1 30.26 64.97 69.49
2 32.08 65.15 69.98
4 34.49 65.01 70.71

^ IBLIP Q-Former
1 19.92 55.72 63.08
2 25.01 58.09 68.66
4 34.49 59.09 69.29

Table 3: Probing results by scaling the probing classifier.

nificant variation between object categories. To
further understand the possible reasons for this
variation, we computed the Kendall coefficient
(Kendall, 1938) between the performance of each
super-category and 1) the distribution of train ex-
amples, 2) the area of each bounding box, 3) and
the distance of the bounding box from the center of
the image (Table 5). Interestingly, the main factor
that correlates positively with the performance per
category is the area of the bounding box. We also
observe that the further the bounding box deviates
from the center, the more the performance drops.
These two observations imply that the Q-Former
constructs the visual prompt by ‘summarizing’ the
most central entities within an image, ignoring po-
sitional outliers.

Which spatial relationships are difficult to cap-
ture? In Table 2, we break down the VSR results
according to the spatial relationship type. Both re-
samplers perform the best in topological relations
across frozen/unfrozen conditions. Directional re-
lations seem challenging for out-of-the-box resam-
plers, though this relation can be captured during
fine-tuning. Finally, captions describing adjacency
or orientation properties are difficult even for fine-
tuned resamplers.

Effect of learning objectives We showed that
multimodal resamplers pretrained with contrastive
learning and multimodal language modeling objec-
tives do not capture spatial information well. These
are undoubtedly important objectives as they en-
able large-scale pretraining, however, on their own,
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they are not sufficient for enabling fine-grained
spatial understanding.

Finally, we observed that BLIP-2’s Q-Former
consistently outperformed the one from Instruct-
BLIP. However, as shown in Figure 2a, the per-
formance of the two resamplers is comparable for
early layers. We hypothesize that during instruction
tuning, the InstructBLIP Q-former may get away
with providing even less fine-grained information
since the language modeling loss is already low
due to the high-quality LLM, leading to a forget-
ting effect (McCloskey and Cohen, 1989).

4 Conclusion

In this paper, we explored to what degree mul-
timodal resamplers preserve spatial information.
While previous work has demonstrated the effec-
tiveness of resamplers across a variety of V&L
tasks, our investigation revealed their limitations
when applied to spatial understanding tasks. In par-
ticular, we probed two resamplers and showcased
that grounding natural language descriptions in im-
age regions is not an inherent ability of these mod-
ules. Furthermore, probing experiments showed
limited spatial understanding in two easier settings.
These involved image-text matching with captions
referencing the absolute location of an entity, or
spatial relationships between two entities. Never-
theless, our results showcased that when the resam-
pler is fine-tuned, the compression of the visual
encoding induced by the resampler can be effec-
tive. We believe that this is due to the lack of an
object-aware pretraining objective that would en-
courage the resamplers to encode spatial informa-
tion. Future work should build upon our findings
and design objectives that incentivize disentangled
representations (Bengio et al., 2013).

Limitations

This study centered on exploring some architectural
components of current V&L models with regard to
their ability to encode spatial information. For the
purpose of our study, it is necessary that the visual
and textual representations are already fused. Mod-
els adopting unimodal resamplers do not facilitate
this because 1) the fusion happens only in the suc-
cessive cross-attention layers of the LLM (Alayrac
et al., 2022), or 2) the visual embeddings are con-
catenated with the text embeddings at the input of
the LLM (Bai et al., 2023). While we could ex-
tract representations from intermediate layers from

a model like IDEFICS (Laurençon et al., 2023),
this would have been an unfair comparison with
BLIP-2 style models because the former adds more
layers to the original resampler architecture. The
other option would be to provide the visual embed-
dings and the text embeddings to the probe, but
this defeats the purpose of the probing classifier
as probe since it would have to perform the nec-
essary multimodal fusion internally; thus making
any comparisons uninterpretable. Consequently,
our study does not encompass the entirety of avail-
able models adopting resamplers, and the findings
may not be fully representative of the broader V&L
model landscape.

We also recognize the limitation in our explo-
ration of spatial understanding as an emergent abil-
ity in V&L models. The question of whether spa-
tial understanding materializes as a natural conse-
quence of model scale remains unanswered in our
study. A more in-depth investigation controlling
the pretraining dataset, the size of the models as
well, and the training hyperparameters is required
in order to truly understand the capacity of these
models to develop fine-grained and disentangled
representations that facilitate spatial understanding.
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A Region Cell Matching

The purpose of Region Cell Matching (RCM) is
to evaluate a model’s capacity to perform visual
grounding in an implicit manner, i.e., the model
does not need to provide a specific region within an
image, but it has to substantiate if a given descrip-
tion belongs to a certain region within an image.
To make the task even easier, this region is not
arbitrary, it corresponds to one of the cells of a
3× 3 grid on top of the image. Each of these cells
is mapped to a natural language description, for
example, top left, middle, top right, etc. Figure 3
illustrates one positive and one negative example
from the dataset.

To create the dataset, we started from Ref-
COCOg examples and assigned each bounding box
to one of the cells within the grid by matching its
center to the closest cell. To prevent overpopulat-
ing the dataset with examples where the bounding
box is centered, we downsampled the dataset so
that the distribution of the cells is balanced. With
this process, we created a subset of N positive
examples that are evenly distributed between the
9 cells. In order to prevent biases related to the
distribution of the cells we additionally created N
negative examples as follows: For each grid cell i
with Ni positive examples we selected Ni/8 from
every other cell j as negative examples. We repeat
the steps for train, validation, and test sets resulting
in 46k, 3k, and 5.5k samples, respectively.

Human Performance Apart from fine-tuning
ViLT, we established a human baseline by estimat-
ing the performance of humans in the task. We
developed a Gradio interface (Abid et al., 2019)
where participants received the input image, the
region description as well as the assigned cell and
they were asked to provide a binary response to the
question ‘Does the phrase match the location in the
image?’. In order to imitate the training and evalua-
tion setting in our experiments, we did not provide
any additional information (e.g., there was no vis-
ible grid on top of the image as this would have
trivialized the task) to the participants, with the
exception of a few introductory examples before
actually completing the task.

Since a region may overlap with multiple grid
cells, we also gave participants the option to pro-
vide up to 4 grid cells ranked in terms of priority.
Additionally, participants may refrain from answer-
ing the question if the phrase is factually incorrect
(e.g., the phrase ‘A dog with a frisbee’ is factually

(a) The phrase ‘A earth tone flower pot with a green bush in it.’
refers to the middle right part of the image.

(b) The phrase ‘A tan and brown donut with a thick coating of
chocolate on top.’ refers to the middle part of the image.

Figure 3: Illustration of positive (a) and negative (b)
examples from the RCM task.

incorrect if there is no dog within the image). We
decided to include this option to avoid any potential
confusion and introduce unnecessary noise to the
annotation.

We recruited a total of five participants who were
informed about the study and the use of their data.
Each participant annotated 100 examples from the
test set (50 positive / 50 negative). To estimate a
human baseline, we removed the instances where
each annotator assigned either multiple cells or la-
beled an instance as factually incorrect. Finally, we
measured the annotator agreement with the Fleiss’
kappa coefficient (Fleiss, 1971): k = 80.98.

B Implementation Details

In our experiments we used BLIP2’s (Li et al.,
2023b) Q-Former from the first pretraining stage
which is pretrained using contrastive, image-text
matching, and masked language modeling losses.
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Task Hyperparameters Q-Former IBLIP Q-Former

Name Value ^ t ^ t

RefCOCOg lr [1e-5, 5e-4] 4.85e-4 1.03e-4 2.55e-4 1.08e-4
epochs {20, 30, 40} 40 20 40 40
GIoU scale {1, 2x, x ∈ {1, . . . , 10}} 6 20 16 20
L1 scale {1, 2x, x ∈ {1, . . . , 10}} 20 18 18 8

VSR lr [1e-5, 5e-4] 3.92e-4 4.59e-4 1.03e-4 2.49e-5
epochs {3, 5, 10, 15, 20} 5 10 15 20

RCM lr [1e-5, 5e-4] 1.94e-5 4.74e-4 4.34e-4 3.10e-5
epochs {50, 100, 150} 100 150 150 50

Table 4: Hyperparameters used during bayesian optimization. Additionally, we performed early stopping for RCM
with a patience of 10 epochs.
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Figure 4: Performance of Q-Former on RefCOCOg per
intermediate layer.

In this stage the Q-Former is trained as a standalone
component, i.e, there is no language modeling loss
from an LLM. For InstructBLIP (Dai et al., 2023),
we used the Q-Former that is trained to prompt the
Vicuna-7B model (LMSYS ORG, 2023).

For all experiments we used AdamW optimizer
with weight decay of 0.01 and 10% warmup. We
used a fixed batch size of 128 and tuned exclusively
the learning rate and the number of steps follow-
ing (Godbole et al., 2023). For RefCOCOg we
also tuned the scale of GIoU and L1 loss. Table 4
shows the hyperparameters that were tuned, their
minimum and maximum values, and the best con-
figuration for frozen and unfrozen resamplers. All
training logs regarding the main experiments as
well as the experiments using intermediate repre-
sentations are available here.
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Figure 5: Performance of InstructBLIP Q-Former on
RefCOCOg per MSCOCO super-category.

Q-Former IBLIP Q-Former

^ t ^ t

# examples (train) 0.63 0.42 0.33 0.42
Area (test) 0.84 0.45 0.66 0.45
Distance (test) -0.51 -0.42 -0.63 -0.42

Table 5: Kendall correlation coefficient between per-
formance of resamplers and 1) # training examples, 2)
bounding box area of test examples, and 3) distance be-
tween the center of the bounding box and the center of
an image of test examples. Numbers illustrate p-values
greater than 0.05.

C Additional Results

For completeness, Figure 4 shows the results on
RefCOCOg after obtaining the representations of
the queries from intermediate layers. We observe
a similar pattern as in Figure 2a, where there is
a clear boost when obtaining the representations
from deeper layers from the BLIP2’s Q-Former
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but in the case of the InstructBLIP we observe
fluctuations in the performance.

RefCOCOg performance analysis per object cat-
egory In order to better understand variations
in performance between the different object cate-
gories, we used the distribution of 1) # training ex-
amples, 2) bounding box area of test examples, and
3) distance between the center of the bounding box
and the center of an image of test examples. Table 5
shows the Kendall correlation coefficient between
the performance on different super-categories and
the three conditions.

Relationship between performance of probe and
the visual LLM With regards to the relation
between probing and the performance of the vi-
sual LLM, we prompted InstructBLIP on VSR and
RCM with the prompts reported in the original pa-
per and ranked the logits for positive / negative
answers. The performance of the InstructBLIP
model is 61% on VSR and 51% on RCM. While
this is a performance increase in the case of prob-
ing on VSR, it shows that even the full stack of the
MLMM is unable to robustly retrieve spatial infor-
mation from the compressed visual sequence. In
the case of RCM we observe a notable drop which
we assume is due to the lack of any similar tasks
during the instruction-tuning phase.
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