Do Multilingual Language Models Think Better in English?

Julen Etxaniz ${ }^{1} \quad$ Gorka Azkune $^{1} \quad$ Aitor Soroa ${ }^{1} \quad$ Oier Lopez de Lacalle ${ }^{1} \quad$ Mikel Artetxe ${ }^{1,2}$
${ }^{1} \mathrm{HiTZ}$ Center, University of the Basque Country UPV/EHU ${ }^{2}$ Reka AI
\{julen.etxaniz, gorka.azcune, a.soroa, oier.lopezdelacalle,mikel.artetxe\}@ehu.eus

Abstract

Translate-test is a popular technique to improve the performance of multilingual language models. This approach works by translating the input into English using an external machine translation system before running inference. However, these improvements can be attributed to the use of a separate translation system, which is typically trained on large amounts of parallel data not seen by the language model. In this work, we introduce a new approach called self-translate that leverages the few-shot translation capabilities of multilingual language models. This allows us to analyze the effect of translation in isolation. Experiments over 5 tasks show that self-translate consistently outperforms direct inference, demonstrating that language models are unable to leverage their full multilingual potential when prompted in non-English languages. Our code is available at https: //github.com/juletx/self-translate.

1 Introduction

Multilingual autoregressive language models like XGLM (Lin et al., 2022), BLOOM (Scao et al., 2023) and PaLM (Chowdhery et al., 2022; Anil et al., 2023) have shown impressive capabilities on many tasks and languages. However, performance is usually lower for non-English languages, especially for low-resource ones (Ahuja et al., 2023). A common approach to mitigate this problem is to use translate-test, where the test data is translated into English using an external Machine Translation (MT) system, and then fed into the model. While primarily explored in the traditional pretrain/finetune paradigm (Ponti et al., 2021; Artetxe et al., 2023), early evidence has shown that translate-test can also bring sizeable improvements for few-shot learning with autoregressive language models (Shi et al., 2022).

However, translate-test relies on a separate MT system, which is usually trained on large amounts

Figure 1: XGLM results (average accuracy). We show that self-translate (using the model itself to translate the input into English) works better than using the original input in the non-English language.
of parallel data not seen by the primary model. In this paper, we investigate if the improvements from translate-test are solely due to the use of additional resources. To answer this question, we propose a new approach called self-translate, which leverages the few-shot translation capabilities of autoregressive language models (Vilar et al., 2023) instead of using an external system. More concretely, we prompt multilingual models to translate the input into English, and then feed the translated input to the same model to solve the task (Figure 2).

As shown in Figure 1, we find that self-translate works better than solving the task directly in the original language. This demonstrates that multilingual language models are unable to leverage their full potential when prompted in non-English languages. We find this phenomenon to be consistent across tasks, and more prominent for large models and high-resource languages. All in all, our work reveals an important limitation of multilingual language models, and prompts for future work to unleash their full potential without the need for

Figure 2: Direct inference (top) vs. self-translate (bottom). In direct inference (standard) the task is solved by prompting the model in the original language. In self-translate (proposed), we first translate the input into English by prompting the same model, and then solve the task in English.
intermediate inference steps.

2 Experimental settings

We next describe our experimental design, and report additional details in Appendix A.

Models. We experiment with 7 models from 2 families: the $564 \mathrm{M}, 1.7 \mathrm{~B}, 2.9 \mathrm{~B}$ and 7.5 B models from XGLM (Lin et al., 2022), and the 7B, 13B and 30B models from LLaMA (Touvron et al., 2023a). XGLM has a multilingual focus and covers many languages, but is smaller in size and lags behind recent models in English. In contrast, LLaMA is primarily trained on English and is much stronger in this language, while also showing some multilingual capabilities. Appendix B reports additional results for BLOOM (Scao et al., 2023), LLaMA 2 (Touvron et al., 2023b), OpenLLaMA (Geng and Liu, 2023), OpenLLaMA V2 (Geng and Liu, 2023), Redpajama (Computer, 2023) and PolyLM (Wei et al., 2023).

Methods. As shown in Figure 2, we compare two methods for each model: direct inference, where we feed the original (non-English) input to the model, and self-translate, where we first translate the input into English using the model itself, and
then feed this translated input to the same model to solve the task. For translation, we do 4 -shot prompting using examples from the FLORES-200 dataset (Costa-jussà et al., 2022), prepending each sentence with its corresponding language name. We select the first sentences from the development set, skipping those that are longer than 100 characters. We use greedy decoding and translate each field in the input (e.g., the premise and hypothesis in XNLI) separately. For analysis, we additionally compare self-translate to using an external state-of-the-art MT system. To that end, we use the 3.3B NLLB-200 model (Costa-jussà et al., 2022).

Evaluation. We use the following tasks for evaluation: XCOPA (Ponti et al., 2020), a common sense reasoning task in 11 languages; XStoryCloze (Lin et al., 2022), a common sense reasoning task in 11 languages; XNLI (Conneau et al., 2018), a natural language inference task in 15 languages; PAWS-X (Yang et al., 2019), a paraphrase identification task in 7 languages; and MGSM (Shi et al., 2022), a mathematical reasoning task with grade school problems in 11 languages. For MGSM, we do 8 -shot evaluation with a chain-of-thought prompt, and extract the answer using a regular expression. The rest of the tasks are not generative,

Model	Size	Method	XStoryC	XCOPA	XNLI	PAWS-X	MGSM	Avg
XGLM	0.6B	Direct	53.5	54.9	39.4	48.4	1.7	39.6
		Self-translate	$52.8{ }_{(-0.8)}$	$53.4{ }_{(-1.5)}$	$41.5{ }_{(+2.1)}$	$50.6{ }_{(+2.2)}$	$1.4{ }_{(-0.3)}$	$39.9{ }_{(+0.3)}$
	1.7B	Direct	56.5	57.1	41.9	50.7	1.7	41.6
		Self-translate	$55.9{ }_{(-0.6)}$	$58.4{ }_{(+1.3)}$	$44.9{ }_{(+3.0)}$	$50.2{ }_{(-0.5)}$	$1.7{ }_{(+0.0)}$	$42.2{ }_{(+0.6)}$
	2.9B	Direct	58.2	58.5	43.0	50.8	1.4	42.4
		Self-translate	$58.2{ }_{(+0.0)}$	$62.5{ }_{(+4.0)}$	$46.2{ }_{(+3.2)}$	$53.2{ }_{(+2.4)}$	$1.6{ }_{(+0.2)}$	$44.3{ }_{(+1.9)}$
	7.5B	Direct	59.9	60.6	44.0	51.6	0.8	43.4
		Self-translate	$60.9{ }_{(+1.0)}$	$64.4{ }_{(+3.8)}$	$48.9{ }_{(+4.9)}$	$55.4{ }_{(+3.8)}$	$0.1{ }_{(-0.7)}$	$45.7{ }_{(+2.3)}$
LLaMA	7B	Direct	53.6	53.9	37.1	53.2	5.0	40.6
		Self-translate	$\mathbf{5 5 . 8}_{(+2.2)}$	$54.9{ }_{(+1.0)}$	$43.0{ }_{(+5.9)}$	$57.0{ }_{(+3.8)}$	$6.1{ }_{(+1.1)}$	$43.4{ }_{(+2.8)}$
	13B	Direct	54.8	54.7	34.2	49.5	7.4	40.1
		Self-translate	$57.7_{(+2.9)}$	$56.5_{(+1.8)}$	$35.1{ }_{(+0.9)}$	$52.1_{(+2.6)}$	$10.0{ }_{(+2.6)}$	$42.3{ }_{(+2.2)}$
	30B	Direct	56.7	55.2	37.0	50.9	15.5	43.1
		Self-translate	$59.0{ }_{(+2.3)}$	$58.4{ }_{(+3.2)}$	$43.5{ }_{(+6.5)}$	$55.6{ }_{(+4.7)}$	$16.3{ }_{(+0.8)}$	$46.6{ }_{(+3.5)}$

Table 1: Main results (accuracy). Task performance in terms of accuracy for different sizes of XGLM and LLaMA, using direct inference and self-translate. The last column shows the average accuracy over all tasks. We highlight the best results for each model and task in bold and show the difference between direct and self-translate.
so we feed each candidate in a zero-shot fashion and pick the one with the highest probability.

3 Results

Table 1 reports our main results, and Figure 1 visualizes the average accuracy of XGLM as a function of scale. Figure 3 compares the downstream performance and translation quality of self-translate and NLLB, grouped by low-resource and high-resource languages. Additional results are reported in Appendix B. We next summarize our main findings:

Self-translate outperforms direct inference. We find that self-translate works better than direct inference on average for all models. The results are also consistent across tasks, with only a few exceptions for the smaller XGLM models that can be explained by their lower translation capabilities. This proves that multilingual language models are more capable than immediately obvious in nonEnglish languages, but unveiling their full potential requires performing intermediate steps.

Multilingual language models do transfer capabilities across languages. One possible explanation for the previous finding is that language models acquire capabilities separately for each language, without any effective cross-lingual transfer. However, a closer comparison of LLaMA and XGLM refutes this hypothesis. In particular, we observe that LLaMA is much better than XGLM in MGSM despite being worse in other tasks. This is because MGSM is an emergent task (Wei et al., 2022), and

XGLM, being smaller and less capable, obtains near 0 accuracy. In contrast, LLaMA is more capable at solving math word problems, and it is able to leverage this capability even if prompted in other languages. The superior performance of self-translate shows that this cross-lingual transfer is not fully effective, but our results suggest that it does happen to a large extent.

Self-translate is more effective for high-resource languages and large models. Figure 1 shows that the gap between self-translate and direct inference gets larger at scale. Similarly, as shown by Table 1, it is the largest LLaMA model that obtains the biggest absolute gains over direct inference. At the same time, Figure 3 (top) shows that the effect of scale is bigger for high-resource languages and, for the largest model sizes, highresource languages benefit more from self-translate than low-resource languages. This suggests that the effectiveness of self-translate is not explained by the limited capacity of smaller models, and can be expected to increase at scale.

MT outperforms self-translate, but the gap narrows at scale. As shown by Figure 3 (top), NLLB performs better than self-translate, meaning that it can still be beneficial to use an external MT system. However, the gap narrows at scale, as the translation capabilities of the largest models approach NLLB (Figure 3, bottom). Given the recent claims that state-of-the-art multilingual language models are competitive with traditional MT systems (Vi-

Figure 3: Downstream (top) and MT (bottom) performance, grouped by low-resource (left) and high-resources (right) languages. For downstream, we report average accuracy over XStoryCloze, XCOPA and XNLI, which have the most language variety. Low- and high-resource languages follow Lin et al. (2022), merging the low and ex-low categories. For MT, we report COMET (Rei et al., 2022), using the target language text for each field in those datasets as the source, and the English text as the reference.
lar et al., 2023; Hendy et al., 2023), this suggests that stronger language models would not require an external MT system for best results.

4 Related work

Translate-test is a strong baseline in the traditional pretrain/finetune paradigm (Ponti et al., 2021; Artetxe et al., 2023). Early evidence shows that it is also effective for prompting autoregressive language models (Lin et al., 2022; Shi et al., 2022), as these models have irregular performance depending on the input language (Bang et al., 2023). Zhang et al. (2023b) propose a systematic way of qualifying the performance disparities of LLMs under multilingual settings, employing a novel back-translation-based prompting method. Recent work has shown that multilingual language models are good translators (Zhang et al., 2023a; Hendy et al., 2023; Vilar et al., 2023), which our ap-
proach exploits to replace the external MT system in translate-test. Concurrent to our work, Huang et al. (2023) propose a more complex prompting method that involves translating the input, but they only experiment with proprietary models and do not study the role of translation in isolation. Finally, Reid and Artetxe (2023) show that using synthetic parallel data from unsupervised MT can improve the performance of multilingual models, but they focus on pretraining seq2seq models.

5 Conclusion

We have proposed a new method called selftranslate, where we use a multilingual language model to translate the test data into English, and then feed the translated data to the same model to solve the task. Self-translate consistently outperfoms the standard direct inference approach, which directly feeds the test data in the original language.

Our approach does not involve any additional data or training, showing that language models are not able to leverage their full multilingual potential when prompted in non-English languages. In the future, we would like to explore training methods to mitigate this issue without the need of intermediate inference steps. Our code and data will be available upon acceptance.

Limitations

Despite consistently outperforming direct inference, self-translate is substantially slower due to the cost of the translation step.

Our goal was to study a fundamental limitation of multilingual language models, and we decided to use base models to that end. In practice, instructiontuned models would remove the need for few-shot prompts and make self-translate more efficient, as well as enabling to translate and solve the task in a single step.

Finally, all the datasets that we use were created through (human) translation, which can result in evaluation artifacts for methods involving machine translation (Artetxe et al., 2020). A more realistic scenario would be to use datasets that are natively written in different languages, but such datasets are scarce and not standard for evaluating autoregressive language models.

Acknowledgements

Julen is funded by a PhD grant from the Basque Government (PRE_2022_1_0047, PRE_2023_2_0060). This work is partially supported by projects DeepR3 TED2021-130295BC31, AWARE TED2021-131617B-I00, and DeepKnowledge PID2021-127777OB-C21 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR, as well as and the Basque Government (IXA excellence research group IT1570-22, IKER-GAITU 11:4711:23:410:23/0808) and the Spanish Ministry for Digital Transformation and of Civil Service Funded by EU - NextGenerationEU within the framework of the project ILENIA with reference 2022/TL22/00215335.

References

Kabir Ahuja, Rishav Hada, Millicent Ochieng, Prachi Jain, Harshita Diddee, Samuel Maina, Tanuja Ganu, Sameer Segal, Maxamed Axmed, Kalika Bali, et al.
2023. Mega: Multilingual evaluation of generative ai. arXiv.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. 2023. Palm 2 technical report. arXiv.

Mikel Artetxe, Vedanuj Goswami, Shruti Bhosale, Angela Fan, and Luke Zettlemoyer. 2023. Revisiting machine translation for cross-lingual classification. arXiv.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2020. Translation artifacts in cross-lingual transfer learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7674-7684, Online. Association for Computational Linguistics.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways. arXiv.

Together Computer. 2023. Redpajama: An open source recipe to reproduce llama training dataset.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. Xnli: Evaluating crosslingual sentence representations. arXiv.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. 2022. No language left behind: Scaling humancentered machine translation. arXiv.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2021. A framework for few-shot language model evaluation.

Xinyang Geng and Hao Liu. 2023. Openllama: An open reproduction of llama.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. 2023. How good are gpt models at machine translation? a comprehensive evaluation. arXiv.

Haoyang Huang, Tianyi Tang, Dongdong Zhang, Wayne Xin Zhao, Ting Song, Yan Xia, and Furu Wei. 2023. Not all languages are created equal in llms:

Improving multilingual capability by cross-lingualthought prompting. arXiv.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, and Xian Li. 2022. Few-shot learning with multilingual generative language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9019-9052, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and WeiJing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311-318.

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020. Xcopa: A multilingual dataset for causal commonsense reasoning. arXiv.

Edoardo Maria Ponti, Julia Kreutzer, Ivan Vulić, and Siva Reddy. 2021. Modelling latent translations for cross-lingual transfer. arXiv.

Ricardo Rei, José GC De Souza, Duarte Alves, Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova, Alon Lavie, Luisa Coheur, and André FT Martins. 2022. Comet-22: Unbabel-ist 2022 submission for the metrics shared task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 578-585.

Machel Reid and Mikel Artetxe. 2023. On the role of parallel data in cross-lingual transfer learning. In Findings of the Association for Computational Linguistics: ACL 2023, pages 5999-6006, Toronto, Canada. Association for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. 2023. Bloom: A 176bparameter open-access multilingual language model. arXiv.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022. Language models are multilingual chain-of-thought reasoners. arXiv.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023a. Llama: Open and efficient foundation language models. arXiv.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023b. Llama 2: Open foundation and fine-tuned chat models. arXiv.

David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo, Viresh Ratnakar, and George Foster. 2023. Prompting PaLM for translation: Assessing strategies and performance. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1540615427, Toronto, Canada. Association for Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Marten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. 2022. Emergent abilities of large language models. Transactions on Machine Learning Research. Survey Certification.

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei Cao, Binbin Xie, et al. 2023. Polylm: An open source polyglot large language model. arXiv.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge. 2019. Paws-x: A cross-lingual adversarial dataset for paraphrase identification. arXiv.

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023a. Prompting large language model for machine translation: A case study.

Xiang Zhang, Senyu Li, Bradley Hauer, Ning Shi, and Grzegorz Kondrak. 2023b. Don't trust chatgpt when your question is not in english: A study of multilingual abilities and types of llms. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7915-7927.

A Experimental details

In this section, we report additional experimental details that cover the evaluation library, task descriptions and prompts.

A. 1 Languages

We include all the languages available in each multilingual dataset, for a total of 27 languages. We divide the languages in three categories depending on the number of resources: high-resource, medium-resource and low-resource.

High-resource: Russian (ru), Chinese (zh), German (de), Spanish (es), French (fr), Japanese (ja).

Medium-resource: Italian (it), Portuguese (pt), Greek (el), Korean (ko), Finnish (fi), Indonesian (id), Turkish (tr), Arabic (ar), Vietnamese (vi), Thai (th), Bulgarian (bg), Catalan (ca).

Low-resource: Hindi (hi), Estonian (et), Bengali (bn), Tamil (ta), Urdu (ur), Swahili (sw), Telugu (te), Basque (eu), Burmese (my), Haitian Creole (ht), Quechua (qu).

A. 2 Evaluation library

We use LM Evaluation Harness (Gao et al., 2021) for evaluation. There were no multilingual tasks in the library, so we decided to add them so that our results can be replicated and extended to more models. For self-translate and MT, we define another evaluation task that uses a different dataset format. We created a fork of the evaluation library that includes these additional tasks, which will be available upon acceptance. All the translations generated with self-translate and MT will also be published.

A. 3 Prompts

For self-translate and MT, we used the same English prompts used in XGLM to evaluate most tasks (Table 2). For direct inference, we use multilingual prompts, which are already available in some datasets (e.g. MGSM). When multilingual prompts are not available, we create them by translating English prompts to each language, using Google Translate. Note that this is suboptimal because translations are generally not as good as native prompts. Another option would be to always use English prompts, but this is also unnatural because it adds English tokens in the middle of other languages. All the multilingual prompts are available in the evaluation library above.

B Additional results

In this section, we report additional results that cover direct vs. self-translate, self-translate vs. MT, results by language and translation metrics.

B. 1 Direct vs. self-translate

We include additional direct vs. self-translate results for BLOOM (Scao et al., 2023), LLaMA 2 (Touvron et al., 2023b), OpenLLaMA (Geng and Liu, 2023), OpenLLaMA V2 (Geng and Liu, 2023), Redpajama (Computer, 2023) and PolyLM (Wei et al., 2023). Similar to XGLM, BLOOM has a multilingual focus and covers many languages. The rest of the models are similar to LLaMA, which is primarily trained on English and is much stronger in this language, while also showing some multilingual capabilities. Table 3 shows the results as accuracy of the direct and self-translate methods
in all tasks for different models and sizes. Results resemble the ones obtained by XGLM and LLaMA in the main results, so we can conclude that selftranslate is consistent across different models.

B. 2 Self-translate vs. MT

We include additional self-translate vs. MT results for XGLM (Lin et al., 2022) and LLaMA (Touvron et al., 2023a). Table 4 shows task accuracy for different sizes of these models, using self-translate inference and MT. The last column shows the average accuracy over all tasks.

B. 3 Results by language

We include additional language results for XGLM (Lin et al., 2022) and LLaMA (Touvron et al., 2023a). Tables 5 to 9 show the results by language in different tasks, using different model sizes and the direct inference, self-translate, and MT methods. The last column shows the average accuracy over all languages except English.

B. 4 Translation metrics

We obtain similar results with BLEU (Papineni et al., 2002) and COMET (Rei et al., 2022) metrics. We report the average COMET and BLEU scores across all languages for NLLB, XGLM, BLOOM and LLaMA in Tables 10 and 11.

B. 5 Translation metrics by language

We report NLLB, XGLM, BLOOM and LLaMA COMET metrics for each language and task in Tables 12 to 16, and BLEU metrics in Tables 17 to 21 .

Task	Template	Candidate Verbalizer
XCOPA	cause: $\{$ Sentence 1\} because [Mask] effect: $\{$ Sentence 1\} therefore [Mask]	Identity
XStoryCloze	\{Context\} [Mask]	Identity
XNLI	\{Sentence 1\}, right? [Mask], \{Sentence 2\}	Entailment: Yes I Neutral: Also I Contradiction: No
PAWS-X	\{Sentence 1\}, right? [Mask], \{Sentence 2\}	True: Yes I False: No
MGSM	Question: \{Question\} Step-by-Step Answer:	None

Table 2: Handcrafted English prompts for multilingual tasks. The identity function maps each candidate choice to itself. In the case of MGSM there is no verbalizer, because the model generates an answer that is extracted with a regular expression.

Model	Size	Method	XStoryC	XCOPA	XNLI	PAWS-X	MGSM	Avg
BLOOM	0.6B	Direct	52.9	54.0	36.6	49.3	1.7	38.9
		Self-translate	52.9	51.0	41.4	48.4	1.5	39.0
	1.7B	Direct	55.2	55.1	39.2	47.0	2.3	39.8
		Self-translate	55.5	54.7	41.9	48.0	1.8	40.4
	3.0B	Direct	56.4	56.1	39.8	49.4	2.0	40.7
		Self-translate	57.2	56.7	44.1	52.1	2.1	42.4
	7.1B	Direct	58.2	56.9	40.7	50.2	3.2	41.8
		Self-translate	59.3	59.7	45.4	54.4	3.1	44.4
LLaMA 2	7B	Direct	55.6	56.7	39.2	57.9	1.8	42.2
		Self-translate	57.8	59.3	47.6	61.3	7.2	46.6
	13B	Direct	57.2	58.2	39.8	52.4	13.2	44.2
		Self-translate	59.9	61.3	46.0	55.2	19.2	48.3
RedPajama	3B	Direct	51.4	53.0	36.3	52.6	1.1	38.9
		Self-translate	52.3	53.1	41.8	56.8	1.4	41.1
	7B	Direct	53.3	52.5	38.2	54.5	2.0	40.1
		Self-translate	53.9	55.2	42.6	57.4	3.2	42.5
OpenLLaMA	3B	Direct	51.0	52.4	35.7	48.4	1.1	37.7
		Self-translate	53.4	52.5	39.7	53.1	1.9	40.1
	7B	Direct	52.4	52.9	37.0	51.8	1.9	39.2
		Self-translate	55.5	53.9	43.1	56.9	3.6	42.6
	13B	Direct	53.8	54.0	38.6	52.7	3.5	40.5
		Self-translate	55.4	56.0	44.2	58.0	5.3	43.8
OpenLLaMA V2	3B	Direct	52.2	53.7	36.8	49.0	2.2	38.8
		Self-translate	54.5	55.6	43.4	52.8	3.0	41.9
	7B	Direct	53.9	54.4	38.2	52.3	3.6	40.5
		Self-translate	55.7	56.9	44.6	56.2	5.7	43.8
PolyLM	1.7B	Direct	51.8	54.3	37.4	48.2	1.4	38.6
		Self-translate	52.6	53.2	40.6	49.4	1.6	39.5
	13B	Direct	56.3	58.9	41.4	55.0	4.4	43.2
		Self-translate	57.4	60.4	45.6	57.3	5.3	45.2

Table 3: Direct vs. self-translate. Task accuracy for different sizes of BLOOM, OpenLLaMA, OpenLLaMA V2, Redpajama and PolyLM, using direct inference and self-translate. The last column shows the average accuracy over all tasks. We highlight the best results for each model and task in bold.

Model	Size	Method	XStoryC	XCOPA	XNLI	PAWS-X	MGSM	Avg
XGLM	0.6B	Self-translate	52.8	53.4	41.5	50.6	1.4	39.9
		MT	57.3	59.8	46.3	51.7	1.1	43.2
	1.7B	Self-translate	55.9	58.4	44.9	50.2	1.7	42.2
		MT	60.7	62.3	47.4	51.2	2.3	44.8
	2.9B	Self-translate	58.2	62.5	46.2	53.2	1.6	44.3
		MT	62.3	65.3	48.8	55.7	2.2	46.9
	7.5B	Self-translate	60.9	64.4	48.9	55.4	0.1	45.9
		MT	63.6	66.3	50.7	57.4	0.0	47.6
LLaMA	7B	Self-translate	55.8	54.9	43.0	57.0	6.1	43.4
		MT	66.8	68.6	48.6	58.8	10.7	50.7
	13B	Self-translate	57.7	56.5	35.1	52.1	10.0	42.3
		MT	68.1	70.4	35.1	54.2	16.5	48.9
	30B	Self-translate	59.0	58.4	43.5	55.6	16.3	46.6
		MT	68.7	71.5	46.1	55.9	28.6	54.2

Table 4: Self-translate vs. MT. Task accuracy for different sizes of XGLM and LLaMA, using self-translate and MT. The last column shows the average accuracy over all tasks. We highlight the best results for each model and task in bold.

Model	Size	Method	ar	en	es	eu	hi	id	my	ru	sw	te	zh	avg
XGLM	0.6B	Direct	50.1	60.6	55.1	53.1	52.3	54.0	51.5	56.2	53.1	55.9	53.3	53.5
		Self-translate	52.2		53.1	54.0	53.5	53.6	52.3	53.9	52.1	53.0	50.0	52.8
		MT	58.1	-	57.2	55.7	57.4	57.9	55.2	58.8	56.5	59.5	56.8	57.3
	1.7B	Direct	52.5	64.3	59.2	56.1	55.8	58.0	53.8	59.8	56.0	58.0	56.2	56.5
		Self-translate	55.4		58.4	54.3	55.1	57.1	55.5	58.4	55.3	54.8	54.9	55.9
		MT	61.9	-	60.4	58.3	61.7	61.4	57.8	62.7	60.0	61.3	61.6	60.7
	2.9B	Direct	53.9	67.3	61.0	56.3	57.5	61.4	55.2	62.2	56.7	60.0	57.6	58.2
		Self-translate	56.3		61.3	56.9	58.3	60.4	57.6	59.7	57.9	56.3	57.8	58.2
		MT	63.0	-	63.2	61.2	63.3	62.9	58.8	64.7	60.0	62.8	63.0	62.3
	7.5B	Direct	56.2	69.8	64.1	57.7	58.8	62.9	57.1	63.5	59.3	60.2	58.9	59.9
		Self-translate	60.7	_	63.8	59.8	61.3	62.9	57.8	64.4	60.0	57.6	60.4	60.9
		MT	64.3	-	64.7	63.1	64.9	63.4	60.3	65.9	61.4	63.3	65.0	63.6
LLaMA	7B	Direct	48.3	74.8	65.1	50.1	52.7	52.1	48.7	61.4	50.4	52.9	54.3	53.6
		Self-translate	52.2		68.0	50.0	51.9	56.5	50.2	66.8	50.6	51.4	60.4	55.8
		MT	67.7	-	68.4	65.4	68.5	68.3	62.5	70.1	64.3	65.5	67.2	66.8
	13B	Direct	49.7	77.3	69.4	50.7	52.3	55.3	47.8	63.4	49.9	53.3	56.5	54.8
		Self-translate	55.2		72.1	50.8	53.7	59.3	51.8	70.4	48.4	51.8	63.2	57.7
		MT	68.6	-	70.0	66.4	70.0	69.0	62.8	71.7	66.0	67.7	69.1	68.1
	30B	Direct	50.9	78.2	70.8	51.4	56.7	59.2	48.8	66.7	50.6	53.2	58.6	56.7
		Self-translate	56.4		74.0	48.8	60.2	62.6	51.0	71.4	48.9	49.9	67.0	59.0
		MT	70.0	_	71.5	66.6	70.0	69.3	63.6	73.3	67.0	66.9	69.0	68.7

Table 5: XGLM and LLaMA results on XStoryCloze for each language. We show task accuracy for different sizes of these models, using direct inference self-translate and MT. The last column shows the average accuracy over all languages except English.

Model	Size	Method	et	ht	id	it	qu	sw	ta	th	tr	vi	zh	avg
XGLM	0.6B	Direct	55.6	55.0	57.2	53.8	49.2	53.2	56.2	55.2	54.4	58.4	55.6	54.9
		Self-translate	52.2	54.2	59.4	51.8	50.0	52.6	55.0	55.2	55.2	51.8	50.4	53.4
		MT	60.0	61.0	60.4	61.8	50.4	59.4	61.6	58.8	62.4	61.8	60.2	59.8
	1.7B	Direct	56.8	55.8	64.6	54.0	52.2	56.6	55.2	58.2	53.4	63.0	58.0	57.1
		Self-translate	59.0	57.0	60.6	60.0	50.8	57.8	58.8	58.4	60.8	61.0	58.4	58.4
		MT	65.6	62.8	63.4	65.6	50.4	62.2	63.8	61.0	63.8	64.0	62.6	62.3
	2.9B	Direct	58.2	55.8	66.8	60.2	50.2	58.8	54.2	57.0	56.6	65.2	60.0	58.5
		Self-translate	64.4	65.2	64.8	64.2	52.0	62.2	59.4	60.8	62.0	65.4	67.4	62.5
		MT	69.2	65.4	67.2	70.8	51.0	64.8	65.2	64.0	66.4	67.2	67.0	65.3
	7.5B	Direct	61.2	57.4	69.4	63.6	48.8	60.0	54.4	59.4	58.4	70.2	63.8	60.6
		Self-translate	66.8	64.6	66.8	68.4	51.0	62.8	65.6	62.8	65.4	65.2	68.6	64.4
		MT	71.8	64.8	67.6	72.8	50.4	66.8	67.4	62.0	69.8	68.6	67.6	66.3
LLaMA	7B	Direct	48.8	51.0	54.6	62.0	51.4	50.8	55.2	55.8	55.6	51.6	56.2	53.9
		Self-translate	54.2	51.2	59.4	73.8	48.4	52.8	47.6	50.8	51.6	47.8	66.0	54.9
		MT	72.6	68.2	71.0	75.4	52.2	67.4	70.2	62.2	72.6	71.2	71.6	68.6
	13B	Direct	48.2	52.8	57.8	67.2	50.2	51.2	54.4	54.6	53.0	53.8	58.4	54.7
		Self-translate	51.8	51.4	62.8	75.8	51.6	49.4	51.2	51.4	56.6	49.2	69.8	56.5
		MT	73.2	70.0	72.8	76.8	51.6	70.2	71.8	64.8	73.2	75.2	75.2	70.4
	30B	Direct	47.2	51.8	60.6	71.4	49.4	52.4	53.2	54.6	52.2	52.4	62.2	55.2
		Self-translate	50.4	53.0	68.0	79.0	49.4	50.2	52.8	48.6	59.8	58.4	73.2	58.4
		MT	75.2	71.2	73.2	80.6	52.6	70.6	72.2	64.6	74.2	75.0	76.8	71.5

Table 6: XGLM and LLaMA results on XCOPA for each language. We show task accuracy for different sizes of these models, using direct inference self-translate and MT. The last column shows the average accuracy over all languages.

Model	Size	Method	ar	bg	de	el	en	es	fr	hi	ru	sw	th	tr	ur	vi	zh	avg
XGLM	0.6B	Direct	33.4	41.3	44.5	39.6	48.3	42.0	45.5	38.7	44.6	36.1	38.8	40.2	34.5	38.5	33.5	39.4
		Self-translate	40.2	43.9	43.9	42.2		43.3	43.3	41.4	43.0	39.0	41.9	40.6	40.6	41.5	35.8	41.5
		MT	46.9	47.1	46.6	46.6		47.5	46.5	45.6	45.7	45.6	46.3	46.4	43.8	46.8	47.1	46.3
	1.7B	Direct	33.5	44.7	45.3	40.1	49.7	43.6	45.7	42.6	46.0	42.0	41.7	43.0	39.5	45.0	33.8	41.9
		Self-translate	44.2	46.8	47.0	46.1		45.9	46.8	44.1	45.7	43.8	44.0	42.7	42.0	44.7	44.3	44.9
		MT	47.3	47.8	48.8	48.1		48.5	48.6	47.1	47.2	45.9	46.5	48.3	44.2	48.6	47.3	47.4
	2.9B	Direct	33.7	46.0	48.3	41.4	51.1	46.7	45.0	44.0	45.3	44.4	42.0	45.0	40.1	46.0	34.8	43.0
		Self-translate	43.9	48.1	48.4	47.3		48.2	48.5	44.1	46.5	44.8	45.8	45.2	42.4	46.6	46.7	46.2
		MT	48.9	49.5	50.0	49.4		50.5	50.0	48.5	47.9	47.7	47.5	48.6	45.4	49.6	49.0	48.8
	7.5B	Direct	33.4	44.9	49.0	40.7	53.9	47.7	46.9	47.2	46.3	45.8	43.7	46.3	42.1	46.3	35.4	44.0
		Self-translate	47.0	51.6	50.4	50.7		51.8	51.6	46.8	50.0	47.3	47.4	47.5	44.5	48.9	48.6	48.9
		MT	50.6	51.8	51.8	51.6	-	52.8	52.1	51.0	50.5	48.7	48.6	51.8	46.9	50.2	51.2	50.7
LLaMA	7B	Direct	33.6	37.0	44.8	34.9	51.1	40.6	43.8	36.1	39.4	33.7	34.5	35.6	33.4	35.6	36.2	37.1
		Self-translate	40.7	48.7	50.6	43.5	_	49.8	49.5	39.7	48.0	34.8	36.3	38.0	36.4	39.9	46.1	43.0
		MT	48.6	49.3	49.9	50.1	-	50.4	50.1	48.5	48.3	46.5	46.4	48.0	45.5	49.2	49.3	48.6
	13B	Direct	34.1	34.1	35.3	34.8	35.7	33.4	33.4	35.5	34.1	33.0	34.5	34.0	34.3	34.0	34.4	34.2
		Self-translate	35.3	34.7	35.3	35.1	_	36.0	35.8	35.4	35.0	34.9	34.8	34.6	34.9	35.4	34.4	35.1
		MT	34.1	35.3	35.3	35.5	-	35.2	35.2	35.3	35.3	35.2	34.1	34.6	35.0	34.8	36.1	35.1
	30B	Direct	34.4	38.6	44.0	35.1	47.9	40.4	42.9	36.6	38.2	34.2	34.0	36.3	34.3	35.6	33.6	37.0
		Self-translate	42.2	47.6	47.7	44.8	-	48.1	47.8	41.4	47.3	37.3	37.4	42.0	38.9	41.6	44.3	43.5
		MT	46.2	46.4	47.3	46.9	-	47.7	47.4	45.7	46.3	44.8	45.0	45.3	43.8	46.5	46.6	46.1

Table 7: XGLM and LLaMA results on XNLI for each language. We show task accuracy for different sizes of these models, using direct inference self-translate and MT. The last column shows the average accuracy over all languages except English.

Model	Size	Method	de	en	es	fr	ja	ko	zh	avg
XGLM	0.6B	Direct	49.1	50.6	52.5	50.8	44.1	46.2	47.8	48.4
		Self-translate	51.1	-	50.1	50.3	50.9	50.4	51.0	50.6
		MT	53.5	_	52.8	51.0	51.2	50.4	51.2	51.7
	1.7B	Direct	57.6	52.6	53.8	47.3	46.1	51.4	48.1	50.7
		Self-translate	50.0	-	51.6	51.6	49.6	49.1	49.4	50.2
		MT	51.9	-	51.6	52.8	50.2	51.1	49.5	51.2
	2.9B	Direct	50.6	54.8	53.1	49.7	50.9	46.8	53.7	50.8
		Self-translate	54.9	-	53.9	54.2	52.1	51.6	52.7	53.2
		MT	56.5	-	57.0	56.2	54.8	54.5	55.4	55.7
	7.5B	Direct	55.9	58.9	52.8	51.8	52.0	46.0	51.3	51.6
		Self-translate	57.7	-	56.1	56.1	54.5	53.0	54.9	55.4
		MT	59.6	-	58.4	59.0	54.6	55.2	57.7	57.4
LLaMA	7B	Direct	54.6	61.9	56.1	52.9	56.7	49.7	49.1	53.2
		Self-translate	59.8	-	60.7	59.2	53.9	52.5	55.8	57.0
		MT	59.9	-	60.6	60.1	57.6	57.5	57.3	58.8
	13B	Direct	52.9	53.1	52.4	54.6	45.0	46.9	45.2	49.5
		Self-translate	52.9	-	52.5	52.9	51.2	51.6	51.5	52.1
		MT	53.6	-	54.4	53.8	55.3	54.4	53.8	54.2
	30B	Direct	58.4	58.5	56.0	52.5	46.6	45.6	46.2	50.9
		Self-translate	56.5	-	56.8	58.1	54.5	52.1	55.5	55.6
		MT	56.6	-	57.8	56.9	55.1	54.8	54.2	55.9

Table 8: XGLM and LLaMA results on PAWS-X for each language. We show task accuracy for different sizes of these models, using direct inference self-translate and MT. The last column shows the average accuracy over all languages except English.

Model	Size	Method	bn	de	en	es	fr	ja	ru	sw	te	th	zh	avg
XGLM	0.6B	Direct	1.2	0.8	2.0	1.2	1.6	4.0	0.4	2.4	0.4	1.6	3.2	1.7
		Self-translate	0.0	2.0	-	2.0	1.6	0.8	1.2	2.0	2.4	0.8	1.6	1.4
		MT	1.2	1.2	-	0.8	0.8	2.0	1.6	1.2	0.4	1.6	0.0	1.1
	1.7B	Direct	0.8	1.2	2.0	2.4	2.0	1.6	0.8	1.2	2.0	2.0	2.8	1.7
		Self-translate	1.2	2.0	_	2.8	1.6	2.4	2.8	1.2	1.2	0.8	1.2	1.7
		MT	2.0	2.4	-	2.0	0.8	2.8	2.0	2.8	3.2	2.8	2.4	2.3
	2.9B	Direct	0.0	0.8	2.4	2.0	1.2	2.0	2.0	2.0	2.0	0.8	1.2	1.4
		Self-translate	0.8	1.2	-	1.6	1.6	1.6	1.2	2.0	1.2	2.4	2.0	1.6
		MT	2.8	2.4	-	2.8	2.4	1.2	1.6	2.0	3.2	0.8	2.4	2.2
	7.5B	Direct	0.0	1.2	0.0	0.0	0.0	0.4	2.4	0.4	1.2	1.6	1.2	0.8
		Self-translate	0.0	0.4	-	0.0	0.0	0.0	0.4	0.0	0.4	0.0	0.0	0.1
		MT	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0
LLaMA	7B	Direct	0.0	9.6	13.6	10.4	8.8	5.2	10.0	2.0	0.0	0.0	4.4	5.0
		Self-translate	2.0	11.2	-	11.2	12.4	4.8	10.8	1.2	0.4	2.4	4.8	6.1
		MT	10.0	12.4	-	12.0	9.6	10.8	10.8	12.0	9.6	8.4	11.2	10.7
	13B				20.8			5.2			0.0	0.0		
		Self-translate	3.6	17.6		20.4	18.0	9.2	15.2	3.6	0.0	1.6	10.4	10.0
		MT	16.8	20.0	-	20.8	15.2	15.2	15.6	19.2	14.0	14.0	14.4	16.5
	30B	Direct	0.0	29.2	39.6	33.2	30.4	7.2	27.2	5.2	0.0	0.0	22.8	15.5
		Self-translate	8.0	34.4	-	9.6	24.4	20.8	29.6	6.4	0.4	3.6	25.6	16.3
		MT	28.4	32.4	-	31.2	35.2	29.2	26.4	32.0	25.6	20.0	25.6	28.6

Table 9: XGLM and LLaMA results on MGSM for each language. We show task accuracy for different sizes of these models, using direct inference self-translate and MT. The last column shows the average accuracy over all languages except English.

Model	Size	XStoryC	XCOPA	XNLI	PAWS-X	MGSM	Avg
	0.6 B	86.9	80.3	84.6	85.4	80.2	83.5
NLLB	1.3B	88.2	82.9	85.6	86.0	83.8	85.3
	1.3B	88.3	82.1	85.5	86.0	83.5	85.1
	3.3B	88.7	83.3	85.9	86.2	84.5	85.7
	0.6 B	63.4	61.3	66.2	66.0	54.7	62.3
XGLM	1.7 B	77.1	74.1	75.8	75.9	68.4	74.3
	2.9B	81.1	77.6	78.5	79.2	73.5	78.0
	7.5B	84.2	79.8	81.7	81.6	79.2	81.3
	0.6 B	61.5	54.0	63.6	60.6	48.2	57.6
BLOOM	1.7 B	73.6	61.9	67.4	72.1	61.7	67.3
	3B	76.3	63.3	69.5	74.7	69.1	70.6
	7.1B	78.8	66.4	73.1	78.8	74.5	74.3
	7B	66.8	59.4	71.5	80.9	66.0	68.9
LLaMA	13B	68.8	61.8	75.0	82.6	69.6	71.6
	30B	71.7	65.0	78.4	83.8	67.5	73.3

Table 10: COMET translation metrics for different models.

Model	Size	XStoryC	XCOPA	XNLI	PAWS-X	MGSM	Avg
	0.6 B	38.0	32.1	38.0	49.0	32.1	37.8
NLLB	1.3 B	40.6	36.6	40.3	51.3	41.3	42.0
	1.3 B	40.9	35.6	40.1	50.9	40.9	41.7
	3.3 B	41.8	37.6	41.5	51.9	43.7	43.3
	0.6 B	7.1	6.5	10.4	18.0	5.4	9.5
XGLM	1.7 B	18.5	18.1	20.3	28.3	17.1	20.5
	2.9 B	23.8	24.1	24.1	33.1	23.5	25.7
	7.5 B	29.0	28.4	28.8	37.0	28.3	30.3
	0.6 B	7.9	4.8	11.8	16.2	5.4	9.2
BLOOM	1.7 B	17.3	10.5	14.9	27.2	12.6	16.5
	3B	20.2	13.0	17.1	31.1	20.3	20.3
	7.1B	25.2	16.5	21.4	36.1	27.7	25.4
	7B	14.7	8.9	19.9	39.1	23.9	21.3
LLaMA	13B	17.7	12.4	24.1	42.5	27.9	24.9
	30B	21.2	15.4	27.7	45.4	25.5	27.0

Table 11: BLEU translation metrics for different models.

Model	Size	ru	zh	es	ar	hi	id	te	sw	eu	my	avg
	$0.6 B$	87.07	85.00	89.36	88.39	90.52	88.08	86.44	86.04	86.87	81.35	86.9
NLLB	1.3B	88.44	86.02	90.33	89.85	91.56	89.14	87.64	87.31	86.92	85.26	88.2
	$1.3 B$	88.18	86.36	90.22	89.83	91.39	89.05	87.30	87.21	87.25	85.99	88.3
	3.3B	88.63	87.54	90.54	90.36	91.70	89.54	88.00	87.46	86.92	86.60	88.7
	0.6 B	73.05	54.47	72.08	61.44	68.85	77.52	57.04	58.63	59.52	50.99	63.4
XGLM	1.7B	80.96	77.26	81.95	76.35	77.48	83.96	74.09	75.15	71.25	73.03	77.1
	2.9B	83.36	82.11	85.61	79.84	82.99	85.66	75.43	79.71	79.32	77.47	81.1
	7.5B	85.76	84.25	87.81	83.81	86.25	87.60	80.66	82.92	82.05	81.36	84.2
	$0.6 B$	43.20	70.47	73.65	72.18	73.40	79.31	58.06	42.03	55.73	47.25	61.5
BLOOM	1.7B	60.47	82.81	85.44	80.40	81.05	85.06	72.48	66.06	71.98	50.69	73.6
	3B	63.44	84.45	87.16	82.20	83.16	85.72	75.11	71.03	76.99	53.68	76.3
	7.1B	68.97	86.63	88.42	84.68	86.76	87.87	78.86	75.15	80.88	49.80	78.8
	7B	85.66	79.10	88.56	65.12	67.96	77.08	50.39	52.14	49.66	52.55	66.8
LLaMA	13B	87.02	82.66	89.37	70.64	72.86	81.15	48.62	53.14	51.36	51.17	68.8
	30B	87.98	84.37	90.13	77.37	81.64	84.55	49.38	59.99	52.50	49.04	71.7

Table 12: XStoryCloze COMET translation metrics for different models.

| Model | Size | et | ht | it | id | qu | sw | zh | ta | th | tr | vi | avg |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | $0.6 B$ | 82.78 | 75.42 | 86.49 | 85.23 | 62.17 | 79.74 | 84.66 | 83.93 | 76.30 | 84.54 | 81.97 | 80.3 |
| NLLB | 1.3B | 86.57 | 78.88 | 88.95 | 87.44 | 64.26 | 82.01 | 87.07 | 86.50 | 78.79 | 86.97 | 84.29 | 82.9 |
| | $1.3 B$ | 85.38 | 77.84 | 88.50 | 86.86 | 62.97 | 81.43 | 86.44 | 85.79 | 77.72 | 86.31 | 83.55 | 82.1 |
| | $3.3 B$ | 86.76 | 79.16 | 89.16 | 87.56 | 63.87 | 82.08 | 87.85 | 86.60 | 80.10 | 87.42 | 85.23 | 83.3 |
| | $0.6 B$ | 68.27 | 58.08 | 65.79 | 73.98 | 34.54 | 54.72 | 50.21 | 64.52 | 71.24 | 64.44 | 68.33 | 61.3 |
| XGLM | $1.7 B$ | 78.78 | 67.84 | 79.09 | 81.47 | 50.98 | 69.01 | 80.06 | 77.22 | 77.88 | 74.84 | 77.87 | 74.1 |
| | 2.9B | 83.16 | 71.97 | 82.96 | 84.22 | 50.82 | 74.41 | 83.93 | 79.67 | 81.37 | 78.98 | 82.23 | 77.6 |
| | 7.5B | 85.49 | 72.47 | 85.19 | 86.04 | 55.33 | 77.29 | 85.41 | 83.47 | 82.36 | 81.38 | 83.61 | 79.8 |
| | $0.6 B$ | 41.78 | 41.47 | 48.71 | 75.73 | 37.32 | 40.93 | 75.23 | 65.09 | 42.51 | 50.09 | 75.22 | 54.0 |
| BLOOM | $1.7 B$ | 45.41 | 46.04 | 65.38 | 82.57 | 45.08 | 58.94 | 84.71 | 76.72 | 46.41 | 48.74 | 81.43 | 61.9 |
| | 3B | 46.22 | 48.21 | 70.61 | 83.61 | 43.38 | 63.68 | 86.20 | 80.41 | 43.01 | 47.86 | 83.56 | 63.3 |
| | 7.1B | 47.93 | 50.22 | 75.59 | 86.24 | 47.02 | 67.57 | 87.99 | 83.99 | 47.90 | 50.54 | 85.17 | 66.4 |
| | 7B | 51.26 | 48.89 | 85.89 | 70.59 | 49.65 | 50.03 | 80.04 | 49.16 | 53.79 | 59.32 | 54.76 | 59.4 |
| LLaMA | 13B | 52.17 | 49.01 | 87.22 | 75.13 | 48.00 | 50.14 | 83.16 | 49.02 | 58.65 | 67.93 | 59.71 | 61.8 |
| | 30B | 55.41 | 52.29 | 88.42 | 79.85 | 48.48 | 54.73 | 85.10 | 52.96 | 59.66 | 71.51 | 66.20 | 65.0 |

Table 13: XCOPA COMET translation metrics for different models.

| Model | Size | ar | bg | de | el | es | fr | hi | ru | sw | th | tr | avg | | | |
| :--- | ---: |
| | $0.6 B$ | 83.91 | 86.05 | 87.17 | 87.14 | 88.19 | 87.09 | 85.53 | 82.75 | 80.69 | 82.53 | 85.94 | 80.09 | 85.02 | 82.64 | 84.6 |
| NLLB | $1.3 B$ | 85.27 | 86.97 | 88.16 | 88.04 | 88.74 | 87.84 | 86.38 | 83.78 | 82.06 | 83.71 | 87.08 | 81.13 | 86.03 | 83.52 | 85.6 |
| | $1.3 B$ | 84.92 | 86.91 | 88.00 | 88.02 | 88.73 | 87.82 | 86.22 | 83.66 | 81.82 | 83.37 | 86.92 | 81.06 | 85.84 | 83.63 | 85.5 |
| | $3.3 B$ | 85.38 | 87.19 | 88.29 | 88.40 | 88.97 | 88.07 | 86.74 | 84.05 | 82.22 | 84.22 | 87.40 | 81.53 | 86.31 | 84.47 | 85.9 |
| | $0.6 B$ | 60.80 | 73.87 | 73.76 | 71.82 | 72.89 | 74.99 | 64.73 | 69.33 | 57.49 | 65.94 | 62.75 | 60.62 | 65.27 | 52.02 | 66.2 |
| XGLM | $1.7 B$ | 72.72 | 80.62 | 80.64 | 81.78 | 80.82 | 80.95 | 72.41 | 76.01 | 69.78 | 76.53 | 72.42 | 67.55 | 76.38 | 73.10 | 75.8 |
| | 2.9B | 75.17 | 82.24 | 83.02 | 83.77 | 82.63 | 82.55 | 77.06 | 78.67 | 73.39 | 77.61 | 75.16 | 71.51 | 79.16 | 77.66 | 78.5 |
| | $7.5 B$ | 79.66 | 84.69 | 85.78 | 85.73 | 85.97 | 85.55 | 80.19 | 81.00 | 77.22 | 81.23 | 79.88 | 74.83 | 81.87 | 79.85 | 81.7 |
| | $0.6 B$ | 74.45 | 47.03 | 63.00 | 46.67 | 82.34 | 82.67 | 74.18 | 48.84 | 53.88 | 46.89 | 49.18 | 66.12 | 78.31 | 76.58 | 63.6 |
| | $1.7 B$ | 77.11 | 51.94 | 67.78 | 50.11 | 84.05 | 84.46 | 76.28 | 61.11 | 62.78 | 49.06 | 50.15 | 69.20 | 80.43 | 78.53 | 67.4 |
| BLOOM | 3B | 79.00 | 53.83 | 72.10 | 52.79 | 85.41 | 85.44 | 78.44 | 65.10 | 68.50 | 48.98 | 49.89 | 71.53 | 82.09 | 80.02 | 69.5 |
| | 7.1B | 81.29 | 61.50 | 78.12 | 58.62 | 86.95 | 86.78 | 81.33 | 70.10 | 72.72 | 51.97 | 53.47 | 74.65 | 83.44 | 82.21 | 73.1 |
| | 7B | 66.76 | 83.89 | 86.57 | 72.61 | 86.94 | 86.65 | 66.69 | 81.54 | 51.36 | 58.09 | 64.03 | 54.27 | 62.59 | 78.32 | 71.5 |
| LLaMA | 13B | 72.16 | 85.07 | 87.45 | 77.56 | 87.82 | 87.32 | 72.59 | 82.65 | 53.52 | 63.76 | 72.12 | 59.76 | 68.36 | 80.35 | 75.0 |
| | 30B | 77.03 | 86.36 | 88.14 | 82.33 | 88.32 | 87.78 | 78.50 | 83.40 | 60.13 | 66.14 | 76.34 | 67.02 | 74.72 | 81.74 | 78.4 |

Table 14: XNLI COMET translation metrics for different models.

Model	Size	de	es	fr	ja	ko	zh	avg
	$0.6 B$	87.06	87.60	87.31	82.93	84.59	82.73	85.4
NLLB	1.3B	87.26	87.81	87.55	84.24	85.46	83.84	86.0
	1.3B	87.33	87.87	87.59	84.19	85.15	83.58	86.0
	3.3B	87.38	87.91	87.66	84.38	85.67	84.16	86.2
XGLM	$0.6 B$	74.77	74.42	76.62	55.72	61.30	53.28	66.0
	1.7B	81.66	82.19	82.06	68.13	72.94	68.66	75.9
	2.9B	83.38	83.78	83.72	73.40	76.78	74.16	79.2
	7.5B	84.96	85.34	85.41	77.03	80.24	76.53	81.6
	$0.6 B$	60.17	74.43	76.62	49.91	38.58	63.76	60.6
	1.7B	74.49	83.75	84.28	63.20	51.49	75.14	72.1
	3B	78.48	85.31	85.35	68.30	53.03	77.74	74.7
	7.1B	82.27	86.42	86.50	73.90	63.02	80.72	78.8
	7B	85.97	86.47	86.16	76.41	75.19	74.98	80.9
LLaMA	13B	86.28	86.77	86.65	79.96	78.81	77.40	82.6
	30B	86.64	87.26	86.99	81.35	81.29	79.34	83.8

Table 15: PAWS-X COMET translation metrics for different models.

Model	Size	es	fr	de	ru	zh	ja	th	sw	bn	te	avg
	$0.6 B$	83.35	81.43	83.48	78.24	79.93	77.46	75.73	77.38	82.09	83.17	80.2
NLLB	$1.3 B$	85.87	84.95	86.28	82.53	81.98	83.34	78.59	82.22	86.59	85.94	83.8
	$1.3 B$	85.47	84.44	85.72	81.47	82.34	84.20	78.43	82.18	86.18	84.72	83.5
	3.3B	86.11	85.03	86.31	82.37	83.50	84.37	80.86	83.11	86.98	86.46	84.5
	$0.6 B$	61.85	63.52	66.69	58.59	52.41	50.28	52.25	45.19	49.66	46.16	54.7
XGLM	$1.7 B$	77.49	74.92	77.79	71.00	64.53	64.92	68.06	63.58	58.97	62.38	68.4
	2.9B	81.03	79.37	81.37	77.40	69.27	74.94	70.80	71.23	65.38	64.14	73.5
	7.5B	83.08	81.77	83.00	79.92	77.53	79.17	77.06	76.18	77.61	77.03	79.2
	$0.6 B$	64.35	64.33	42.94	34.70	61.24	40.60	32.91	37.54	56.54	47.12	48.2
BLOOM	$1.7 B$	71.25	74.20	64.94	51.54	72.33	59.10	41.21	52.78	68.19	61.26	61.7
	3B	83.14	83.27	72.70	61.37	77.96	66.53	42.30	61.34	74.30	67.71	69.1
	7.1B	85.39	84.36	78.50	66.82	82.18	74.39	43.42	70.81	82.77	76.45	74.5
	7B	73.82	83.28	85.25	81.04	78.29	78.41	51.07	47.93	49.61	31.69	66.0
LLAMA	13B	79.72	85.36	84.27	83.05	80.52	81.41	58.73	54.15	57.64	31.44	69.6
	30B	48.21	71.07	86.85	78.93	82.97	80.89	62.67	63.28	67.77	31.88	67.5

Table 16: MGSM COMET translation metrics for different models.

Model	Size	ru	zh	es	ar	hi	id	te	sw	eu	my	avg
	$0.6 B$	40.98	30.04	47.98	49.46	45.07	38.44	29.45	41.51	35.24	22.00	38.0
NLLB	$1.3 B$	44.12	30.57	50.52	53.09	48.62	40.98	32.19	43.86	33.77	28.18	40.6
	$1.3 B$	43.22	32.07	50.42	52.91	48.08	41.13	31.39	44.17	35.63	29.94	40.9
	3.3B	44.59	34.80	51.33	54.80	49.16	42.27	33.09	45.00	33.55	29.69	41.8
	$0.6 B$	15.67	1.54	14.36	6.16	7.52	16.92	1.28	3.82	2.81	0.67	7.1
XGLM	1.7B	25.62	16.08	28.64	21.40	16.22	26.07	10.46	21.17	11.38	7.94	18.5
	2.9B	29.08	21.68	36.22	26.32	24.91	28.86	11.37	27.19	20.04	12.40	23.8
	7.5B	34.40	25.20	40.85	34.45	30.32	33.59	17.05	33.48	23.33	16.84	29.0
	$0.6 B$	0.37	9.67	20.55	14.70	9.94	19.55	1.93	0.43	1.96	0.11	7.9
	BLOOM	1.7 B	9.03	22.26	35.84	26.14	18.45	27.74	9.01	12.67	11.56	0.06
	3B	11.42	25.12	39.51	28.93	22.60	29.62	11.11	18.32	15.80	0.07	20.2
	7.1B	16.37	30.53	43.21	35.44	31.19	34.16	15.07	23.71	22.27	0.10	25.2
	7B	36.15	20.08	43.75	11.84	10.27	21.49	0.11	2.12	0.78	0.07	14.7
LLaMA	13B	39.22	25.29	45.85	18.78	15.92	27.28	0.18	3.10	1.20	0.07	17.7
	30B	41.26	27.88	47.42	27.04	26.12	33.00	0.32	7.77	1.35	0.06	21.2

Table 17: XStoryCloze BLEU translation metrics for different models.

Model	Size	et	ht	it	id	qu	sw	zh	ta	th	tr	vi	avg
NLLB	0.6B	39.07	33.85	45.88	33.15	9.26	32.29	35.16	32.33	21.23	37.66	32.81	32.1
	1.3B	45.42	40.40	51.01	37.41	12.02	35.57	38.20	37.47	24.75	42.61	37.47	36.6
	1.3B	43.75	38.26	50.93	37.22	10.48	35.39	38.52	37.36	23.36	40.93	35.67	35.6
	3.3B	45.57	40.42	52.45	38.12	11.38	36.91	42.42	38.34	26.36	43.06	38.90	37.6
XGLM	0.6B	12.08	9.37	10.06	12.99	0.35	2.96	0.92	2.29	7.67	4.62	8.73	6.5
	1.7B	25.29	20.36	28.12	23.88	1.16	15.62	22.94	12.69	12.80	15.54	20.31	18.1
	2.9B	34.93	25.21	32.88	27.51	1.91	21.70	29.21	17.77	22.52	22.32	29.36	24.1
	7.5B	39.55	28.41	40.18	31.90	4.11	27.25	32.50	25.27	24.79	26.41	32.14	28.4
BLOOM	0.6B	0.09	0.22	2.40	16.07	0.17	0.11	13.70	4.35	0.08	0.10	15.63	4.8
	1.7B	0.24	0.59	13.94	25.17	0.37	6.59	28.91	12.37	0.08	0.20	27.26	10.5
	3B	0.29	1.39	19.83	27.15	0.31	10.67	34.77	18.77	0.13	0.20	29.82	13.0
	7.1B	0.76	2.88	26.80	32.87	0.48	15.72	39.41	26.92	0.18	0.70	34.91	16.5
LLaMA	7B	2.02	1.55	41.18	15.44	0.59	1.00	25.01	0.16	1.86	5.15	3.98	8.9
	13B	3.19	3.10	44.11	22.01	0.54	1.49	32.41	0.14	6.06	14.36	8.48	12.4
	30B	5.67	5.67	48.64	26.64	1.10	5.20	35.41	0.68	6.62	18.91	14.96	15.4

Table 18: XCOPA BLEU translation metrics for different models.

| Model | Size | ar | bg | de | el | es | fr | hi | ru | sw | th | tr | ur | vi | avg | | |
| :--- | ---: |
| | $0.6 B$ | 37.99 | 41.39 | 44.65 | 46.13 | 50.92 | 45.09 | 38.09 | 31.41 | 34.09 | 28.16 | 36.28 | 30.61 | 39.10 | 27.71 | 38.0 | |
| NLLB | $1.3 B$ | 41.09 | 43.80 | 46.97 | 48.54 | 53.02 | 47.17 | 40.78 | 33.49 | 36.30 | 30.00 | 39.24 | 32.84 | 41.81 | 29.48 | 40.3 | |
| | $1.3 B$ | 40.56 | 43.62 | 46.69 | 48.37 | 53.05 | 46.81 | 40.40 | 33.36 | 36.45 | 29.90 | 39.00 | 32.28 | 41.41 | 29.52 | 40.1 | |
| | $3.3 B$ | 42.19 | 45.08 | 47.66 | 50.05 | 53.80 | 47.73 | 41.73 | 33.98 | 37.89 | 31.35 | 40.61 | 33.86 | 43.20 | 31.31 | 41.5 | |
| | $0.6 B$ | 5.54 | 17.83 | 19.91 | 14.67 | 17.56 | 20.52 | 5.91 | 12.07 | 4.97 | 7.25 | 4.38 | 4.50 | 8.85 | 1.67 | 10.4 | |
| XGLM | $1.7 B$ | 16.34 | 27.20 | 30.30 | 30.86 | 31.54 | 29.73 | 12.77 | 18.83 | 16.63 | 15.23 | 11.78 | 9.81 | 21.11 | 12.36 | 20.3 | |
| | 2.9B | 19.63 | 30.91 | 34.54 | 35.14 | 34.76 | 32.98 | 17.96 | 22.45 | 20.83 | 17.68 | 15.09 | 13.58 | 24.71 | 16.84 | 24.1 | |
| | $7.5 B$ | 26.52 | 35.23 | 38.80 | 39.16 | 41.56 | 38.93 | 22.09 | 25.91 | 26.29 | 22.56 | 19.71 | 17.61 | 29.08 | 19.80 | 28.8 | |
| | $0.6 B$ | 17.71 | 1.35 | 12.21 | 1.08 | 33.99 | 33.08 | 12.62 | 2.10 | 4.35 | 0.92 | 0.90 | 7.53 | 22.30 | 14.71 | 11.8 | |
| | BLOOM | $1.7 B$ | 21.61 | 3.34 | 16.19 | 2.71 | 37.73 | 36.64 | 15.36 | 8.77 | 10.58 | 1.07 | 1.21 | 10.26 | 26.12 | 16.82 | 14.9 |
| | 3B | 24.10 | 4.43 | 19.05 | 4.42 | 40.60 | 38.84 | 17.61 | 11.22 | 15.99 | 1.48 | 1.35 | 12.46 | 28.96 | 19.12 | 17.1 | |
| | 7.1B | 29.03 | 9.79 | 28.06 | 8.66 | 45.07 | 42.44 | 22.74 | 15.50 | 21.16 | 2.53 | 3.08 | 16.73 | 31.94 | 23.17 | 21.4 | |
| | 7B | 12.20 | 34.86 | 40.86 | 21.27 | 45.28 | 41.66 | 8.71 | 27.39 | 4.21 | 4.52 | 7.48 | 2.47 | 9.31 | 18.84 | 19.9 | |
| LLaMA | 13B | 18.52 | 37.83 | 43.71 | 28.47 | 47.70 | 44.06 | 14.83 | 29.60 | 5.95 | 8.62 | 14.10 | 5.78 | 15.83 | 21.96 | 24.1 | |
| | 30B | 23.77 | 40.77 | 45.77 | 35.73 | 49.45 | 45.64 | 21.00 | 31.00 | 9.46 | 9.96 | 18.75 | 10.62 | 21.48 | 24.90 | 27.7 | |

Table 19: XNLI BLEU translation metrics for different models.

Model	Size	de	es	fr	ja	ko	zh	avg
	$0.6 B$	59.41	64.80	61.18	33.09	38.52	36.94	49.0
NLLB	$1.3 B$	60.52	65.56	62.66	37.53	41.48	40.08	51.3
	$1.3 B$	60.66	65.72	62.52	36.80	40.77	38.89	50.9
	3.3B	61.19	66.02	62.91	38.12	41.97	41.21	51.9
	$0.6 B$	30.41	31.70	34.00	2.89	5.64	3.42	18.0
XGLM	$1.7 B$	44.35	47.33	43.03	9.13	14.64	11.34	28.3
	2.9B	48.69	51.59	48.39	14.21	19.19	16.79	33.1
	$7.5 B$	51.22	54.58	53.12	18.27	24.89	20.09	37.0
	$0.6 B$	15.95	33.98	34.67	2.79	1.06	8.69	16.2
BLOOM	$1.7 B$	32.25	50.68	49.56	7.38	5.61	17.85	27.2
	3B	39.59	54.56	53.02	11.09	6.83	21.66	31.1
	7.1B	45.61	58.41	56.59	15.89	12.61	27.48	36.1
	7B	56.24	59.61	56.48	20.55	21.77	19.70	39.1
LLaMA	13B	57.36	61.05	58.86	26.16	26.98	24.52	42.5
	30B	59.61	63.07	60.47	30.07	31.75	27.48	45.4

Table 20: PAWS-X BLEU translation metrics for different models.

Model	Size	es	fr	de	ru	zh	ja	th	sw	bn	te	avg
	0.6 B	48.34	34.85	44.57	31.39	28.14	17.99	17.37	34.62	28.58	34.68	32.1
NLLB	1.3 B	57.94	44.44	54.21	45.11	33.23	29.69	19.62	46.91	40.80	41.54	41.3
	1.3 B	56.78	44.00	52.64	42.11	33.91	33.51	19.83	47.51	39.82	38.45	40.9
	$3.3 B$	57.91	44.26	53.41	44.85	38.44	35.59	24.30	51.37	42.89	44.02	43.7
	0.6 B	12.94	11.30	15.94	7.53	1.77	0.82	1.22	1.27	0.77	0.60	5.4
XGLM	1.7 B	36.77	24.31	33.33	23.89	8.26	6.14	9.32	16.76	5.43	6.50	17.1
	2.9B	44.50	32.70	40.77	33.20	13.25	14.41	10.71	24.70	11.80	9.28	23.5
	7.5B	45.04	33.37	41.55	34.70	20.75	20.09	18.44	31.32	19.11	18.63	28.3
	$0.6 B$	19.40	13.29	4.75	0.38	7.83	1.14	0.06	0.67	4.33	1.97	5.4
BLOOM	1.7 B	28.14	25.34	17.91	9.39	15.72	5.40	0.14	7.56	9.10	7.23	12.6
	3B	47.91	37.39	27.37	16.90	22.32	9.92	0.08	15.02	15.92	10.25	20.3
	7.1B	54.44	41.80	35.30	23.42	29.46	15.98	0.36	29.03	27.69	19.46	27.7
	7B	44.51	41.92	51.04	43.48	25.82	20.86	2.86	5.77	3.02	0.00	23.9
LLaMA	13B	53.27	44.99	52.85	47.92	29.82	26.69	6.26	9.66	7.61	0.00	27.9
	30B	14.17	33.08	56.09	45.29	35.58	30.84	8.40	17.40	14.19	0.00	25.5

Table 21: MGSM BLEU translation metrics for different models.

