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Abstract
Exploring the application of powerful large
language models (LLMs) on the named en-
tity recognition (NER) task has drawn much
attention recently. This work pushes the perfor-
mance boundary of zero-shot NER with LLMs
by proposing a training-free self-improving
framework, which utilizes an unlabeled corpus
to stimulate the self-learning ability of LLMs.
First, we use the LLM to make predictions
on the unlabeled corpus using self-consistency
and obtain a self-annotated dataset. Second,
we explore various strategies to select reliable
annotations to form a reliable self-annotated
dataset. Finally, for each test input, we retrieve
demonstrations from the reliable self-annotated
dataset and perform inference via in-context
learning. Experiments on four benchmarks
show substantial performance improvements
achieved by our framework. Through compre-
hensive experimental analysis, we find that in-
creasing the size of unlabeled corpus or itera-
tions of self-improving does not guarantee fur-
ther improvement, but the performance might
be boosted via more advanced strategies for
reliable annotation selection.1

1 Introduction

There have been many works exploring new pos-
sibilities of the named entity recognition (NER)
task in the era of large language models (LLMs)
(OpenAI, 2022; Touvron et al., 2023; Chowdhery
et al., 2022) recently. These studies include de-
signing advanced prompting methods for zero-shot
prediction or few-shot in-context learning (ICL)
(Wei et al., 2023b; Wang et al., 2023; Xie et al.,
2023; Li et al., 2023b), training task-specific LLMs
for NER (Zhou et al., 2023; Sainz et al., 2023),
and generating data with LLMs to train small spe-
cific models (Zhang et al., 2023; Ma et al., 2023;
Josifoski et al., 2023).

∗Corresponding authors.
1Code and data are publicly available: https://github.

com/Emma1066/Self-Improve-Zero-Shot-NER

In this work, we explore the possibility of push-
ing the performance boundary of zero-shot NER
with LLMs via self-improving. We focus on the
strict zero-shot scenarios where no annotated data
is available but only an unlabeled corpus is acces-
sible, and no training resource or auxiliary models
are available. We propose a totally training-free
self-improving framework for NER, which utilizes
an unlabeled corpus to stimulate the self-learning
ability of LLMs. The framework consists of the
following three steps. (1) Step 1: we use LLMs
to self-annotate the unlabeled corpus using self-
consistency (SC, Wang et al., 2022). Each anno-
tated entity is associated with a SC score, which
is used as the measure of the reliability of this an-
notation. (2) Step 2: we select reliable annotation
to form a reliable self-annotated dataset, during
which diverse annotation selection strategies are
explored, including entity-level threshold filtering,
sample-level threshold filtering and two-stage ma-
jority voting. (3) Step 3: for each arrived test input,
we perform inference via ICL with demonstrations
from the reliable self-annotated dataset. Various
strategies for demonstration retrieval are explored.

Our contributions include: (1) We proposed a
training-free self-improving framework for zero-
shot NER with LLMs. (2) This framework
achieved significant performance improvements
on four benchmarks. (3) We conduct comprehen-
sive experimental analysis, finding that increas-
ing the size of unlabeled corpus or iterations of
self-annotating does not guarantee gains, but there
might be room for improvements with more ad-
vanced strategies for reliable annotation selection.

2 Zero-Shot NER with Self-Improving

Motivation. To push the performance boundary
of zero-shot NER with LLMs, we propose a self-
improving framework under a strict zero-shot and
low-resource setting: No annotated data but only an
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Entity-level threshold filtering：
Text: right now we 're also waiting to hear from the president at the white house .
Answer: [{'white house': 'Location'} (2 votes), {'white house': 'Facility'} (3 votes), {‘president': 'Person'} (5 votes)]

… … (Other annotation selection strategies)

Reliable self-annotated data

Text: right now we 're also waiting to hear from the president at the white house .
Answer: [{'white house': 'Facility'}, {‘president': 'Person'}]

… … (more pseudo-demonstrations)

Self-annotated demonstrations

Text: Our Jamie McIntyre our senior military affairs correspondent is with us now .
Answer: 

Test input

Given entity label set: ['Person', 'Organization', 'Location', 'Facility', 'Weapon', 'Vehicle', 
'Geo-Political Entity']. Please recognize the named entities in the given text.  
 
Text: Right now we 're also waiting to hear from the president at the white house .
Answer:

Prompt of zero-shot self-annotating

Prompt of inference with self-annotated demonstrations
Given entity label set: ['Person', 'Organization', 'Location', 'Facility', 'Weapon', 'Vehicle', 'Geo-Political Entity’].
Please recognize the named entities in the given text.

Unlabeled 
data

Demonstration
retrieval

Step 1:
Zero-Shot
Self-
Annotating

Step 2:
Reliable 
Annotation
Selection

Step 3:
Inference with
Self-Annotated 
Demonstration

Self-consistency

Figure 1: The overview of the proposed self-improving framework for zero-shot NER with LLM.

unlabeled corpus is available; No auxiliary model
or training step is required. This study is orthog-
onal to previous prompt designing works, as any
advanced prompting method can be applied to this
framework. Fig. 1 shows the framework overview.
Task Formulation. Given an input sentence x,
the NER task is to recognize the structure output
y from x, which consists of a set of (e, t) pairs. e
is an entity span, which is a sequence of tokens
form x; t is the corresponding entity type, which
belongs to a predefined entity type set.

2.1 Step 1: Zero-Shot Self-Annotating

We assume an unlabeled corpus U = {xi}ni=1 is
available. We use the training set without labels
as the unlabeled dataset in this work. For un-
labeled sample xi, we generate predictions with
LLMs via zero-shot prompting, as shown in up-
per part of Fig. 1. This process is formulated as
yi = argmaxy P (y|T, xi), where T is the task
instruction of NER, and yi = {(eji , t

j
i )}mj=1. We

apply self-consistency (SC) (Wang et al., 2022) to
obtain a SC score for each prediction, which will be
used in step 2 for reliable annotation selection. We
sample multiple answers from the model, and the
vote for each predicted entity (eji , t

j
i ) is the times it

appeared in all the sampled answers, which we de-
noted as entity-level SC score cji . Then we get the
sample-level SC score ci for each input sentence xi
by taking the average SC score over all predicted
entities in this sentence, i.e., ci = 1

m

∑
j c

j
i . For

each self-annotated sample with SC scores, we can
denote it as (xi, {(eji , t

j
i , c

j
i )}mj=1, ci).

2.2 Step 2: Reliable Annotation Selection
We assume that a higher SC score indicates a higher
reliablity. Thus, we investigate the three follow-
ing strategies for reliable annotation selection. (1)
Entity-level threshold filtering, which drops the
predicted entity eji if cji < Th_entity, where
Th_entity is the threshold for entity-level SC
score. (2) Sample-level threshold filtering, which
drops the sample xi if ci < Th_sample, where
Th_sample is the threshold for sample-level SC
score. (3) Two-stage majority voting (Xie et al.,
2023), is an entity-level selection method, which
first votes for the most consistent entity spans, then
the most consistent types based on the voted spans.

2.3 Step 3: Inference with Self-Annotated
Demonstration

When a test input xq arrives, we retrieve k demon-
strations from the reliable self-annotated dataset
to help the inference. 2 We investigate the follow-
ing four methods for demonstration retrieval. (1)
Random retrieval, which randomly select k demon-
strations. (2) Nearest retrieval, which select the k
nearest neighbors of xq. The distance of samples is
measured by the cosine similarity in the represen-
tation space. (3) Diverse nearest retrieval, which
first retrieve K nearest neighbors, where K > k,
then uniformly samples a random set of k samples
from the K neighbors. (4) Diverse nearest with SC

2Different from Lyu et al. (2023), our demonstrations are
obtained through self-annotating with LLMs instead of ran-
domly assignment. Besides, randomly assigning label is not
feasible for NER task as it naturally requires label information
on each token.
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Method CoNLL03 ACE05 WikiGold GENIA Avg
No-demos 68.97 0.22 27.29 0.58 70.8 47.41 0.29 53.62

ICL with self-annotated demonstrations (Zero-shot)
Without annotation selection
Random 71.45 0.10 30.38 0.93 70.51 48.78 0.06 55.28
Nearest 72.07 0.11 32.20 0.92 71.81 49.54 1.88 56.40
Diverse Nearest, random 72.15 0.65 31.07 1.45 70.72 50.01 1.20 55.99

Entity-level threshold filtering
Random 70.91 0.55 30.41 0.95 72.33 50.70 1.53 56.09
Nearest 73.24 0.53 32.22 0.38 72.53 49.85 1.20 56.96
Diverse Nearest, random 74.11 0.12 32.29 0.31 72.01 50.68 0.14 57.27
Diverse Nearest, SC ranking 74.99 0.20 31.65 0.97 73.53 51.11 0.28 57.82
Sample-level threshold filtering
Random 72.41 1.28 30.00 1.26 73.38 51.61 1.21 56.86
Nearest 72.28 0.14 32.00 0.08 73.27 52.72 0.80 57.57
Diverse Nearest, random 72.32 0.08 30.74 0.06 72.09 52.50 0.50 56.91
Diverse Nearest, SC ranking 73.97 0.12 31.08 0.54 72.80 51.67 0.93 57.38

Two-stage majority voting
Random 72.12 0.59 31.18 0.38 72.32 50.17 0.93 56.45
Nearest 71.66 0.37 31.45 1.32 72.84 50.19 1.59 56.53
Diverse Nearest, random 72.45 0.41 30.84 0.56 70.83 51.03 0.73 56.28
Diverse Nearest, SC ranking 74.51 0.03 32.27 0.25 73.98 52.06 0.09 58.20

ICL with gold labeled demonstrations
Random (Gold) 78.36 0.31 42.12 0.30 74.27 54.50 1.14 62.31
Nearest (Gold) 84.30 0.39 52.72 0.44 78.20 54.78 0.94 67.50

Random (Gold), full data 78.35 1.44 41.33 0.79 78.47 52.77 2.03 62.73
Nearest (Gold), full data 83.51 0.02 55.54 0.61 79.73 58.72 1.52 69.37

Table 1: Main results. The right subscript number are standard deviations. Gold indicates the method has access to
the gold labeled data, thus is not comparable with the rest of methods. Full data indicates the method has access
to the full training set. Results of Th_entity = 4.0 and Th_sample = 4.0 is shown here. Texts in bold are the
best results in each category; Text underlined are the best results among all methods. The proposed framework
significantly improves the zero-shot performances. On average, two-stage majority voting combined with the
proposed diverse nearest with SC ranking achieves the best results.

ranking, proposed by this work to achieve a bet-
ter trade-off between the similarity, diversity and
reliability of self-annotated demonstrations. After
retrieving K nearest neighbors, we select samples
with the top-k sample-level SC scores.

Let S = {xi, yi}ki=1 denotes the self-annotated
demonstrations retrieved for the test input xq. Fi-
nally, our framework conduct ICL by concatenating
these k samples as well as the test input sentence
xq, as shown in the below part in Fig. 1. The predic-
tion is obtained via yq = argmaxy P (y|T, S, xq).

3 Experiment

3.1 Setup

We experiment on four widely-used NER datasets,
CoNLL03 (Sang and De Meulder, 2003), ACE05
(Walker et al., 2006), WikiGold (Balasuriya et al.,
2009) and GENIA (Ohta et al., 2002). We use
GPT3.5 (gpt-3.5-turbo) as the LLM backbone and
text-embedding-ada-002 model to get sentence rep-
resentations.3 We set k = 16 and K = 50. For

3The results of GPT-3.5 are obtained during October and
November 2023 with official API.

SC, we set temperature to 0.7 and sample 5 an-
swers. For cost saving, we randomly sample 300
test samples twice then report the means and stan-
dard deviations, and we randomly sample 500 train-
ing samples without labels to form the unlabeled
corpus U . The naive zero-shot prompting is our
baseline, which we denote as No-demos. We report
F1 scores throughout this paper.

3.2 Results
The main results are shown in Table 1. Re-
sults of other values for thresholds Th_entity and
Th_sample can be found in Appendix E. (1) With-
out annotation selection, we only generate one an-
swer for each unlabeled sample. The results show
improvements over No-demos, revealing that our
framework is helpful even without any carefully
designed annotation selection step. (2) The perfor-
mance is further improved under three annotation
selection strategies respectively. (3) The proposed
diverse nearest with SC ranking shows consistent
improvements under various settings and achieves
the best results when combined with two-stage
majority voting. This confirms that this strategy
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Figure 2: Results of increasing the size of unlabeled
dataset. Vertical axes represent F1 scores. Ours refers
to the combination of two-stage majority voting and
diverse nearest with SC ranking. Increasing unlabeled
data does not guarantee performance gains.

Figure 3: Increasing the iterations of self-improving
does not guarantee performance improvements.

achieves a better trade-off between similarity, di-
versity and reliability of the demonstrations. (4)
Random retrieval lags behind nearest retrieval in
self-improving scenario but is not as much as in
the gold label scenario, likely because of the noise
contained in self-annotated labels. The model may
directly copy the wrong answers in the most simi-
lar self-annotated demonstrations due to the copy
mechanism of ICL (Lyu et al., 2023).

3.3 Analysis

Increasing unlabeled data. We expanded the size
of U by 10 times and randomly sampled 5000 sam-
ples from the original training set. Results are
shown in Fig. 2. Increasing the size of the un-
labeled corpus does not guarantee performance
improvements under the self-improving scenario.
Meanwhile, increasing the size of the demonstra-
tion pool only brings marginal improvement, even
under the gold label scenario. The reason may be
that the small dataset already approximately cap-
tures the data distribution.

Iterative self-improving. We use the self-
annotated data as demonstrations to guide the next
iteration of self-annotating, forming a bootstrap-
ping process. The illustration of iterative self-
improving process can be found in Appendix G.
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Figure 4: Kernel density estimation for SC scores. Ver-
tical axes represent density, horizontal axes represent
SC scores.

Method CoNLL03 ACE05 WikiGold GENIA Avg
No-demos 68.97 27.29 70.8 47.41 53.62

TSMV 74.51 32.27 73.98 52.06 58.20
Upper bound 81.65 37.82 76.57 56.24 63.07

Gold label 84.30 52.72 78.20 54.78 67.50

Table 2: Results of the upper bound of reliable anno-
tation selection. TSMV represents two-stage majority
voting. We display the best results for each strategy.
The setting of Upper bound performs on par with the
setting of Gold label, showing that there might be space
to be improved for reliable annotation selection.

We experiment up to 8 iterations. The 0-th iteration
indicates the No-demos setting. Results are shown
in Fig. 3. Increasing iterations of self-improving
cannot guarantee improvements on most datasets.
This may due to the fact that error accumulation in
self-annotating is difficult to be eliminated in this
training-free process.

Upper bound of reliable annotation selection.
We keep only the true predictions and discard the
false predictions in all the sampled answers to eval-
uate the upper bound of reliable annotation selec-
tion. Results are shown in Table 2. More detailed
results can be found in Appendix F. Upper bound
setting performs on par with the Gold label set-
ting, indicating that there might still be space to be
improved for reliable annotation selection.

SC score analysis. We plot the kernel density esti-
mation for entity-level SC scores in Fig. 4. Most
true predictions gather in the interval of high SC
scores, while most false predictions have low SC
scores. This shows that SC scores effectively re-
flect the reliability of annotations.

Self-verification. Besides SC, we also explore
self-verification (SV) to measure the confidence
of self-annotation by asking the LLM to score its
own answer about its own confidence. After the
LLM outputs the recognized entities, we obtain the
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Method SC SV
No-demos 68.97 0.22

Entity-level threshold filtering
Random 70.91 0.55 70.91 0.56

Nearest 73.24 0.53 71.23 0.01

Diverse Nearest, random 74.11 0.12 71.44 0.93

Diverse Nearest, score ranking 74.99 0.20 68.09 0.60

Sample-level threshold filtering
Random 72.41 1.28 71.00 0.32

Nearest 72.28 0.14 70.45 0.46

Diverse Nearest, random 72.32 0.08 70.06 1.29

Diverse Nearest, score ranking 73.97 0.12 68.95 0.35

Table 3: Comparison between SC and SV on CoNLL03
dataset. Th_entity = 4.0 and Th_sample = 4.0 is
used. Right subscript number are standard deviations.
Texts in bold are the best results in each category; Text
underlined are the best results among all methods.

Method CoNLL03 WikiGold
No-demos 42.24 28.57

Nearest 23.55 8.94

Table 4: Results on the Llama2 chat 13B. Two-stage
majority voting is used here. The negative results show
that the proposed framework is more suitable for models
with a strong zero-shot capability. The negative effect
is obvious on the first sampled test set, thus we do not
continue to test on other seeds.

SV score by asking the LLM: "How confident are
you in providing the above answers? Please give
each named entity in your answer a confidence
score of 0-5." The comparison results between SC
and SV are in Table 3. As shown in the table, SV
also achieves some improvements compared with
the No-demos baseline. However, it lags behind
the SC measurement. This is presumably because
the LLM tends to be over-confident about its own
answer, since we found that no sample gets a con-
fidence score lower than 3 under the SV measure-
ment in CoNLL03 benchmark. The overconfidence
problem is also mentioned in Li et al. (2023a).

Evaluation on weaker LLMs. To explore the
performance of the proposed self-improving frame-
work on weaker LLMs, we conduct experiments
on the Llama2 chat 13B model (Touvron et al.,
2023),4 the results are shown in Table 4. Two-stage
majority voting selection strategy and the nearest
neighbor retrieval method are used in this exper-
iment. With a much weaker ability in zero-shot
scenarios, Llama2 13B model shows negative re-
sults under the self-improving framework. This
indicates that the proposed framework is more suit-

4https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

able for models with a strong zero-shot capability.
For the models with a relatively weaker zero-shot
ability, improving the prompt designing might be a
more effective strategy to boost performance.

4 Related Work

Information extraction with LLM. The re-
search of information extraction (IE) with LLMs in-
cludes prompt designing (Wei et al., 2023b; Wang
et al., 2023; Xie et al., 2023; Li et al., 2023b),
task-specific LLMs instruction-tuning (Zhou et al.,
2023; Sainz et al., 2023) and data augmentation
(Zhang et al., 2023; Ma et al., 2023; Josifoski et al.,
2023). Zhang et al. (2023) use LLM to annotate
data, which is used to fine-tune a specific IE model,
then the fine-tuned model is used to help select the
data to be annotated in the next iteration. Unlike
previous works, this work propose a training-free
self-improving framework to push the zero-shot
boundary of LLM on NER. Different from Zhang
et al. (2023), no seed labeled data, expert small
model nor training resources are required in our
framework. In addition, our work is orthogonal to
previous prompt designing works. They explored
various advanced prompt formats to boost perfor-
mance, and did not utilize unlabeled corpus. Unlike
them, this work improves zero-shot NER by using
unlabeled corpus without designing any complex
prompt format.

Demonstrations in ICL. Some works explored
factors that have impacts on ICL (Lyu et al., 2023;
Min et al., 2022; Wei et al., 2023a). Lyu et al.
(2023) investigate the impact of randomly assign-
ing labels to demonstrations in ICL. However, this
random labeling method is not suitable for tasks
like NER, which requires label information on the
token-level instead of sentence-level. Different
from them, we first use LLM to make predictions
on the unlabeled corpus, then select reliable self-
annotated data as demonstrations.

5 Conclusion

We propose a training-free self-improving frame-
work for zero-shot NER with LLMs, which
achieves significant performance improvements on
four benchmarks. Comprehensive experimental
analysis shows that, simply increasing the size of
unlabeled corpus or the iterations of self-annotation
do not guarantee further improvement, but there
might still be room for improvement with more ad-
vanced strategies for reliable annotation selection.
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Limitations

We acknowledge the following limitations of this
study.

• This work focus on exploring the zero-shot
self-improving framework on NER task. The
investigation of this paradigm on other IE
tasks are not studied yet.

• We explored the commonly-used self-
consistency and the self-verification method
to obtain the confidence score for measuring
the quality of self-annotated data. There
might be other approaches to measure the
quality of self-annotation.

• The zero-shot performance still lag behind
previous state-of-the-art of fully-supervised
methods.

• Although this framework achieves significant
improvement on the strong LLM, GPT-3.5, it
gets negative results on a much weaker LLM,
Llama2 13B. Improving the zero-shot NER
on the weaker and smaller LLMs remains to
be explored.
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A Dataset Statistics

We evaluate on four commonly-used NER English
datasets, CoNLL03 (Sang and De Meulder, 2003),
ACE05 (Walker et al., 2006), WikiGold (Balasuriya
et al., 2009) and GENIA (Ohta et al., 2002), among
which CoNLL03, WikiGold and GENIA are public
datasets, and ACE055 can be accessed on Linguis-
tic Data Consortium (LDC) platform with specific
license. In addition, we also evaluate on two Chi-
nese datasets, Ontonotes 46 and MSRA (Zhang
et al., 2006), in Appendix B. Table 5 and 6 shows
the statistics of the processed datasets used in this
work. For CoNLL03, we use the processed version
shared by Han et al. (2023). For ACE05, we follow
Luan et al. (2019)’s processing steps.

Dataset CoNLL03 ACE05 WikiGold GENIA

#Train 14382 12475 1422 16692
#Test 3453 2050 274 1854

Table 5: Statistics of the processed English datasets used
in this work. The training set is formed by combining
the original training split and development split.

Dataset Ontonotes 4 MSRA

#Train 20025 46364
#Test 4346 4365

Table 6: Statistics of the processed Chinese datasets
used in this work. The training set is formed by combin-
ing the original training split and development split.

B Results on Additional Benchmarks

We additionally evaluate on two widely-used Chi-
nese benchmarks, the results are in Table 7.

Method Ontonotes 4 MSRA

No-demos 31.71 1.14 39.21 0.93

ICL with self-annotated demonstrations
Random 32.45 0.19 39.55 0.75

Nearest 31.54 1.60 36.31 1.76

Diverse Nearest, SC ranking 35.57 1.22 40.84 2.83

ICL with gold labeled demonstrations
Random (Gold) 49.42 0.22 53.51 1.38

Nearest (Gold) 64.16 1.08 61.58 1.58

Table 7: Results on Chinese benchmarks. Right sub-
script numbers are standard deviations. Gold indicates
access to the gold labeled data, thus is not comparable
with the rest of methods. Two-stage majority voting is
used here. Texts in bold are the best results.

5https://catalog.ldc.upenn.edu/LDC2006T06
6https://catalog.ldc.upenn.edu/LDC2011T03

C Results on Other Embedding Models

We explore the effect of using other embed-
ding models for retrieval, SBERT (Reimers and
Gurevych, 2019)7 and GTE (Li et al., 2023c)8. Re-
sults are in Table 8.

D Results on Various Number of
Demonstrations

We investigate the performance on various number
of demonstrations in the input context, the results
are in Table 9. As shown in the table, the quan-
tity of examples is not always proportional to the
final performance. Similar findings have also been
mentioned in Min et al. (2022). We hypothesize
that after the LLM learns the mapping between
the input-output examples, new information gained
from more examples is marginal and might be off-
set by the more noise introduced.

E More Results on Threshold Filtering

Table 10 shows the results of various values of
entity-level and sample-level SC thresholds.

F Upper Bound of Reliable Annotation
Selection

Table 11 summarizes the complete results of the
upper bound of reliable annotation selection.

G Illustration of Iterative Self-improving

The bootstrapping process of iterative self-
improving is shown in Fig. 5.

H Case Study

We take a closer look at the cases where the er-
rors in predictions are corrected with self-annotated
demonstrations, as shown in Fig. 6. The proposed
framework makes the model reuse its own knowl-
edge and correct its own errors, forming a process
of self-improving.

I Prompts

We show the prompts use in this work in Table 12.
We take samples from ACE05 for demonstrations.

7https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

8https://huggingface.co/thenlper/gte-large
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Datasets CoNLL2003 WikiGold

Embedding Models embed-ada SBERT GTE embed-ada SBERT GTE

No-demos 68.97 0.22 68.97 0.22 68.97 0.22 70.80 70.80 70.80

ICL with self-annotated demonstrations (Zero-shot)

Random 72.12 0.59 72.12 0.59 72.12 0.59 72.32 72.32 72.32
Nearest 71.66 0.37 72.07 0.22 72.37 1.17 72.84 72.39 72.24
Diverse Nearest, SC ranking 74.51 0.03 72.67 0.37 72.53 0.96 73.98 76.08 73.60

ICL with gold labeled demonstrations

Random (Gold) 77.25 1.39 77.25 1.39 77.25 1.39 75.82 75.82 75.82
Nearest (Gold) 84.71 0.39 83.28 1.34 83.59 0.09 79.40 78.18 79.03

Table 8: Results on various embedding models. Right subscript numbers are standard deviations. embed-ada refers
to text-embedding-ada. Gold indicates access to the gold labeled data, thus is not comparable with the rest of
methods. Two-stage majority voting is used here. Texts in bold are the best results.

Numbe of demonstrations 0 2 4 8 16 32

WikiGold
Random 70.80 70.25 70.86 71.74 71.39 70.35
Nearest 70.80 70.41 71.32 70.47 72.57 71.81
Random (Gold) 70.80 71.75 71.54 75.79 73.95 74.43
Nearest (Gold) 70.80 76.14 77.66 78.97 78.34 77.05

CoNLL03
Random 68.97 69.54 70.84 70.53 70.72 71.95
Nearest 68.97 70.12 69.15 70.90 71.81 72.44
Random (Gold) 68.97 71.94 72.76 75.12 77.81 80.43
Nearest (Gold) 68.97 79.07 80.81 83.20 84.12 83.94

Table 9: Results on various number of demonstrations in the input context. Gold indicates access to the gold labeled
data, thus is not comparable with the rest of methods. Two-stage majority voting is used here. Texts in bold are the
best results. Since the standard deviation values of CoNLL03 are around the same level as in Table 1, we omit them
here.

Self-Annotated Data

Reliable annotation selection

……

Self-annotated demonstrations

……

Unlabeled data

Self-annotating with demonstrations from
last iteration of self-annotating

Figure 5: The pipeline of iterative self-improving.
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Input Sentence: Angelo has reached out to corporate America , the young and successful , 

the trendy , …
Gold Label: [{'America': 'Location', 'Angelo': 'Person'}].

Self-annotated demonstrations: 

Text: The Anguilla United Front is an alliance of political parties in Anguilla .

Answer: [{'Anguilla United Front': 'Organization'}, {'Anguilla': 'Location'}]

……
No-demos pred.: [{'Angelo': 'Person'}].

Ours pred.: [{'America': 'Location', 'Angelo': 'Person'}].

-------------------------------------------------------------------------------------------------------------------

Input Sentence:  Ben now also helps run Movement Bodyboarding MagAzine.

Gold Label: [{'Movement Bodyboarding Magazine': 'Organization', 'Ben': 'Person'}].

Self-annotated demonstrations: 

Text: Bobick had now improved enough as a boxer to be a legitimate title threat .

Answer: [{'Bobick': 'Person'}]

……
No-demos pred.: [{'Movement Bodyboarding Magazine': 'Organization'}].

Ours pred.: [{'Ben': 'Person', 'Movement Bodyboarding Magazine': 'Organization'}].

Figure 6: Case study of self-improving. Examples from WikiGold are illustrated. The errors in predictions of
No-demos are corrected by our framework with self-annotated demonstrations. Texts in green are entities corrected
by our method. Texts in blue are entities in demonstrations that potentially help with the error correction.

Method CoNLL03 ACE05 WikiGold GENIA Avg

No-demos 68.97 0.22 27.29 0.58 70.8 47.41 0.29 53.62

Entity-level SC threshold = 3.0
Random 71.17 0.13 30.16 0.66 71.79 50.41 0.00 55.88
Nearest 71.41 0.66 31.58 0.76 73.16 51.24 1.79 56.85
Diverse Nearest, random 72.68 1.31 31.39 1.62 72.01 50.65 0.11 56.68
Diverse Nearest, SC ranking 73.68 0.03 31.86 0.13 73.36 51.15 0.69 57.51

Entity-level SC threshold = 4.0
Random 70.91 0.55 30.41 0.95 72.33 50.70 1.53 56.09
Nearest 73.24 0.53 32.22 0.38 72.53 49.85 1.20 56.96
Diverse Nearest, random 74.11 0.12 32.29 0.31 72.01 50.68 0.14 57.27
Diverse Nearest, SC ranking 74.99 0.20 31.65 0.97 73.53 51.11 0.28 57.82

Entity-level SC threshold = 5.0
Random 72.53 0.07 29.44 0.73 72.13 50.65 0.57 56.18
Nearest 74.24 0.03 29.65 1.30 72.45 48.12 0.45 56.11
Diverse Nearest, random 73.50 0.14 30.55 0.27 71.34 49.34 0.27 56.18
Diverse Nearest, SC ranking 72.50 0.66 30.14 0.35 74.01 49.57 0.61 56.55

Sample-level SC threshold = 3.0
Random 70.17 0.00 28.78 1.71 71.81 50.45 0.34 55.30
Nearest 69.48 0.90 30.39 0.17 70.33 51.76 0.29 55.49
Diverse Nearest, random 68.98 0.86 30.04 0.34 69.71 51.71 1.41 55.11
Diverse Nearest, SC ranking 74.32 1.37 30.73 0.04 74.44 52.31 0.34 57.95

Sample-level SC threshold = 4.0
Random 72.41 1.28 30.05 1.26 73.38 51.61 1.21 56.86
Nearest 72.28 0.14 32.00 0.08 73.27 52.72 0.80 57.57
Diverse Nearest, random 72.32 0.08 30.74 0.06 72.09 52.50 0.50 56.91
Diverse Nearest, SC ranking 73.97 0.12 31.08 0.54 72.80 51.67 0.93 57.38

Sample-level SC threshold = 5.0
Random 73.66 0.69 29.19 0.26 71.92 51.34 0.97 56.52
Nearest 74.19 0.30 30.94 0.11 74.96 52.01 0.23 58.02
Diverse Nearest, random 73.16 0.66 27.98 0.08 74.55 50.64 0.18 56.58
Diverse Nearest, SC ranking 74.53 0.51 30.00 0.73 73.60 51.02 0.98 57.28

Table 10: Results of various entity-level SC thresholds and sample-level SC thresholds. Right subscript numbers are
standard deviations.

592



Method CoNLL03 ACE05 WikiGold GENIA Avg

No-demos 68.97 0.22 27.29 0.58 70.8 47.41 0.29 53.62

Two-stage majority voting
Random 72.12 0.59 31.18 0.38 72.32 50.17 0.93 56.45
Nearest 71.66 0.37 31.45 1.32 72.84 50.19 1.59 56.53
Diverse Nearest, random 72.45 0.41 30.84 (0.56 70.83 51.03 0.73 56.28
Diverse Nearest, SC ranking 74.51 0.03 32.27 0.25 73.98 52.06 0.09 58.20

Upper bound
Random 73.72 0.41 32.71 0.56 73.83 52.67 0.09 58.23
Nearest 81.65 0.17 37.82 0.59 76.57 56.24 0.44 63.07
Diverse Nearest, random 78.84 1.43 35.79 0.26 76.20 54.46 0.98 61.32
Diverse Nearest, SC ranking 80.12 0.02 35.23 0.63 76.64 54.58 0.57 61.64

Table 11: Complete results of the upper bound of reliable annotation selection. Right subscript numbers are standard
deviations.

Prompts of zero-shot setting

Given entity label set: [’Person’, ’Organization’, ’Location’, ’Facility’, ’Weapon’,
’Vehicle’, ’Geo-Political Entity’].
Please recognize the named entities in the given text. Based on the given entity label set,
provide answer in the following JSON format: [{’Entity Name’: ’Entity Label’}]. If there
is no entity in the text, return the following empty list: [].

Text: right now we ’re also waiting to hear from the president at the white house .
Answer:

Prompts of ICL

Given entity label set: [’Person’, ’Organization’, ’Location’, ’Facility’, ’Weapon’,
’Vehicle’, ’Geo-Political Entity’].
Please recognize the named entities in the given text. Based on the given entity label set,
provide answer in the following JSON format: [{’Entity Name’: ’Entity Label’}]. If there
is no entity in the text, return the following empty list: [].

Text: right now we ’re also waiting to hear from the president at the white house .
Answer: [{’white house’: ’Location’}, {’president’: ’Person’}]

Text: At the Pentagon , Barbara Starr reports officials say today begins a new strategy
in the skies over Baghdad .
Answer: [{’Barbara Starr’: ’Person’}, {’Pentagon’: ’Facility’}, {’officials’: ’Person’},
{’skies’:’Location’}, {’Baghdad’: ’Geo-Political Entity’}]

Text: John Irvine , ITV News , Baghdad .
Answer: [{’John Irvine’: ’Person’}, {’ITV News’: ’Organization’},
{’Baghdad’: Geo-Political Entity’}]
... ...

Text: right now we ’re also waiting to hear from the president at the white house .
Answer:

Table 12: Prompts used in this work. A few samples from ACE05 are displayed for demonstrations.
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