@inproceedings{borchert-etal-2024-efficient,
title = "Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning",
author = "Borchert, Philipp and
De Weerdt, Jochen and
Moens, Marie-Francine",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-short.54",
doi = "10.18653/v1/2024.naacl-short.54",
pages = "638--646",
abstract = "Differentiating relationships between entity pairs with limited labeled instances poses a significant challenge in few-shot relation classification. Representations of textual data extract rich information spanning the domain, entities, and relations. In this paper, we introduce a novel approach to enhance information extraction combining multiple sentence representations and contrastive learning. While representations in relation classification are commonly extracted using entity marker tokens, we argue that substantial information within the internal model representations remains untapped. To address this, we propose aligning multiple sentence representations, such as the CLS] token, the [MASK] token used in prompting, and entity marker tokens. Our method employs contrastive learning to extract complementary discriminative information from these individual representations. This is particularly relevant in low-resource settings where information is scarce. Leveraging multiple sentence representations is especially effective in distilling discriminative information for relation classification when additional information, like relation descriptions, are not available. We validate the adaptability of our approach, maintaining robust performance in scenarios that include relation descriptions, and showcasing its flexibility to adapt to different resource constraints.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="borchert-etal-2024-efficient">
<titleInfo>
<title>Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Borchert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jochen</namePart>
<namePart type="family">De Weerdt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Differentiating relationships between entity pairs with limited labeled instances poses a significant challenge in few-shot relation classification. Representations of textual data extract rich information spanning the domain, entities, and relations. In this paper, we introduce a novel approach to enhance information extraction combining multiple sentence representations and contrastive learning. While representations in relation classification are commonly extracted using entity marker tokens, we argue that substantial information within the internal model representations remains untapped. To address this, we propose aligning multiple sentence representations, such as the CLS] token, the [MASK] token used in prompting, and entity marker tokens. Our method employs contrastive learning to extract complementary discriminative information from these individual representations. This is particularly relevant in low-resource settings where information is scarce. Leveraging multiple sentence representations is especially effective in distilling discriminative information for relation classification when additional information, like relation descriptions, are not available. We validate the adaptability of our approach, maintaining robust performance in scenarios that include relation descriptions, and showcasing its flexibility to adapt to different resource constraints.</abstract>
<identifier type="citekey">borchert-etal-2024-efficient</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-short.54</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-short.54</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>638</start>
<end>646</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning
%A Borchert, Philipp
%A De Weerdt, Jochen
%A Moens, Marie-Francine
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F borchert-etal-2024-efficient
%X Differentiating relationships between entity pairs with limited labeled instances poses a significant challenge in few-shot relation classification. Representations of textual data extract rich information spanning the domain, entities, and relations. In this paper, we introduce a novel approach to enhance information extraction combining multiple sentence representations and contrastive learning. While representations in relation classification are commonly extracted using entity marker tokens, we argue that substantial information within the internal model representations remains untapped. To address this, we propose aligning multiple sentence representations, such as the CLS] token, the [MASK] token used in prompting, and entity marker tokens. Our method employs contrastive learning to extract complementary discriminative information from these individual representations. This is particularly relevant in low-resource settings where information is scarce. Leveraging multiple sentence representations is especially effective in distilling discriminative information for relation classification when additional information, like relation descriptions, are not available. We validate the adaptability of our approach, maintaining robust performance in scenarios that include relation descriptions, and showcasing its flexibility to adapt to different resource constraints.
%R 10.18653/v1/2024.naacl-short.54
%U https://aclanthology.org/2024.naacl-short.54
%U https://doi.org/10.18653/v1/2024.naacl-short.54
%P 638-646
Markdown (Informal)
[Efficient Information Extraction in Few-Shot Relation Classification through Contrastive Representation Learning](https://aclanthology.org/2024.naacl-short.54) (Borchert et al., NAACL 2024)
ACL