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Abstract
Continuous-output neural machine translation
(CoNMT) replaces the discrete next-word pre-
diction problem with an embedding prediction.
The semantic structure of the target embed-
ding space (i.e., closeness of related words)
is intuitively believed to be crucial. We chal-
lenge this assumption and show that completely
random output embeddings can outperform la-
boriously pre-trained ones, especially on larger
datasets. Further investigation shows this sur-
prising effect is strongest for rare words, due to
the geometry of their embeddings. We shed fur-
ther light on this finding by designing a mixed
strategy that combines random and pre-trained
embeddings, and that performs best overall.

1 Introduction
Since text is naturally discrete, i.e., each token in a
target sentence is represented by an integer index in
the vocabulary, neural machine translation (NMT),
as many other language generation tasks, is trained
mainly as a discrete-output model with softmax over
the full vocabulary followed by the cross-entropy
loss. Continuous-output neural machine transla-
tion (CoNMT) models, in contrast, are trained to
predict the continuous representation based on the
distances between vectors. It is an appealing line
of study for computational and modeling related
reasons (Kumar and Tsvetkov, 2019), as well as
a reliable test bed for exploring the properties of
continuous language spaces that appear in modern
deep generative models (Li et al., 2022b). How-
ever, CoNMT introduces its own challenge, namely
mapping to and from a continuous space. During
training, CoNMT model requires continuous tar-
gets, and while decoding, one needs to map back
to the discrete text representation.

Text mapping to continuous space is widely ex-
plored in NLP and can be done using embeddings
of tokens, words (Turian et al., 2010; Mikolov et al.,
2013, 2018) and sentences (Reimers and Gurevych,

2019; Feng et al., 2022). Cosine similarity be-
tween word embeddings is well correlated with
lexical similarity metrics, motivating the use of
cosine distance against pre-trained embeddings as
an effective training strategy for CoNMT Nearest
neighbor beam decoding would in this case include
related words and, unlike discrete cross-entropy,
the training strategy does not discourage synonyms.

Previous studies show that the quality of
continuous-output models highly depends on the
choice of embeddings (Li et al., 2022b; Tokarchuk
and Niculae, 2022; Kumar and Tsvetkov, 2019). In
general, in CoNMT the embeddings are pre-trained
and fixed: otherwise, making all embeddings equal
yields an unwanted global optimum. Obtaining
pre-trained word embeddings can be computation-
ally expensive, especially if one needs to train an
embeddings model from scratch.

In this work we randomly initialize target em-
beddings for continuous-output models and keep
them static during training. Arora et al. (2020)
applied static random embeddings for text classi-
fication model’s input; however, to the best of our
knowledge, the effect of untrained random target
embeddings has not been previously studied in the
literature, especially for text-generating tasks such
as machine translation. However, we show that
random target embeddings perform close to their
pre-trained counterpart, and even surpass them on
the larger datasets, challenging the assumption that
target embeddings must preserve semantic relation-
ships. Meaningful structures in target embedding
space could help with generalization, but our results
suggest that any such benefits are smaller than one
might expect, and sensitive to embedding concen-
tration. We hypothesize and bring experimental
evidence that CoNMT performance is negatively
impacted when there is too little space around
embeddings, i.e., when embeddings are tangled
rather than more spread out. Our findings on three
NMT tasks, namely WMT 2018 English→Turkish
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(en-tr), WMT 2016 English→Romanian (en-ro),
and WMT 2019 English→German (en-de) indicate
that random embeddings are more spread out and
perform better on rare words for all language pairs.
Strikingly, on the largest dataset (en-de), random
embeddings show the largest gain over pre-trained
ones. We propose a simple yet efficient combina-
tion of random and pre-trained embeddings, and
show that it improves model performance in most
cases considered. More generally, our findings
show that dispersion is an important property of
embedding space geometry, and that integrating
semantic information should be done with care.

2 Continuous-Output NMT
The machine translation task involves learning to
map sequences of input tokens 𝒙 = (𝑥1, . . . ,𝑥𝑚)
to output tokens 𝒚 = (𝑦1, . . . , 𝑦𝑛). In standard
(discrete) NMT, each step is a multi-class next word
prediction task, minimizing:

𝐿discrete(𝑦𝑖 = 𝑡;𝒚<𝑖,𝒙) = − log𝑝(𝑦𝑖 = 𝑡 | 𝒚<𝑖,𝒙)
= −⟨𝑬 (𝑡),𝒉⟩ + log

∑︁
𝑡′∈𝑉

exp ⟨𝑬 (𝑡′),𝒉⟩,
(1)

where 𝑡 is a token index, 𝑉 is the vocabulary,
𝑬 : 𝑉 → ℝ𝑑 is an embedding lookup, and 𝒉 is a
transformer hidden state calculated in terms of 𝒙
and the output prefix 𝒚<𝑖. The costly log-sum-exp
and the penchant for continuous similarity metrics
in NLP motivate a purely-continuous alternative:

𝐿cos(𝑦𝑖 = 𝑡;𝒚<𝑖,𝒙) = 1 − cos(𝑬 (𝑡),𝒉). (2)

Continuous NMT models were first studied by
Kumar and Tsvetkov (2019), who also propose
other probabilistic losses and later other margin-
based objectives (Bhat et al., 2019), with limited
gain and at the cost of additional hyperparameters;
we therefore focus on the robust cosine objective.
We further justify the choice of cosine over max-
margin as an objective function in Appendix C.1.

On the other hand, the choice of embeddings 𝑬
makes a much larger difference, especially due to
the fact that all previous work keeps this parameter
frozen: indeed, if it were trainable, Equation (2)
would have trivial global optima by setting all
𝑬 (𝑡) to the same vector for all 𝑡. With modern
transformer architectures, the best performing em-
beddings overall tend to be the “oracle” output
embeddings learned by a pre-trained discrete MT
system (Tokarchuk and Niculae, 2022). We high-
light that the cosine loss is invariant to the norms

of both the embeddings and of the decoder hidden
state, and therefore we may restrict our modeling
problem to the unit sphere.

Optimizing Equation (1) pushes the model 𝒉
away from all tokens different from the “gold” to-
ken, even if some other tokens (e.g., synonyms)
could otherwise be a good fit. Equation (2) has
no such effect, leading to a promise of more di-
verse generations. An appealing intuition is that
synonyms and related words being nearby in em-
bedding space contributes to the performance of
CoNMT and enables such diversity. However in
practice, greedy nearest-neighbor lookup is applied,
and beam search decoding is not well-studied in
the context of CoNMT. Therefore, in this work, we
dwell more into the beam search performance for
CoNMT, and compare pre-trained and completely
random embeddings.

3 Random Embeddings Generation
We consider two different distributions from which
to sample the |𝑉 | random embeddings.

Spherical uniform. We draw embeddings uni-
formly from the surface of the sphere: 𝑬 (𝑦𝑖) ∼
Unif (𝕊𝑑−1). Since standard normal vectors are dis-
tributed with rotational symmetry around the origin,
uniform samples on the sphere can be obtained by
normalizing standard normal random vectors:

𝑬 (𝑦𝑖) = 𝒖𝑖/∥𝒖𝑖 ∥; 𝒖𝑖 ∼ Normal(0, 𝑰𝑑).

The same argument works if the normal distribution
has spherical covariance 𝜎𝑰𝑑 for any 𝜎, and thus,
since the cosine loss is norm-invariant, uniform
initialization is exactly equivalent to the standard
initialization of transformer embeddings.

Hypercube. The corners of the hypercube
{−1, 1}𝑑 all have norm

√
𝑑 and thus form a dis-

crete subset of a hypersphere. This motivates us
to consider drawing embeddings from a scaled
Rademacher distribution:

𝑬 (𝑦𝑖) = 𝒓𝑖/
√
𝑑; 𝒓𝑖 ∼ Rademacher(𝑑).

Each coordinate of r𝑖 has 50% probability of be-
ing +1 and 50% of being −1. With this strategy,
any two distinct embeddings have cosine distance
at least 2/𝑑. Moreover, hypercubic embeddings
can be stored as bit patterns and potentially allow
for faster loss calculation with dedicated low-level
implementations which we do not explore here.
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en-tr ro-en en-de
embeddings BLEU ↑ BERTSc. ↑ BLEU ↑ BERTSc. ↑ BLEU ↑ BERTSc. ↑
discrete model 12.3 70.4 31.7 64.1 33.1 69.0

pre-trained (beam=1) 10.1 67.1 29.0 58.5 31.3 66.2
pre-trained 10.4 67.4 29.0 58.0 29.2 62.6
random uniform 8.9 65.1 28.8 58.8 31.8 67.2
random cube 8.7 64.6 28.7 58.8 31.4 66.9
combined 10.4 68.3 29.5 60.4 32.0 66.8

Table 1: BLEU and BertScore on ro-en newstest16, en-tr newstest2017 and newstest2016 en-de. We use a
beam of 5 if not stated otherwise. In bold, we show the highest score among the continuous models in each column.

4 Experimental Setup and Data

We train CoNMT systems with pre-trained target
embeddings as well as randomly-generated target
embeddings. The pre-trained embeddings we
use are extracted from a discrete NMT system
trained on the same training data, following the
setup of Tokarchuk and Niculae (2022), who found
this strategy to outperform other subword-level
pre-trained embeddings for CoNMT.

Results are reported on three WMT translation
tasks: 1 WMT 2016 Romanian→English (ro-en),
WMT 2018 English→Turkish (en-tr) and WMT
2019 English→German (en-de), the latter includ-
ing back-translated data. Note that for en-tr we
use only WMT 2018 training data with 207k train-
ing sentences in order to investigae a challenging
lower-resource and morphology-rich scenario. Data
statistics are collected in Appendix A.

For subword tokenization we used the same Sen-
tencePiece (Kudo and Richardson, 2018) model
for all language pairs, specifically the one used in
the mBart multilingual model (Liu et al., 2020).
This choice allows for unified preprocessing for all
languages we cover. We validate that token-based
models performs generally better than word-level
models (Appendix C.4), even though subwords
introduce an additional challenge of predicting sub-
word continuation (Appendix C.5).

We used the fairseq (Ott et al., 2019) framework
for training our models. Baseline discrete models
are trained with cross-entropy loss, label smoothing
equal to 0.1 and effective batch size 65.5K tokens.
Both discrete and continuous models are trained
with learning rate 5 · 10−4, 10k warm-up steps for
ro-en and en-de, and 4k for the smaller en-tr
dataset. All continuous models are trained with
the cosine distance objective in Equation (2). We
provide all training details in Appendix B.

1https://www2.statmt.org/

Figure 1: BLEUbeam−BLEUgreedy scores for the ro-en
newsdev2016 for continuous output models with uni-
form random and pre-trained embeddings. Greedy
(beam size 1) BLEU scores are 30.0 for pre-trained, and
28.6 for random embeddings.

We measure translation accuracy using Sacre-
BLEU 2 (Papineni et al., 2002; Post, 2018) and
BertScore 3 (Zhang et al., 2020). Note that
BertScore is scaled differently for each language,
so the scores cannot be compared across languages.

5 Results and Discussion
Scores. Per Table 1, we find that random uniform
embeddings outperform the pre-trained baseline for
en-de, match it closely for ro-en, and only under-
perform in the low-resource case for en-tr. We
find that hypercube embeddings consistently per-
form no better than uniform embeddings; however,
it is possible that their computational advantages
can make up for this in some applications.

Beam search. Preliminary experiments with
CoNMT models indicate little gain or even degra-

2nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3implementation by https://github.com/Tiiiger/bert_score
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dation from beam search, which is why we also
report results with greedy decoding for pre-trained
in Table 1. Further investigation in Figure 1 shows
that the ro-en model with pre-trained embeddings
degrades consistently, performing best in the greedy
case, while the random embedding model benefits
noticeably from a larger beam, in spite of neighbor-
ing words being random and not related. We discuss
the details of the beam search in Appendix D.

Frequency. We perform a token-level evaluation
using compare-mt (Neubig et al., 2019), comput-
ing the 𝐹1 score of matching a gold token (at its
gold position), aggregated over bins defined by the
token’s frequency in the training data. The result
in Figure 3 reveals that random embeddings allow
much better classification of rare tokens than even
the discrete reference model. To understand this
effect, we study the geometry of the pre-trained em-
bedding spaces in relation to frequency in Figure 2.
The top row shows the relationship between the fre-
quency rank (higher means rarer) and the similarity
to its nearest– and fifth-nearest– neighbors. For
all three language pairs we observe that most rare
words become identical to their nearest neighbor.
In contrast, for random embeddings this metric
does not depend on rank and is always around 0.4.
The bottom row of Figure 3 shows that the nearest
neighbors of rare words tend also to be comparably
rare. This geometry clarifies in part the surprising
performance of random embeddings on rare tokens.

Combined embeddings. Our finding motivates
combining pre-trained and random embeddings:

𝑬cmb(𝑦𝑖) =
𝛼𝑬pre(𝑦𝑖) + (1 − 𝛼)𝑬rand(𝑦𝑖)
∥𝛼𝑬pre(𝑦𝑖) + (1 − 𝛼)𝑬rand(𝑦𝑖)∥ .

To emphasize pre-trained distances more than the
noise, we choose 𝛼 = 0.9 for all language pairs.
This simple approach leads to overall improved
performance, on almost all metrics and language
pairs as shown in Table 1. Furthermore, Fig-
ure 3 confirms that combined embeddings pre-
serve the performance of pre-trained embeddings
on frequent tokens and increase 𝐹1 score on rare
tokens. We further study the impact 𝛼 on ro-en
in Appendix C.3 and observe that for all consid-
ered 𝛼 ∈ [0.5, 0.9], the combination outperforms
random and pre-trained embeddings along both
metrics; the specific value of 𝛼 in this range has
only negligible impact.

6 Additional Related Work
CoNMT losses. Earlier work in CoNMT suggests
loss functions other than cosine, based on modified
Langevin (a.k.a. von Mises-Fisher) log-likelihood,
or based on max-margin constructions, to perform
better (Kumar and Tsvetkov, 2019; Bhat et al.,
2019). Nevertheless, in preliminary experiments,
we find that when using more modern architectures
and datasets, such objectives do not outperform
the cosine loss. The cosine loss is an instance of
Langevin log-likelihood with spread 𝜅 = 1 (Ap-
pendix D), allowing for a theoretically-grounded
beam search over sequence likelihood, whereas for
max-margin losses it is not clear how to derive a
principled beam search. Nevertheless, we provide
a small set of additional experiments confirming
that max-margin losses underperform cosine while
showing similar effects in Appendix C.1.

Retrieval-augmented NMT. Similarly to
CoNMT, 𝑘-NN MT (Khandelwal et al., 2021;
Yogatama et al., 2021; Stap and Monz, 2023) relies
on the distance-based retrieval from datastore
in decoding time, with cosine similarity and
Euclidean distance as a popular choice of the
similarity measure. Even though creation of a
datastore and extracting target embeddings are two
distinct processes, they both share similar traits and
rely on discrete transformer MT system as a source
of representations. Li et al. (2022a) argue that
quality of 𝑘-NN MT directly depends on the quality
of retrieved neighbors contexts from the datastore,
and show that 𝑘-NN MT exhibits a related issue
with high similarity between unrelated keys. Our
findings suggests that randomization could provide
paths toward improved performance in 𝑘-NN MT.

Unargmaxability. Grivas et al. (2022) point out
that standard (discrete) language models can have
“unargmaxable” vocabulary items. When using di-
rectional modelling (on the unit sphere), unargmax-
ability is mitigated and only occurs for identical em-
beddings; however, embeddings that are too close
to their neighbors can have very small Voronoi
sets, leading to the phenomenon we identify in this
work, which is problematic in practice for CoNMT.
Random perturbations to embeddings might effec-
tively mitigate unargmaxability in discrete models
as well.

Hubness. Hubness (Dinu and Baroni, 2014;
Lazaridou et al., 2015; Huang et al., 2019) is a phe-
nomenon that impacts nearest-neighbor retrieval
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Figure 2: Pre-trained embeddings demonstrate strong correlation between the frequency rank of each token and
(top) the cosine similarity, and (bottom) the frequency rank of its nearby neighbors. Most rare words are identified
with their nearest neighbor, which is also a rare word. Bin size 500; shaded area denotes 50% of values in each bin.

Figure 3: Token-level 𝐹1 test score grouped into three
bins defined by training set frequency. The 𝑥 label shows
frequency boundaries and token counts per bucket.

as well, characterized by the presence of a few
data points (hubs) that are close to many other data
points despite their semantic dissimilarity. The phe-
nomenon we observe is related but different: many
rare words are embedded very close to another rare
word, but not necessarily close to all others overall.
Therefore, methods for reducing hubness would not
necessarily prevent this situation.

7 Conclusion

Our experimental results show that randomly ini-
tialized target embeddings can achieve similar per-
formance as pre-trained ones and even surpass them
when a sufficiently large amount of data is avail-
able. The gap is most pronounced on very rare
tokens. We also found that beam size > 1 does
not harm the performance of CoNMT with random
target embeddings (compared to pre-trained target

embeddings). We suggest combining random and
pre-trained embeddings in attempt to maintain high
accuracy on frequent tokens as well as rare tokens.
This simple approach proved to be effective for
en-tr and ro-en in terms of overall performance.
However, more refined ways to combine random
embeddings with semantically meaningful anchors
may lead to more reliable improvements, and ide-
ally hold the potential to remove the reliance on a
pre-trained model entirely. Finding the best ways to
achieve this potential is an important avenue of fu-
ture work for CoNMT and for continuous modeling
of language repesentations more broadly.

Limitations

Generalization. Our experimental results show
that semantic similarity of the targets embeddings
does not play a major role for continuous-output
NMT. However, this may not necessarily hold for
other text generation tasks like summarization or
language modeling. To claim that random target
embeddings can be sucessfuly used for any text
generation task yet has to be proved. In the future,
we will conduct additional experiments on other
text generation tasks, such as summarization and
language modeling.

Dataset Size. Arora et al. (2020) argue that
random embeddings can achieve comparable per-
formance when the dataset size is big enough. In
our work we report results on three language pairs
with vast range of training samples.The gap be-
tween pre-trained and random embeddings is much
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higher for en-tr with 207K training samples than
for ro-en and en-de with 612K and 9.1M training
samples. Moreover, on en-de random embeddings
even outperform pre-trained ones. That hints that
random embeddings indeed work only if there is
sufficiently large amount of data available.

Static Embeddings. The formulation of the loss
we use in our work, specifically cosine distance,
leads to representation collapse when tuning target
embeddings jointly with the model, That is why in
our work the target embeddings are kept unchanged
during training. Li et al. (2022b) show that it
is possible to design a loss that allows for joint
training. However, we believe that fine-tuning of
random embeddings is orthogonal to our study.

Comparison with External Embeddings. In
the scope of this work, we compared only em-
beddings extracted from the discrete NMT model
(pre-trained) and randomly generated embeddings.
However, we do not compare random embeddings
with external models like mBart (Liu et al., 2020)
or fasttext (Bojanowski et al., 2017). That is inten-
tional since Tokarchuk and Niculae (2022) showed
that pre-trained embeddings extracted from discrete
NMT system perform the best compared to the ex-
ternal models, and our goal was to compare to the
best-performing baseline.

Loss Function. All our results are tied to the
choice of the target objective function, precisely co-
sine similarity. We chose cosine similarity to align
our work with previous studies on CoNMT (Ku-
mar and Tsvetkov, 2019; Tokarchuk and Niculae,
2022). Although our preliminary experiments
with Langevin-based as well as with margin-based
losses suggested worse performance than cosine for
CoNMT, other less-studied objectives, e.g., based
on geodesic distances, or on expectations of a dis-
crete loss (Scott et al., 2021), left outside of our
scope, may lead to further improvement.

Risks
NMT as a technology is subject to dual-use con-
cerns. We also want to stress that it is possible that
random embedding models make different kinds
of mistakes compared to other models, and they
should be studied and treated with caution before
deployment. CoNMT models are generally at an
earlier stage of development and do not seem likely
to replace the well-studied discrete models in de-
ployed application in the very near future.
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A Data Statistics
Table 2 contains data statistics for datasets used in
our experiments.

B Models’ Training Parameters
We report fairseq yaml config in Listing 1.
Language-pair–specific parameters are highlighted
with a comment. Continuous transformer uses base
Transformer architecture with 6 layers of encoder
and decoder (Vaswani et al., 2017). Total number
of training parameters is the following: ro-en dis-
crete is 42M and ro-en continuous 74M; en-tr
discrete is 40M and en-tr continuous 73M; en-de
discrete is 132M and en-de continuous 123M.

We train our models using shared GPU cluster,
which is equipped with GeForce GTX TITAN X as
well as NVIDIA A100.

C Additional Experiments
C.1 Max-Margin Loss
We experimented with two variants of max-margin
loss described in Bhat et al. (2019), namely Syn-
margin by projection (SMP) and Syn-margin by
difference (SMD) on the en-ro dataset. Using the
same hyperparameters as for cosine and discrete
models (𝛼=1, learning rate of 10−4, and effective
batch size of 65536) all max-margin models ob-
tained scores below the best cosine model. Table 3
shows comparison of the models’ performance
when using max-margin loss and cosine loss for
training CoNMT on newstest2016 ro-en. While
these results may improve with tuning, it seems

Listing 1 Training yaml config for CoNMT.
task:
_name: translation
data: language_specific_data

criterion:
_name: cosine_ar_criterion

model:
_name: continuous_transformer
decoder:
output_dim: 128
learned_pos: true

encoder:
learned_pos: true

dropout:
0.3 # ro-en and en-tr
0.1 # en-de

target_embed_path: $PATH
no_decoder_final_norm: false

optimizer:
_name: adam
adam_betas: (0.9,0.98)

lr_scheduler:
_name: inverse_sqrt
warmup_updates:
10000 # ro-en and en-de
4000 # en-tr

warmup_init_lr: 1e-07
dataset:
validate_after_updates: 10000
max_tokens: 4096
validate_interval_updates: 2000

optimization:
lr: [0.0005]
update_freq: [16]
max_update: 50000
stop_min_lr: 1e-09

checkpoint:
no_epoch_checkpoints: true
best_checkpoint_metric: bleu
maximize_best_checkpoint_metric: true
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WMT ro-en WMT en-tr WMT en-de
train dev16 test16 train dev17 test17 test18 train valid test16 test18

sentences 612K 2K 2K 207K 1K 3K 3K 9.1M 2.2K 3K 3K

SPM vocabulary (tgt) 27.5K 23.3K 76K
SPM % oov (tgt) 0.0 0.38 0.31 0.0 0.45 0.53 0.55 0.0 0.0 0.0 0.0

Table 2: Datasets Statistics

model BLEU BERT

cosine pre-trained (beam=1) 29.0 58.5
cosine pre-trained (beam=5) 29.0 58.0
cosine random (beam=1) 28.0 58.2
cosine random (beam=5) 28.8 58.8

SMP pre-trained 27.1 54.7
SMD pre-trained 28.5 57.5
SMP random 16.7 36.7
SMD random 26.3 54.3

Table 3: Compariosn between cosine and max-margin
loss for newstest2016 ro-en.

unlikely for the effect to be more important than the
embedding choice, and our finding that random em-
beddings are at least competitive with pre-trained
ones holds. The cosine loss remains a performant,
simple, and robust training objective for CoNMT
with a probabilistic interpretation, making it suit-
able for principled beam search, and thus we restrict
the scope of our experiments to it.

C.2 Embeddings Dimensionality

Even though it is typical to train NLP models with
large embeddings dimension (𝑑 ≥ 512), we con-
ducted experiments on ro-en and found that smaller
dimensionality works better for CoNMT both with
random and pre-trained target embeddings Figure 5,
and do not harm the performance of discrete model
as per Figure 4.

We hypothesise that better performance of lower
dimensional embeddings on CoNMT is a direct
consequences of the cosine distance as a distance
measure. Despite its popularity, there is evidence
that cosine loss is not a suitable choice for mea-
suring the dissimilarity between high-dimensional
embeddings vectors (Zhou et al., 2022), and using
another distance metric can potentially improve
the results of the models with larger embeddings
dimensionality. We leave this question for the fu-
ture investigation. Since the dimensionality 128
performs the best among all tested dimensionalities,

Figure 4: BLEU score of the discrete NMT models on
newstest2016 ro-en.

we do all our experiments with dimension equal to
128.

C.3 Combined Embeddings
In Table 1 we report performance of combined
embeddings with 𝛼 = 0.9. To study the effect of
𝛼 on the models’ performance, we conduct exper-
iments on ro-en for 𝛼 ∈ [0.5, 0.9]. As shown
in Figure 6, for all cases combined embeddings
outperform pre-trained and random ones on both
metrics.

C.4 Word Embeddings for CoNMT
Since the continuous-output model struggles with
subwords continuation and, at the same time, per-
forms better on rare words, we conduct experiments
on the word level. Word-level model tends to suf-
fer from out-of-vocabulary issues (Table 2), so
discrete model performance drops respectively. Ta-
ble 4 provides the comparison between the discrete
word-level model and continuous-output model
with random targets. Even though the continuous-
output model struggles with subwords continua-
tions, overall, using subwords allows us to have a
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Figure 5: BLEU score on ro-en newstest2016 of
continuous-output model with various dimensionalities
of random and pre-trained target embeddings.

Figure 6: BLEU and BERTScores on ro-en
newsdev2016 with different values of 𝛼.

stronger model both for discrete and continuous-
output cases.

C.5 Subword Embeddings for CoNMT
We rely on the unigram language model for subword
segmentation (Kudo, 2018) to train discrete and
continuous-output NMT models as mentioned in
Section §5. We hypothesize that it is harder for
the continuous-output model to predict subwords
than for the discrete model. Table 5 illustrates that
the f1 macro average for the beginning of the spm
tokens and continuation of the spm tokens differ a
lot for discrete and continuous models. While the
discrete model performs better on continuations,

model ro-en en-tr

discrete words 28.5 8.9
continuous random words 27.6 5.6
discrete tokens 32.1 12.7
continuous random tokens 29.2 9.3

Table 4: BLEU scores for word level and tokens level
models on validation set with greedy decoding.

continuous models struggle with continuations of
subwords. However, overall scores for pre-trained
and random targets are the same for continuation
and random embeddings performs slightly better
on the beginning of the subwords.

model F1
SPM start SPM cont.

discrete 0.12 0.14
pre-trained embeddings 0.10 0.09
random embeddings 0.11 0.09

Table 5: F1 score on newstest2016 ro-en for begin-
ning and continuation of the SentencePiece tokens.

D Beam Search
Implementing beam search meaningfully for
CoNMT is possible by using the following prob-
abilistic interpretation of the cosine loss as a
Langevin: log-likelihood with constant concen-
tration parameter 𝜅: in beam search we use this
probabilistic interpretation and take

log𝑝(𝑦𝑖 = 𝑡 | 𝒚<𝑖,𝒙) = − cos(𝑬 (𝑡),𝒉)+log𝐶𝑑 (1),

i.e., we apply the normalizing constant of the
Langevin distribution for dimension 𝑑 and fixed
concentration 𝜅 = 1. We may then use the built-
in fairseq beam search using this log-likelihood.
We limit the maximum translation length to source
length plus 200.

One possible explanation why random embed-
dings perform better than pre-trained, especially
for beam sizes greater than one, may be related to
disentanglement: If the continuous output predic-
tion is “off-target” by enough to cause the nearest
embedding to be wrong, provided sufficient sepa-
ration between embeddings, expanding the search
to more nearest neighbors can recover the solution.
In contrast, for clumped pre-trained embeddings,
many embeddings concentrate close to the correct
one, polluting the beam.
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