
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 737–744

June 16-21, 2024 ©2024 Association for Computational Linguistics

MEMORY-VQ: Compression for Tractable Internet-Scale Memory

Yury Zemlyanskiy*†, Michiel de Jong*†, Luke Vilnis
Santiago Ontañón, William W. Cohen, Sumit Sanghai, Joshua Ainslie

Google Research

Abstract

Retrieval augmentation is a powerful but
expensive method to make language mod-
els more knowledgeable about the world.
Memory-based methods like LUMEN (de Jong
et al., 2023a) pre-compute token representa-
tions for retrieved passages to drastically speed
up inference. However, memory also leads to
much greater storage requirements from stor-
ing pre-computed representations.

We propose MEMORY-VQ, a new method
to reduce storage requirements of memory-
augmented models without sacrificing perfor-
mance. Our method uses a vector quanti-
zation variational autoencoder (VQ-VAE) to
compress token representations. We apply
MEMORY-VQ to the LUMEN model to obtain
LUMEN-VQ, a memory model that achieves a
16x compression rate with comparable perfor-
mance on the KILT benchmark. LUMEN-VQ
enables practical retrieval augmentation even
for extremely large retrieval corpora.

1 Introduction

Retrieval augmentation is a common method to im-
prove the factual knowledge of language models
(Izacard and Grave, 2021; Borgeaud et al., 2022;
Lewis et al., 2020; Khandelwal et al., 2020; Guu
et al., 2020; Izacard et al., 2022). Retrieval pro-
vides a model with additional context in the form
of text passages relevant to an input query. How-
ever, retrieval augmentation comes at an increased
computational cost, as the model must process the
retrieved passages on-the-fly.

A recent line of work (Zemlyanskiy et al., 2021;
de Jong et al., 2022; Chen et al., 2022; Li et al.,
2022; de Jong et al., 2023a) speeds up retrieval
augmentation by pre-encoding passages from the
corpus in advance. This way, the model can retrieve
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FiD LUMEN L-VQ
Inference cost in TFLOPs

Per sample 28.0 12.5 12.5

Storage cost
Per token 2 bytes 8 KB 0.5 KB
For Wikipedia 8 GB 30 TB 2 TB
For 1T tokens 2 TB 7 PB 0.5 PB

KILT valid in % exact match
Average 72.80 72.66 72.42
NaturalQuestions 61.47 62.64 62.74
TriviaQA 83.40 82.84 82.61
FEVER 93.47 92.77 92.18
TREX 83.58 83.78 83.42
ZeroShot RE 72.77 72.85 72.61
HotpotQA 42.09 41.09 41.00

Table 1: Main results: LUMEN-VQ (L-VQ) nearly
matches Fusion-in-Decoder in quality while benefit-
ing from LUMEN compute savings without impracti-
cal LUMEN storage requirements.

representations instead of raw text, which avoids
the cost of reading retrieved passages from scratch.
One such model, LUMEN, stands out for its strong
performance, achieving 3x faster inference than
standard Fusion-in-Decoder (Izacard and Grave,
2021) (FiD) with minimal loss in quality.

However, these pre-encoding memory models
use much more storage than traditional retrieval-
augmented models - LUMEN saves an embedding
for each token in the corpus, which takes up much
more space than token IDs. Table 1 compares
storage requirements for T5 XXL-sized models.
FiD requires 2 bytes to store an ID of each to-
ken, while LUMEN uses a 4096-dimensional vector
of bfloat16 values, summing to 8KB per token.
Wikipedia contains around 4 billion tokens, which
means LUMEN token representations take up 30TB.
For an internet-scale corpus of 1 trillion tokens,
disk requirements balloon to an impractical 7PB.
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This work combines product quantization (Jégou
et al., 2011) and VQ-VAE method (van den Oord
et al., 2017) to significantly reduce storage require-
ments for memory-based methods with limited loss
in quality. In particular, LUMEN-VQ achieves a 16x
compression rate, meaning we only need 2TB to
store memories for all of Wikipedia and 500TB for
a 1 trillion token corpus. Moreover, LUMEN-VQ

suffers minimal loss in performance on the KILT
benchmark (Petroni et al., 2021) of knowledge in-
tensive tasks.

Our contribution is the first paper on compress-
ing pre-encoded token memory representations.
This compression makes memory methods such as
LUMEN practical even for extremely large retrieval
corpora. Previous works (e.g., (Santhanam et al.,
2022; Yang et al., 2022b; Cohen et al., 2022; Yang
et al., 2022a)) have focused on token representation
compression for late-interaction reranking models.
In contrast, our approach compresses the interme-
diate representations of a language model. These
compressed representations are used as inputs into
an LLM, and the compression layers’ parameters
are trained alongside the rest of the model.

2 Background

We aim to match FiD and LUMEN performance
in quality while reducing LUMEN storage require-
ments. We first describe FiD and LUMEN, methods
on which MEMORY-VQ is built, and their storage
requirements. For an in-depth analysis, please see
de Jong et al. (2023a). We follow up with back-
ground on vector quantization, including product
quantization and VQ-VAE used for MEMORY-VQ.

2.1 Retrieval and memory augmented models

2.1.1 Fusion-in-Decoder
Fusion-in-Decoder (FiD) (Izacard and Grave, 2021)
builds upon the T5 (Raffel et al., 2020) encoder-
decoder model. It retrieves relevant text passages,
appends them to the input Q, and processes each
input-passage pair with the encoder. The resulting
token representations are merged and attended by
the decoder. We highlight live components in blue
and pre-computed in orange. FiD does not have
any pre-computed components.

G = Dec
[
Enc(Q;Passage1); . . .Enc(Q;Passagek)

]

FiD storage needs are low since we only need to
store token IDs. Each ID can be encoded with 16

bits, so the storage cost for a retrieval corpus with
N tokens is

SFiD = 16 ·N

2.1.2 LUMEN

LUMEN (de Jong et al., 2023a) reduces inference
cost by partially pre-computing encoder represen-
tations for retrieved passages. Instead of retrieving
the actual text, LUMEN retrieves intermediate layer
representations during inference.

LUMEN is initialized from a pre-trained T5
encoder-decoder model, with a memory encoder
containing the initial 1−α proportion of layers and
a live encoder with the remaining α proportion of
layers. The memory encoder is applied offline to
pre-compute memory representations for passages
in the corpus. Later, these representations are dy-
namically updated with the fine-tuned live encoder
based on the input and task. To ensure compatibil-
ity, MEMORY-VQ applies the memory encoder to
the input before concatenating the question repre-
sentation with the memory representation.

Hi =
[
MemEnc(Q); MemEnc(Passagei)

]

G = Dec
[
Q;LiveEnc(H1); . . .LiveEnc(Hk)

]

Choosing α = 1 yields a model very close to FiD
while α = 0 is a full memory model. One of the
insights of the LUMEN paper is that one can match
FiD performance while using small α, reducing in-
ference cost to a fraction α of FiD encoder FLOPs
for any given model size.

LUMEN keeps d-dimensional MemEnc output
representations for every token. With bfloat16
format, the total storage cost becomes

SLUMEN = 16d ·N

2.2 Vector quantization

Vector quantization (VQ) is a classical compression
technique for vector data. The general idea is to
prepare a set of vectors known as “codes” and then
represent each input vector with the nearest code.
The approach significantly reduces storage require-
ments as we only need to store the integer ID of the
code instead of the entire high-dimensional input
vector. VQ is a lossy compression method since
decompression returns the value of the nearest code
(by looking up the ID) instead of the original vector.
Usually, codes are generated by clustering the input
vectors, for example, using kmeans-like methods.

738



2.2.1 Product quantization
A popular variant of vector quantization is prod-
uct quantization (Jégou et al., 2011; Ge et al.,
2013). The method involves partitioning high-
dimensional vectors into subspaces and indepen-
dently quantizing each subspace using a vector
quantization subroutine. The product quantization
is frequently used in modern approximate nearest
neighbor search engines (Guo et al., 2020; Johnson
et al., 2021) to speed up lookup.

2.2.2 VQ-VAE
The VQ-VAE approach (van den Oord et al., 2017)
is a variant of variational autoencoders that utilizes
vector quantization for obtaining a discrete latent
representation. Notably, the VQ-VAE compression
layer allows joint training with the rest of the model
due to a straight-through estimator for gradient
backpropagation. The method is commonly used
in creating discrete representations of continuous
objects such as images or audio (van den Oord
et al., 2017; Razavi et al., 2019).

3 MEMORY-VQ

We propose MEMORY-VQ, an efficient method for
reducing storage requirements for memory-based
models. The high-level idea is to compress memo-
ries using vector quantization techniques and store
integer codes instead of the original memory vec-
tors. Codes are decompressed into vectors on the
fly. Applying the method to LUMEN yields the
following LUMEN-VQ model.

codesi = CompressVQ(MemEnc(Passagei))

Hi =
[
MemEnc(Qi); DecompressVQ(codesi)

]

G = Dec
[
Q;LiveEnc(H1); . . .LiveEnc(Hk)

]

To perform CompressVQ and DecompressVQ
we apply product quantization, splitting each vector
into subspaces and independently quantizing each
subspace using VQ-VAE. Codes are an exponential
moving average of memory vectors assigned to the
code in each batch. Appendix A in van den Oord
et al. (2017) contains a detailed description.

For training the compression layer jointly with
the model, we follow the VQ-VAE recipe, but we
avoid using the commitment loss in our experi-
ments as it led to model divergence.

To initialize the codebooks, we use a procedure
similar to kmeans++ initialization (Arthur and Vas-
silvitskii, 2007). Additionally, we perform code-

book reset (Williams et al., 2020) using the same
procedure to re-initialize infrequently used codes.

We divide memories into g subspaces, and if
needed, pad memories with zeros to ensure divisi-
bility. Each subspace has C codes. Therefore the
storage requirement for each quantized vector is
the number of subspaces multiplied by the number
of bits required to represent each ID, which is the
logarithm of the number of codes.

SLUMEN-VQ = g · dlog2Ce ·N

4 Experiments
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Figure 1: LUMEN-VQ achieves a strongly improved
trade-off between performance and compression.
The plot shows average exact match on dev sets of
KILT tasks as a function of compression rate. We com-
pare LUMEN-VQ with baselines Scale down (LUMEN
XL and LUMEN Large) and LUMEN-Light (FiD-Light
from Hofstätter et al. (2022a) adapted for LUMEN).

Model KILT, EM
LUMEN-VQ 72.43
initialize from fine-tuned LUMEN 72.42
+ freeze memory encoder 72.33
+ freeze whole model 71.79

Table 2: Performance comparison of different ap-
proaches for initializing and training the LUMEN-VQ.

4.1 Experimental setup
Model configuration LUMEN-VQ and LUMEN

are built on the T5.1.1 architecture (Raffel et al.,
2020) and implemented in JAX using Flax (Heek
et al., 2020) and Flaxformer. All models fine-tune
public T5.1.1 XXL checkpoints. We train FiD us-
ing the recipe from Izacard and Grave (2021).
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The training setup for LUMEN and LUMEN-VQ

is based on de Jong et al. (2023b). We initialize
the memory encoder with the first 1 - α proportion
of layers from the T5 encoder and the live encoder
with the last α proportion of layers, where α is the
given proportion of live layers. We set α = 1

3 in
our main experiments.

We train and evaluate on a subset of knowledge-
intensive task datasets from the KILT benchmark
(Petroni et al., 2021). We adopt the retrieval proce-
dure from Hofstätter et al. (2022b) and use GTR-
Base model (Ni et al., 2021) as the retriever. See
Appendix A and de Jong et al. (2023b) for details.

4.2 Main results
In our main experiments, we compress LUMEN-
XXL’s 4096-dimensional memories using g = 256
subspaces and C = 65536 codes per subspace,
allowing us to store code IDs in int16 format. We
need 512 bytes to store each token vector instead of
8192 bytes for the original memories. As a result,
LUMEN-VQ achieves a compression rate of 16 with
minimal performance loss, as shown in Table 1.

4.3 Quality-compression rate trade-off
We investigate the quality-compression tradeoff for
LUMEN-VQ by varying the number of subspaces.

We compare against several naive baselines;
the first involves scaling down the model (e.g.,
LUMEN-XL or LUMEN-Large). This reduces d
from 4096 to 2048 or 1024, respectively. The sec-
ond baseline, called LUMEN-Light, is inspired by
the FiD-Light approach (Hofstätter et al., 2022a).
In LUMEN-Light, we retain memories of the first
K tokens, varying K from 1

2 to 1
4 of the passage

length, achieving compression rates of 2 and 4.
Figure 1 presents the performance results. Both

baselines exhibit significant performance losses
as compression rates increase. In contrast, the
LUMEN-VQ measure shows a gradual decline in
performance, with a loss of approximately 0.2 per-
formance points at a compression rate of 16.

4.4 Ablations
We investigate if initializing VQ-VAE training from
a fine-tuned LUMEN model yields better results.
The results in Table 2 show that fine-tuning LUMEN-
VQ from scratch achieves similar performance to
initializing from a fine-tuned LUMEN model.

We also analyze which model components bene-
fit most from joint fine-tuning with VQ-VAE. Freez-
ing the memory encoder during joint training, start-

ing with a fine-tuned LUMEN model, has little im-
pact on performance. However, updating only VQ-
VAE codes while freezing the entire model leads
to decreased performance, indicating the model’s
need to adapt to decompression layer errors.

5 Related work

Memory models Retrieval augmentation can be
computationally expensive due to the additional
context that language models need to process.
To mitigate this, memory models like LUMEN
(de Jong et al., 2023a), GLIMMER (de Jong et al.,
2023b), and others (Zemlyanskiy et al., 2021;
de Jong et al., 2022; Wu et al., 2022a; Li et al.,
2022; Zhong et al., 2022; Chen et al., 2022; Wu
et al., 2022b; Bertsch et al., 2023; Milbauer et al.,
2023) store pre-computed representations in mem-
ory. MEMORY-VQ focuses on improving the stor-
age requirements for memory-based models. While
our experiments involve the LUMEN (de Jong et al.,
2023a) model due to its strong performance, the
method applies to a broader range of models.

Compression for late-interaction reranking
MEMORY-VQ focuses on compression for late-
interaction memory models, while other works
have explored compression for late-interaction
reranking. For instance, SDR (Cohen et al., 2022)
employs an autoencoder to reduce token represen-
tation dimensionality, followed by product quanti-
zation. BECR (Yang et al., 2022a) utilizes locality-
sensitive hashing for token representation compres-
sion. CQ (Yang et al., 2022b) learns vector quan-
tization parameters by treating codes as learnable
weights and uses Gumbel-Softmax for differen-
tiable nearest code determination. Finally, Col-
BERTv2 (Santhanam et al., 2022) proposes a cus-
tom compression scheme combining PQ and inte-
ger quantization to handle reconstruction residuals.

6 Conclusion

We introduced MEMORY-VQ, a novel approach
for reducing the storage requirements of memory-
augmented language models without compromis-
ing performance. By employing VQ-VAE to com-
press token representations, we obtain a LUMEN

model with 16x compression, denoted as LUMEN-
VQ. Remarkably, LUMEN-VQ maintains perfor-
mance close to LUMEN and FiD and benefits from
LUMEN inference speed-ups with sharply reduced
storage cost. Using MEMORY-VQ, memory aug-
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mentation is a practical solution for drastic infer-
ence speedups with extensive retrieval corpora.

7 Limitations

This work concerns a memory compression and
speedup method for language models augmented
with retrieved passages. The goal of a retrieval-
augmented language model is often to enhance
factuality by grounding generations in a specific
corpus of text. Of course, this pushes the burden of
factuality on to the curation of text, and without a
good corpus can still result in model confabulations
and propagation of harmful biases. Especially in
the context of search-result-augmented language
models, retrieved web data has no guarantee of fac-
tuality or unbiasedness. Secondly, when looking
at compression-quality tradeoffs, it is important
to consider the measures of quality. In our work
we evaluate the compressed model on a variety of
knowledge-intensive benchmarks, but those wish-
ing to use our method in contexts requiring other
capabilities or safeguards will need to evaluate the
compression-quality tradeoff in those specific do-
mains.
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A Experimental setup

Model configuration The original LUMEN im-
plementation employed a separate question en-
coder, but de Jong et al. (2023b) showed we can
re-use the memory encoder as long as it is fine-
tuned.

Fine-tuning During fine-tuning, we utilize the
Adafactor optimizer (Shazeer and Stern, 2018) with
a constant learning rate of 0.0001, a batch size of
128, and a dropout rate of 0.1 for all tasks. When
performing multi-task training, we uniformly sam-
ple from the tasks. We allocate 48 and 304 to-
kens for question and passage inputs, respectively.
LUMEN-VQ is using 0.999 as an EMA factor for
code updates.

Data We train and evaluate on a subset of
knowledge-intensive task datasets from the KILT
benchmark (Petroni et al., 2021). The datasets
include question-answering datasets such as Nat-
ural Questions (Kwiatkowski et al., 2019), Triv-
iaQA (Joshi et al., 2017), and HotPotQA (Yang
et al., 2018), along with the fact verification dataset
FEVER (Thorne et al., 2018), and the slot-filling
datasets Zero Shot RE (Levy et al., 2017) and T-
REx (ElSahar et al., 2018). To address imbalanced
dataset issues, we apply the relevance filtering pro-
cedure introduced by Hofstätter et al. (2022b).

For the retrieval corpus, we use a Wikipedia
dump provided by the KILT benchmark
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http://dl.fbaipublicfiles.com/BLINK/
enwiki-pages-articles.xml.bz2 containing
approximately 4B tokens.

Retrieval We adopt the retrieval procedure in-
troduced by Hofstätter et al. (2022b), where
Wikipedia articles are segmented into chunks, each
containing up to 200 words. The dense retriever,
a pre-trained GTR-Base model (Ni et al., 2021),
is utilized to identify the most relevant chunks for
each query, with 20 retrieved passages for each
query.

B Experiments

B.1 Smaller codebook
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Figure 2: The plot shows average exact match on vali-
dation sets of KILT tasks as a function of compression
rate. We compare LUMEN-VQ with the codebook of
size C = 65536 and C = 4096.

We study the effect of using a smaller codebook
of size C = 4096 instead of C = 65536. Results
in Figure 2 show that using a smaller codebook has
similar quality-compression trade-offs for lower
compression rates but leads to worse trade-offs
when we increase the compression rate.

B.2 Can we compress code IDs even further?

Integer data, like token IDs, might exhibit regu-
larities, enabling additional data compression by
using fewer bits for frequent patterns. For instance,
applying standard compression tools like gzip or
zstd to Wikipedia token IDs resulted in a compres-
sion factor of around 1.5. However, using the same

tools on LUMEN-VQ codes of Wikipedia passages
yielded a more modest compression rate of 1.1.

Compression was performed independently on
each subspace, with most subspaces being incom-
pressible. Around 5% of the subspaces showed
compression rates ranging from 2 to 6. Notably,
no compression was achieved when attempting to
compress codes from all subspaces together.
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