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Abstract

Retrieval-augmented generation framework ad-
dresses the limitations of large language mod-
els by enabling real-time knowledge updates
for more accurate answers. An efficient way
in the training phase of retrieval-augmented
models is attention distillation, which uses at-
tention scores as supervision signals instead of
manually annotated query-document pairs. De-
spite its growing popularity, the detailed mech-
anisms behind the success of attention distil-
lation remain unexplored, particularly the spe-
cific patterns it leverages to benefit training.
In this paper, we address this gap by conduct-
ing a comprehensive investigation of attention
distillation workflow and identifying key fac-
tors influencing the learning performance of
retrieval-augmented language models. We fur-
ther propose several insightful indicators for
optimizing models’ training methods and avoid-
ing ineffective training.

1 Introduction

Large language models (LLMs) have showcased
remarkable capabilities across various natural lan-
guage processing tasks (Min et al., 2023; OpenAI,
2023; Ouyang et al., 2022; Zhang et al., 2023a,b).
However, in the inference phase, their frozen pa-
rameters limit their ability to update knowledge in
real-time, resulting in the hallucination problem
during generation (Zhang et al., 2022, 2023c). Ad-
ditionally, these models also lack protection for
sensitive training data (Nasr et al., 2023; Lin et al.,
2021). One promising method to overcome these
limitations is using retrieval-augmented language
models (Ram et al., 2023; Shi et al., 2022; Izac-
ard et al., 2022b; Guu et al., 2020; Karpukhin
et al., 2020; Khandelwal et al., 2019). Retrieval-
augmented language models typically comprise
two essential components: (1) the retriever, which
selects relevant information, and (2) the reader,
which incorporates this information into the gener-

Figure 1: Training Contriever on NaturalQuestions for
the QA task with attention distillation shows an im-
proved Hit Rate @ 5 with a fine-tuned reader but a
significant decline with an off-the-shelf reader.

ation process. The integration of these two compo-
nents allows retrieval-augmented language models
to enhance accuracy and reliability by dynamically
utilizing external knowledge, while also reducing
training costs due to fewer trainable parameters
(Shi et al., 2023; Shuster et al., 2021).

The performance of retrieval-augmented lan-
guage models may significantly depend on the ef-
fective synergy between the retriever and the reader.
To this end, various methods have been proposed
to improve the coordination between these two
components (Karpukhin et al., 2020; Jiang et al.,
2023). Among these, attention score-based knowl-
edge distillation stands out due to its notable effec-
tiveness in question-answering (QA) tasks (Izacard
and Grave, 2020a), outperforming other established
methods (Karpukhin et al., 2020; Lewis et al., 2020;
Izacard and Grave, 2020b). In this process, the at-
tention scores from the reader are captured and
conveyed to the retriever as the supervisory sig-
nal (i.e., the retriever uses the attention scores as
the basis for assessing the relevance of retrieved
information), enabling the retrieval model to iden-
tify information candidates more effectively that
can significantly improve the language model’s re-
sponses. This efficient strategy reduces the need
for manual annotation of the knowledge corpus,
leading to resource savings while still achieving
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Retriever Reader

Question Q: What is
the highest mountain?

n1: Mount Everest is Earth's highest
mountain above sea level, located in
the Mahalangur Himal sub-range of

the Himalayas....

Relevant Document Set Dn

Answer A:
Mount Everest

Input
Reformulation

KL Divergence  
KL(PATTN||PRETR)

Attention Distribution of Dn  PATTN(ni|Q, A)Probability Distribution of Dn  PRETR(ni|Q)

Figure 2: The framework of the Retrieval-augmented Language Model of our experiment.

satisfactory results (Hu et al., 2023; Wang et al.,
2023).

However, the success of attention distillation
heavily relies on the quality of the reader model.
As shown in Figure 1, reader models of low quality
yield ineffective supervision signals, detrimentally
impacting the retriever’s performance. Given the
critical nature of the issue, it becomes imperative
to delve into the mechanism of attention distillation
and identify characteristics of low-quality readers
to avoid ineffective training.

A fundamental hypothesis underpinning atten-
tion distillation is that more attention to certain
tokens suggests that these tokens are likely to be
of greater relevance in answering questions (Izac-
ard and Grave, 2020a). However, this correlation
between attention scores and tokens has not to be
clearly established yet, as existing works lack a
quantitative analysis in attention scores’ impacts
within the training process of retrieval-augmented
language models. Therefore, our research seeks
to understand which text segments receive more
attention and how to assess the attention distillation
quality.

In this paper, we first experimentally confirm that
attention scores are not always effective as train-
ing supervisors across different experimental set-
tings under question-answering tasks. Motivated
by this observation, we conduct an in-depth token-
level quantitative analysis, seeking to uncover pat-
terns within attention scores that correspond to
high-quality supervision. We analyze the attention
scores from reader models of various qualities and
identify a clear, stable correlation between these
scores and supervisory quality, especially in tokens
related to answers and questions. Building on these
insights, we derived two key indicators to measure
the distillation quality based on the commonalities.
Our main contributions are as follows:

• We conduct an extensive analysis of attention
scores in large language models, mainly fo-
cusing on the prevalent decoder-only struc-
ture, to understand their impacts on retriever
model training and the overall performance of
retrieval-augmented language models, thereby
identifying key factors that significantly influ-
ence the model’s performance.

• We introduce novel metrics to evaluate the
reader model’s proficiency in attention distilla-
tion, aiming to improve training performance
by leaning on effective training sessions.

2 Method

In our experiment, we adapt the ATLAS architec-
ture (Izacard et al., 2022b) but use a decoder-only
language model structure for our empirical analysis,
focusing on question-answering tasks to study at-
tention score distillation mechanisms. Specifically,
for a given question Q, we supply models with
a knowledge base D = {d1, d2, ..., dm}, where
each di is a unique document. The objective of the
models is to find the question-relevant documents
Dn = {n1, n2, ..., nk} ⊆ D using the retriever,
and then incorporate the query and Dn as the in-
put for the reader to generate the answer A for the
given question.

The attention distillation approach uses attention
scores to gauge the importance of each input docu-
ment di during the answer generation process. To
accommodate changes in the reader model’s struc-
ture, we utilize the self-attention scores related to
the output tokens as a measure of document rele-
vance, rather than relying on cross-attention scores
between input documents and output that ATLAS
uses. In addition, the attention level of a token t
is not only evaluated from the self-attention score
αt but also the norm of the value vector vt should
be taken into account (Izacard et al., 2022b). Af-
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terwards, the Softmax operator is applied to obtain
the attention score distribution over the question-
relevant documents Dn:

PATTN (ni|Q,A) = softmax(
T∑

t=1

αt||vt||2)

(1)
where T represents the total token count in ni.

On the other hand, the retriever’s probability
distribution pRETR over Dn can be defined as:

PRETR(ni|Q) =
exp(s(ni, Q)/θ)

∑K
k=1 exp(s(nk, Q)/θ)

(2)

where s denotes the dot-product between the rep-
resentation vectors of the input question Q and
document candidate ni, and θ is the temperature
hyper-parameter.

During training, the attention score’s distribution
is distilled into the retriever by minimizing KL-
divergence between PATTN (ni) and PRETR(ni),
which aligns the retriever’s behavior more closely
with the insights derived from attention scores. Fig-
ure 2 visually illustrates the retrieval process and
the utilization of attention scores during training.

3 Experiments

We chose Falcon-1b (Penedo et al., 2023) as our
primary decoder-only reader model for its perfor-
mance and flexibility, and we follow ATLAS (Izac-
ard et al., 2022b) in using Contriver as the retriever
model. During the retrieval process, we set the
number of retrieved documents Dn to a fixed size
k = 5 to balance training costs with the amount of
information retrieved, thereby avoiding inefficien-
cies of either extreme.

3.1 Experiment Setup

Dataset We assess the model’s performance using
the NaturalQuestions (Kwiatkowski et al., 2019)
and the TriviaQA (Joshi et al., 2017) benchmarks,
which are the two most popular dataset in the QA
task. For the knowledge base, we utilize data from
Wikipedia as of December 20, 2018.
Experimental Settings Specifically, we use the
following settings for our experiments.
1) Off-the-shelf Distillation Training: We syn-
chronously train the model using the initial Falcon-
1b (Penedo et al., 2023) as the reader and Con-
triever (Izacard et al., 2022a) as the retriever.
2) Fine-tuned Distillation Training: This experi-
ment involves two steps:

Table 1: Model’s Performance of Different Experimen-
tal Settings

Method Dataset
Evaluation Metrics

EM↑ F1↑ HR@5↑
Off-the-shelf Distillation NQ 27.24 33.62 0.030

TriviaQA 30.55 35.24 0.022

Fine-tuned Distillation (Step1) NQ 31.76 38.72 0.391
TriviaQA 44.62 50.79 0.516

Fine-tuned Distillation (Step2) NQ 35.22 43.44 0.645
TriviaQA 54.59 61.04 0.643

Step1. We start with the initial Falcon-1b check-
point as a reader and Contriever as a retriever, only
fine-tuning the reader model while keeping the re-
triever model’s parameters fixed.
Step2. We continue training the retriever model
using the fine-tuned reader checkpoint from Step1,
updating the knowledge base index periodically.
Evaluation Metrics: We assess the model perfor-
mance in terms of retrieval quality and question-
answering correctness, given the involvement of
both retriever and reader models. We use the top-5
retrieval Hit Rate (HR@5), which is the proportion
of retrieved documents Dn containing at least one
answer A, to measure the retriever’s effectiveness.
For the reader’s QA performance, we employ the
standard Exact Match (EM) metric and F1-Score.

3.2 Results and Discussion

In this section, we empirically analyze the effective-
ness of attention distillation training by answering
the following research questions:
RQ1: When does the attention distillation work?

As shown in Table 1, the Fine-tuned Distillation
Training after Step2 shows the best performance in
both EM, F1 and HR@5. In contrast, Off-the-shelf
Distillation Training performs the worst, with its re-
triever even underperforming the initial Contriever
model (i.e., the retriever model of Fine-tuned Dis-
tillation Training Step1). Notice that the critical
difference lies in the quality of the reader models:
Off-the-shelf Distillation Training uses the initial
Falcon-1b model, whereas Fine-tuned Distillation
Training employs a well-tuned Falcon-1b. These
experimental results strongly suggest that the qual-
ity of attention scores is pivotal: attention scores
from the high-quality readers enhance training,
whereas low-quality ones lead to poor interac-
tion between the retriever and the reader.
RQ2: Are there any commonalities in attention
scores from the high-quality readers?

We sample 1000 data instances from each exper-
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Table 2: Average values of attention scores and Spearman correlation in answer-related and question-related tokens

Experiment Dataset
Answer-related Question-related

90th percentile 95th percentile 90th percentile 95th percentile

Attn. Corr. Attn. Corr. Attn. Corr. Attn. Corr.

Off-the-shelf Checkpoint NQ 0.033 0.227 0.039 0.196 0.023 0.103 0.024 0.092
TriviaQA 0.027 0.218 0.032 0.206 0.021 0.103 0.023 0.067

Off-the-shelf Attention Distillation NQ 0.017 0.145 0.017 0.076 0.027 0.139 0.039 0.153
TriviaQA 0.031 0.160 0.035 0.172 0.047 0.144 0.063 0.260

Fine-tuned Attention Distillation (Step1) NQ 0.039 0.308 0.052 0.282 0.035 0.343 0.045 0.333
TriviaQA 0.058 0.259 0.074 0.258 0.058 0.349 0.078 0.372

Fine-tuned Attention Distillation (Step2) NQ 0.049 0.316 0.066 0.350 0.032 0.310 0.039 0.225
TriviaQA 0.069 0.290 0.089 0.320 0.060 0.367 0.078 0.326

iment to obtain reliable analysis results. We focus
on the attention score characteristics at token level
to identify which tokens receive more attention
from high-quality signals. Our analysis firstly finds
that in the high-quality readers, the tokens most
related to answer and nouns in question receive the
most attention. Based on our initial observations,
we secondly focus on studying the distribution of
attention scores for answer-related and question-
related 1 tokens. We use token embedding’s cosine
similarity to measure its proximity to targets (i.e.,
answer or nouns in question), selecting the top 5%
and top 10% of closest tokens and analyzing their
average attention scores and Spearman correlation
with similarity to target tokens, as shown in Table
22. We also include the Off-the-shelf Checkpoint as
a baseline to observe attention score evolution in
different settings. This analysis identifies the key
commonalities in high-quality attention scores.

Commonality1. Higher attention to answer
tokens in higher-quality models. In all training
settings, tokens closer to answer tokens (i.e., from
a similarity higher than 90th percentile to a simi-
larity higher than 95th percentile) receive increas-
ingly higher attention scores. It can be observed
that for both two measure metrics, the Off-the-shelf
Distillation Training results are lower compared
to the Off-the-shelf Checkpoint, while Fine-tuned
Distillation Training shows improvement in both
Step1 and Step2. The results suggest that in Off-
the-shelf Distillation, the reader’s attention does
not effectively "highlight" key information, lead-
ing to suboptimal training. In contrast, Fine-tuned
Distillation after Step1 and Step2 both indicate that
high-quality readers focus more on relevant answer

1We only focus on the nouns in the question in selecting
question-related tokens.

2The highest values in the table are highlighted in bold on
the NQ Dataset and underlined on the TriviaQA Dataset.

tokens, thereby enhancing both the retriever’s per-
formance and the relevance of attention allocated
to these tokens, which is also revealed in Figure 3.

Commonality 2. Tokens similar to question
nouns receive more attention in high-quality
models. Table 2 also indicates that tokens closer
to the nouns in question tokens receive higher at-
tention scores. The Fine-tuned Distillation experi-
ments exhibit much higher values in both metrics
compared to Off-the-shelf Checkpoint and Off-the-
shelf Attention Distillation, aligning with their su-
perior performance. However, unlike Commonal-
ity 1, the Spearman correlation between attention
to question-related tokens and model performance
isn’t consistent: while Fine-tuned Attention Dis-
tillation Step2 surpasses Step1, its metric values
do not consistently align with this improvement,
suggesting a more complex relationship.
RQ3: How do we evaluate the quality of attention
distillation on decoder-only readers based on the
analysis results?

Indicator1. Focusing on the attention scores of
the nearest tokens to answer A, denoted as MA =
{ma1, ...,mak}. Higher average PATTN (mai)
values indicate better attention distillation quality.
Additionally, a higher average Spearman correla-
tion between the PATTN (mai) and their semantic
similarity to A also signifies better quality.

Indicator2. Examining the attention scores of
tokens closest to nouns in question Q, denoted as
MQ = {mq1, ...,mqk}. An increase in average
PATTN (mqi) suggests better quality. Moreover,
if the average Spearman correlation between the
attention scores of MQ and their similarity to Q
is above the threshold for a weak monotonic rela-
tionship (i.e., value > 0.3), the attention distillation
quality is considered good.
RQ4: Can we extend the proposed indicators to
encoder-to-decoder structure readers?

748



Figure 3: The attention score distribution histogram (left) and Spearman correlation distribution histogram of 95th

percentile answer-related tokens under NQ dataset.

Figure 4: Model performance (top) and their attention
distillation analysis (bottom) of Atlas-large model (yel-
low) for the answer-related tokens, comparing with Fine-
tuned Distillation Training (Step2) (blue).

An analysis with the fine-tuned encoder-to-
decoder structure Atlas-large model is presented
in Figure 4. The results show that the perfor-
mance of Atlas-large surpasses Fine-tuned Distilla-
tion Training (Step2). However, only the average
PATTN (mai) trend from Indicator1 applies to this
encoder-to-decoder structure model, while Atlas-
large exhibits a polarized distribution for the Spear-
man correlation values, as shown in Figure 3 and
Appendix A.
RQ5: Can we extend the proposed indicators to
perplexity distillation training?

Finally, we want to determine if our indicators
can apply to perplexity distillation, another popular
knowledge distillation method used in training the
retriever model. We fine-tune Atlas-large model
with the perplexity distillation method and find that
the perplexity distribution does not align with either
Commonality 1 or Commonality 2, saying that our
indicators are not suitable for perplexity distillation
(details in Appendix A and B).

4 Related Work

The concept of using attention scores for knowl-
edge distillation was introduced by (Izacard and
Grave, 2020a), and the following research has
mainly focused on independently optimizing the
reader and the retriever. Previous studies have
explored improving large language model perfor-
mance within the retriever-then-read framework
by addressing issues like hallucination (Shuster
et al., 2021) and dependency on pre-training data
(Kandpal et al., 2023), or enhancing retriever effi-
ciency through techniques like specific data sam-
pling (Hofstätter et al., 2021). Only one study has
examined the reader-retriever interaction within
a neural-retrieval-in-the-loop architecture, noting
that imperfect retrievers can degrade reader per-
formance, though it lacked quantitative analysis
(BehnamGhader et al., 2022).

Our study offers a comprehensive quantitative
analysis of how the reader and the retriever inter-
act during the neural-retrieval-in-the-loop training
architecture under the attention distillation mecha-
nism. We introduce novel metrics to evaluate the
efficacy of the training process across all general
reader-retriever framework.

5 Conclusion

In this paper, we comprehensively evaluate atten-
tion distillation for training retrieval-augmented
language models, emphasizing the importance of
attention to answer and question-related tokens.
We further introduce novel metrics for assessing
language models’ attention distillation ability to
optimize the training process.
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Limitation

This paper analyzes the attention score-based
knowledge distillation quality in training retrieval-
augmented language models under various exper-
imental settings in QA tasks. Furthermore, based
on our findings, we have developed two indicators
to assess the quality of attention score supervision.
However, our exploration is conducted based on
lightweight language models (i.e., language mod-
els with about one billion parameters) due to their
flexibility and have yet to extend to larger-scale lan-
guage models. In the future work, we will extend
the study to larger-scale language models, focusing
on validating the accuracy of our analysis on them
to enhance the generalizability and applicability of
our proposed methods.
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A Quantitative Analysis of
Answer-Related Tokens

We present a detailed analysis of answer-related to-
kens’ attention score distribution (or perplexity dis-
tribution of Perplexity Distillation Training) shown
in Table 3. In addition to the histograms visual-
ized for the attention score distribution of 95th per-
centile answer-related tokens under the NQ dataset
(i.e., Figure 3), we also plot the corresponding at-
tention score distribution figure under the TriviaQA
dataset, as shown in Figure 5.

B Quantitative Analysis of
Question-Related Tokens

We present a detailed analysis of question-related
tokens’ attention score distribution (or perplex-
ity distribution of Perplexity Distillation Training)
shown in Table 4, Figure 6, and Figure 7.

C The Internal Relationship within
Indicators

We also find a strong positive correlation (i.e., Pear-
son correlation > 0.5 in most cases) between our
two proposed indicators in decoder-only language
model structure. In contrast, this correlation does
not appear in encoder-to-decoder language model
structure, which also indicates that Indicator2 is
inapplicable to this language model structure.

D Dataset Statistics

For the NaturalQuestions dataset, we split it
according to the number of 79,168/8,757/3,610
to form the train/validation/test dataset; for the
TriviaQA dataset, we split it according to the
number of 78,785/8,837/11,313 to form the
train/validation/test dataset.

E Implementation Details

We conducted all computations on a Nvidia A100
GPU. For the Off-the-shelf Distillation Training
and the Fine-tuned Distillation Training, we use
Falcon-1b as the initial reader model and Con-
triever as the initial retriever model, which has
about 1 billion and 110 million training parameters
respectively. For the Atlas-large Distillation Train-
ing and Perplexity Distillation Training, we use
T5-large as the initial reader model and Contriever
as the initial retriever model, which has about 770
million and 110 million training parameters respec-
tively.

Off-the-shelf Distillation Training We set the
batch size to 1, the maximum length of the input
prompt to 128, and limit the generation max length
to 32. We set the learning rate to 1e-5 and used
the Adam optimizer. For NaturalQuestions dataset,
we set the total training steps to 160,000 with ap-
proximately 2000 warmup steps, training for about
40 hours. For TriviaQA dataset, we set the total
training steps to 320,000 with approximately 4000
warmup steps, training for about 60 hours.
Fine-tuned Distillation Training For Step 1, we
set the batch size to 1, the maximum length of the
input prompt to 128, and limit the generation max
length to 32. We set the learning rate to 1e-5 and
used the Adam optimizer. For NaturalQuestions
dataset, we set the total training steps to 160,000
with approximately 2000 warmup steps, training
for about 30 hours. For TriviaQA dataset, we set the
total training steps to 320,000 with approximately
4000 warmup steps, training for about 45 hours.

For Step 2, we set the batch size to 1, the maxi-
mum length of the input prompt to 128, and limit
the generation max length to 32. We set the learn-
ing rate to 5e-7 and used the Adam optimizer. For
NaturalQuestions dataset, we set the total training
steps to 6,000 with approximately 300 warmup
steps, training for about 2 hours. For TriviaQA
dataset, we set the total training steps to 32,000
with approximately 600 warmup steps, training for
about 3 hours.
Atlas-large Distillation Training We set the batch
size to 1, the maximum length of the input prompt
to 128, and limit the generation max length to 32.
We set the learning rate to 4e-5 and used the Adam
optimizer. For NaturalQuestions dataset, we set the
total training steps to 10,000 with approximately
500 warmup steps, training for about 20 hours. For
TriviaQA dataset, we set the total training steps
to 30,000 with approximately 600 warmup steps,
training for about 40 hours.
Perplexity Distillation Training We set the batch
size to 1, the maximum length of the input prompt
to 128, and limit the generation max length to 32.
We set the learning rate to 4e-5 and used the Adam
optimizer. For NaturalQuestions dataset, we set the
total training steps to 20,000 with approximately
1000 warmup steps, training for about 40 hours.
For TriviaQA dataset, we set the total training steps
to 10,000 with approximately 500 warmup steps,
training for about 15 hours.
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Table 3: Mean and std. of attention scores (or perplexity distribution in Perplexity Distillation Training) and the
Spearman correlations of the answer-related tokens.

Experiment Dataset Avg. Attn. (p90) Spearman Corr. (p90) Avg. Attn. (p95) Spearman Corr. (p95)

Off-the-shelf Model Checkpoint NQ 0.033± 0.016 0.227± 0.259 0.039± 0.023 0.196± 0.349
TriviaQA 0.027± 0.013 0.218± 0.252 0.032± 0.019 0.206± 0.331

Off-the-shelf Attention Distillation NQ 0.017± 0.008 0.145± 0.193 0.017± 0.010 0.076± 0.254
TriviaQA 0.031± 0.012 0.160± 0.174 0.035± 0.017 0.172± 0.236

Fine-tuned Distillation Training (Step1) NQ 0.039± 0.023 0.308± 0.276 0.052± 0.036 0.282± 0.336
TriviaQA 0.058± 0.031 0.259± 0.261 0.074± 0.050 0.258± 0.331

Fine-tuned Distillation Training (Step2) NQ 0.049± 0.023 0.316± 0.280 0.066± 0.036 0.350± 0.336
TriviaQA 0.069± 0.036 0.290± 0.267 0.089± 0.061 0.320± 0.323

Atlas-large Distillation Training NQ 0.062± 0.036 0.171± 0.462 0.083± 0.058 0.307± 0.471
TriviaQA 0.072± 0.045 0.141± 0.379 0.091± 0.067 0.217± 0.438

Perplexity Distillation Training TriviaQA 0.072± 0.039 0.029± 0.142 0.071± 0.042 0.013± 0.202

Figure 5: The attention score distribution histogram (left) and Spearman correlation distribution histogram of 95th

percentile answer-related tokens under TriviaQA dataset.

Table 4: Mean and std. of average attention scores (or perplexity distribution in Perplexity Distillation Training) and
Spearman correlations of the question-related tokens

Experiment Dataset Avg. Attn. (p90) Spearman Corr. (p90) Avg. Attn. (p95) Spearman Corr. (p95)

Off-the-shelf Model Checkpoint NQ 0.023± 0.011 0.103± 0.253 0.024± 0.014 0.092± 0.309
TriviaQA 0.021± 0.010 0.103± 0.245 0.023± 0.013 0.067± 0.304

Off-the-shelf Attention Distillation NQ 0.027± 0.010 0.139± 0.237 0.039± 0.017 0.153± 0.341
TriviaQA 0.047± 0.016 0.144± 0.220 0.063± 0.025 0.260± 0.280

Fine-tuned Distillation Training (Step1) NQ 0.035± 0.015 0.343± 0.238 0.045± 0.023 0.333± 0.303
TriviaQA 0.058± 0.024 0.349± 0.222 0.078± 0.037 0.372± 0.285

Fine-tuned Distillation Training (Step2) NQ 0.032± 0.014 0.310± 0.256 0.039± 0.021 0.225± 0.340
TriviaQA 0.060± 0.025 0.367± 0.227 0.078± 0.037 0.326± 0.311

Atlas-large Distillation Training NQ 0.037± 0.027 0.082± 0.251 0.038± 0.032 0.086± 0.345
TriviaQA 0.047± 0.245 0.076± 0.249 0.050± 0.038 0.081± 0.348

Perplexity Distillation Training TriviaQA 0.063± 0.038 −0.012± 0.207 0.060± 0.042 −0.036± 0.297
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Figure 6: The attention score distribution histogram (left) and Spearman correlation distribution histogram of 95th

percentile question-related tokens under NQ dataset.

Figure 7: The attention score distribution histogram (left) and Spearman correlation distribution histogram of 95th

percentile question-related tokens under the TriviaQA dataset.
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