@inproceedings{mitsios-etal-2024-improved,
title = "Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification",
author = "Mitsios, Michail and
Vamvoukakis, Georgios and
Maniati, Georgia and
Ellinas, Nikolaos and
Dimitriou, Georgios and
Markopoulos, Konstantinos and
Kakoulidis, Panos and
Vioni, Alexandra and
Christidou, Myrsini and
Oh, Junkwang and
Jho, Gunu and
Hwang, Inchul and
Vardaxoglou, Georgios and
Chalamandaris, Aimilios and
Tsiakoulis, Pirros and
Raptis, Spyros",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-short.72",
doi = "10.18653/v1/2024.naacl-short.72",
pages = "808--813",
abstract = "Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems.This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions.Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there are perceptual similarities among emotional classes.We thus redefine the emotion labeling problem by shifting it from a traditional classification model to an ordinal classification one, where discrete emotions are arranged in a sequential order according to their valence levels.Finally, we propose a method that performs ordinal classification in the two-dimensional emotion space, considering both valence and arousal scales.The results show that our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mitsios-etal-2024-improved">
<titleInfo>
<title>Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michail</namePart>
<namePart type="family">Mitsios</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Vamvoukakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgia</namePart>
<namePart type="family">Maniati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Ellinas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Dimitriou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Markopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Panos</namePart>
<namePart type="family">Kakoulidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Vioni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Myrsini</namePart>
<namePart type="family">Christidou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junkwang</namePart>
<namePart type="family">Oh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gunu</namePart>
<namePart type="family">Jho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inchul</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Vardaxoglou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aimilios</namePart>
<namePart type="family">Chalamandaris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pirros</namePart>
<namePart type="family">Tsiakoulis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spyros</namePart>
<namePart type="family">Raptis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems.This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions.Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there are perceptual similarities among emotional classes.We thus redefine the emotion labeling problem by shifting it from a traditional classification model to an ordinal classification one, where discrete emotions are arranged in a sequential order according to their valence levels.Finally, we propose a method that performs ordinal classification in the two-dimensional emotion space, considering both valence and arousal scales.The results show that our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.</abstract>
<identifier type="citekey">mitsios-etal-2024-improved</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-short.72</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-short.72</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>808</start>
<end>813</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification
%A Mitsios, Michail
%A Vamvoukakis, Georgios
%A Maniati, Georgia
%A Ellinas, Nikolaos
%A Dimitriou, Georgios
%A Markopoulos, Konstantinos
%A Kakoulidis, Panos
%A Vioni, Alexandra
%A Christidou, Myrsini
%A Oh, Junkwang
%A Jho, Gunu
%A Hwang, Inchul
%A Vardaxoglou, Georgios
%A Chalamandaris, Aimilios
%A Tsiakoulis, Pirros
%A Raptis, Spyros
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F mitsios-etal-2024-improved
%X Emotion detection in textual data has received growing interest in recent years, as it is pivotal for developing empathetic human-computer interaction systems.This paper introduces a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions.Initially, we establish a baseline by training a transformer-based model for standard emotion classification, achieving state-of-the-art performance. We argue that not all misclassifications are of the same importance, as there are perceptual similarities among emotional classes.We thus redefine the emotion labeling problem by shifting it from a traditional classification model to an ordinal classification one, where discrete emotions are arranged in a sequential order according to their valence levels.Finally, we propose a method that performs ordinal classification in the two-dimensional emotion space, considering both valence and arousal scales.The results show that our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.
%R 10.18653/v1/2024.naacl-short.72
%U https://aclanthology.org/2024.naacl-short.72
%U https://doi.org/10.18653/v1/2024.naacl-short.72
%P 808-813
Markdown (Informal)
[Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification](https://aclanthology.org/2024.naacl-short.72) (Mitsios et al., NAACL 2024)
ACL
- Michail Mitsios, Georgios Vamvoukakis, Georgia Maniati, Nikolaos Ellinas, Georgios Dimitriou, Konstantinos Markopoulos, Panos Kakoulidis, Alexandra Vioni, Myrsini Christidou, Junkwang Oh, Gunu Jho, Inchul Hwang, Georgios Vardaxoglou, Aimilios Chalamandaris, Pirros Tsiakoulis, and Spyros Raptis. 2024. Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers), pages 808–813, Mexico City, Mexico. Association for Computational Linguistics.