
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 821–828

June 16-21, 2024 ©2024 Association for Computational Linguistics

Order-Based Pre-training Strategies for Procedural Text Understanding

Abhilash Nandy Yash Kulkarni Pawan Goyal Niloy Ganguly
nandyabhilash@kgpian.iitkgp.ac.in
Indian Institute of Technology Kharagpur

India

Abstract

In this paper, we propose sequence-based pre-
training methods to enhance procedural under-
standing in natural language processing. Pro-
cedural text, containing sequential instructions
to accomplish a task, is difficult to understand
due to the changing attributes of entities in the
context. We focus on recipes, which are com-
monly represented as ordered instructions, and
use this order as a supervision signal. Our work
is one of the first to compare several ‘order-
as-supervision’ transformer pre-training meth-
ods, including Permutation Classification, Em-
bedding Regression, and Skip-Clip, and shows
that these methods give improved results com-
pared to the baselines and SoTA LLMs on two
downstream Entity-Tracking datasets: NPN-
Cooking dataset in recipe domain and ProPara
dataset in open domain. Our proposed methods
address the non-trivial Entity Tracking Task
that requires prediction of entity states across
procedure steps, which requires understanding
the order of steps. These methods show an im-
provement over the best baseline by 1.6% and
7-9% on NPN-Cooking and ProPara Datasets
respectively across metrics.1

1 Introduction

Procedural text comprises a series of sequential
instructions aimed at guiding individuals through
a task by presenting information in a step-by-step
manner. A procedure describes a step-wise inter-
action between multiple participating entities and
their attribute changes. For instance, "Photosynthe-
sis" as a procedure consists of interaction between
entities such as water, light, CO2, sugar, etc. Re-
cently, there has been an increase in the number of
studies in NLP that use procedural texts. Procedu-
ral text is common in natural language in recipes
(Marin et al., 2018a; Bień et al., 2020a; Chandu
et al., 2019; Majumder et al., 2019; Bosselut et al.,

1Code is available at https://github.com/
abhi1nandy2/Order_As_Supervision

2017), how-to guides (Nandy et al., 2021), and sci-
entific processes (Mishra et al., 2018). In this study,
we focus on recipes as they are commonly repre-
sented as ordered instructions. We utilize this order
as a supervision signal to develop customized pre-
training techniques to solve non-trivial tasks that
require anticipating the implicit effects of actions
on entities.

Understanding procedural text is difficult due
to the changing attributes of entities in the con-
text. Previous works such as Lee et al. (2020)
used Sentence-level Language Modeling (SLM) to
learn contextualized sentence-level representation
by training a hierarchical transformer to reconstruct
the original order of a shuffled sequence, Tang et al.
(2020) proposed Interactive Entity Network (IEN)
to model different types of entity interactions using
a recurrent network with memory for state track-
ing, and Zhang et al. (2021) combined external
knowledge with a BERT model to improve entity
tracking. However, such works do not compare
pre-training techniques which consider sequential
order of the steps of the procedure.

In this paper, we try to solve the non-trivial En-
tity Tracking Task that requires prediction of en-
tity states across procedure steps. Solving such
a task requires understanding the sequential na-
ture/order of the steps. Explicitly learning the or-
der within data has been shown to enhance per-
formance of tasks such as Video Representation
Learning, solving Jigsaw Puzzles to learn image
representations Noroozi and Favaro (2016), etc.
Similarly, ALBERT (Lan et al., 2020) shows that
sentence-order prediction between two sentences
is a useful pre-training objective to improve per-
formance on various downstream NLP tasks. In-
spired by such works, our work is one of the first
to introduce and compare several novel ‘order-as-
supervision’ pre-training methods such as Permu-
tation Classification, Skip-Clip, and Embedding
Regression to enhance procedural understanding.

821

https://github.com/abhi1nandy2/Order_As_Supervision
https://github.com/abhi1nandy2/Order_As_Supervision


These pre-training methods give a significant im-
provement of 1.6% and 7− 9% compared to base-
lines across metrics on two downstream Entity-
Tracking datasets, namely, NPN-Cooking dataset
(Bosselut et al., 2017) in the recipe domain and
ProPara dataset (Mishra et al., 2018) in the open
domain. Our methods also outperform SoTA LLMs
in terms of Average Accuracy on ProPara.

2 Pre-training Methods

We propose three new pre-training methods that
help in learning sequential context for procedural
texts: Permutation Classification, Embedding Re-
gression, and Skip-Clip. For all the methods, a set
of recipes with the same number of steps are sam-
pled. Such a recipe of N steps can be represented
by x = (x1, x2, ..., xN ).

2.1 Permutation Classification
In this method, the original recipe is shuffled by
permuting its steps by some index permutation
ψi = (ψi1, ψi2, ..., ψiN ). The set of all possible
permutations ψ∗ contains N ! elements. If, for ex-
ample, N = 9 the total number of possible permu-
tations equals 9! = 362,880. For practical reasons,
as a pre-processing step, we reduce the set of all
possible permutations by sampling a set ψ of max-
imally diverse permutations from ψ∗. Following
Noroozi and Favaro (2016), we iteratively include
the permutation with the maximum Hamming dis-
tance to the already chosen ones. For every recipe,
we select a random permutation from this set and
assign its index as a label. To solve the permutation
classification task, we input the permuted sequence
into a transformer and use the< s > (classification
token) embedding to perform sequence multi-class
classification. The number of output classes is
equal to the size of the permutation set. Figure 1
shows the Permutation Classification Architecture.

2.2 Embedding Regression
Following Korba et al. (2018), we modify the
permutation classification method defined above.
Thus, instead of predicting the index, we convert
the permutation into an embedding vector and per-
form a regression task on this embedding. We ex-
periment with 2 different embedding constructions,
considering ψ as a permutation of length N - Ham-
ming and Lehmer Embedding. Hamming Embed-
ding (h) is a vector of size N2 formed by concate-
nating one-hot vectors for each value of the permu-
tation - hN.i+j = I{ψ(i) = j}, where I is the Iden-

tity Function. Lehmer Embedding (l) is a vector of
size N , where the value at ith index is the number
of indices less than i with a greater permutation
value - li = #{j : j < i, ψ(j) > ψ(i)}1≤i≤N .
E.g. for the permutation (4,3,1,2) the Hamming
Embedding is (0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0) and
Lehmer Embedding is (0,1,2,2). We use Mean
Squared Error (MSE) as the loss function. It can be
theoretically shown that minimizing this loss on the
selected embeddings is equivalent to optimizing a
ranking metric like Kendall’s Tau (Kendall, 1938)
or Hamming (Hamming, 1950) distance. Figure 1
shows the Embedding Regression Architecture.

2.3 Skip-Clip

In this method inspired by El-Nouby et al. (2019),
given the first few steps as the context, other
steps closer to the context have more similar rep-
resentations to that of the context than the ones
that are farther. Here, we sample the first K
steps of a recipe with N steps, as the context
c = (x1, x2, ..., xK) and randomly sample M tar-
get steps (xt1 , xt2 , ..., xtM ), where ti is the index
in the original recipe for the ith target step, with
M,K < N and t1 > K. Using transformer model
f , we get latent representations of the context
h = f(c) and each step in the target, zi = f(xti).
We also define a scoring function, Γ(h, zi), e.g.
cosine similarity, representing the relationship be-
tween the context and the target steps. The ob-
jective is hinge rank loss formulated as: L =∑M−1

i=1

∑M
j=i+1max(0,−Γ(h, zi)+Γ(h, zj)+δ),

where the constant δ is the margin. Figure 2 shows
the Skip-Clip architecture.

3 Downstream tasks

Entity Tracking consists of two sub-tasks - entity
state and location tracking. Both tasks output the
result for every entity at each step of the process.
Entity state tracking task is a 4-way classification
task that predicts if the entity is created, moved,
unchanged, or destroyed at that step of the process.
Entity Location tracking is formulated as a span-
based question-answering problem that outputs the
location of the entity at a particular step taking the
entire text of the process as the input. We perform
this task on NPN-Cooking and ProPara datasets2.
NPN-Cooking dataset (Bosselut et al., 2017) con-
sists of 65,816 training, 175 development, and 700
evaluation recipes. ProPara Dataset (Mishra et al.,

2Datasets are in the English Language

822



Figure 1: Permutation Classification and Embedding Regression for a 4-step recipe. Recipe steps are reordered
via a randomly chosen permutation from a predefined permutation set and then fed to the transformer model. The
Permutation Classification Task is to predict the index of the chosen permutation which in this case is 23, and
Embedding Regression Task is to predict the corresponding Lehmer/Hamming Embedding.

Figure 2: Skip-Clip model with a 6-step context and 3 target steps. The task is to rank the target steps based on
scores obtained from a scoring function and their order in the recipe using hinge rank loss.

2018) consists of 488 human-authored procedures
(split 80/10/10 into train/dev/test) with 81k annota-
tions regarding changing states (existence and loca-
tion) of entities in those paragraphs. The model is
evaluated in 3 ways corresponding to a given entity
e. Category 1: which of the three transitions - cre-
ated, destroyed, or moved undergone by e over the
lifetime of a procedure; Category 2: steps at which
e is created, destroyed, and/or moved; and Cate-
gory 3: the location (span of text) which indicates
e’s creation, destruction or movement. Following
Faghihi and Kordjamshidi (2021), Entity Track-
ing is formulated as a question-answering problem.
Fine-tuning Hyperparameters are the same as in
the default open-source implementation3.

4 Experiments and Results

4.1 Pre-training Setup

Parameter Initialization: For fast convergence,
we initialize the transformer in each pre-training
method with RoBERTa-BASE (Liu et al., 2019)4.
Dataset: We use a dataset of 2.5 million+ recipes in
total collected from various different sources on the
internet such as Recipe1M+ dataset (Marin et al.,

3https://github.com/HLR/TSLM
4Compute details are in Section D.1 of Appendix

2018b), RecipeNLG dataset (Bień et al., 2020b),
datasets collected by Majumder et al. (2019) and
Chandu et al. (2019). For each recipe in the dataset,
a sentence with the ingredients is also added as
a step before the original recipe. The dataset is
filtered to include recipes with more than 4 steps.
The statistics of the dataset is shown in Table 5
in Section D.1 of Appendix. Permutation Clas-
sification and Embedding Regression require all
recipes to have the same number of steps per recipe.
Hence, we use a subset of recipes that have a cer-
tain, fixed number of steps. Hyperparameters:
We pre-trained for 1 epoch using AdamW opti-
mizer with batch size of 32, learning rate of 5e-5,
weight decay of 0.01, and 500 warmup steps.

Model Dev Acc Test Acc
NPN-Model - 51.3
KG-MRC - 51.6
DYNAPRO - 62.9
RoBERTa-BASE 65.07 64.28
Permutation Classfn. 65.48 64.75
EmbHamming 65.03 64.92
EmbLehmer 63.96 64.29
Skip-Clip 63.87 65.33

Table 1: Results on NPN-Cooking Dataset. Numbers
in bold and underlined are the highest and the second-
highest scores, respectively.

823

https://github.com/HLR/TSLM


Model Location
Acc.

Status
Acc.

Cat1
Acc.

Cat2
Acc.

Cat3
Acc.

Avg.
Cat.
Acc.

Rule-based - - 57.14 20.33 2.4 26.62
Feature-based - - 58.64 20.82 9.66 29.71
ProLocal - - 62.7 30.5 10.4 34.53
ProGlobal - - 63 36.4 35.9 45.1
EntNet - - 51.6 18.8 7.8 26.07
QRN - - 52.4 15.5 10.9 26.27
RoBERTa-BASE 56.27 65.71 71.33 31.78 34.05 45.72
Permutation Classfn. 57.71 70.57 73.72 43.16 32.72 49.87
EmbHamming 53.05 61.36 68.5 30.43 36.16 45.03
EmbLehmer 60.61 68.11 73.3 38.82 35.05 49.06
Skip-Clip 58.19 63.4 66.94 34.46 32.73 44.71

Table 2: Results on ProPara Dataset. Numbers in bold
and underlined are the highest and the second-highest
scores respectively.

4.2 Fine-tuning

We fine-tune and evaluate models pre-trained us-
ing techniques mentioned in Section 2 on ProPara
and NPN-Cooking Datasets. Note that Em-
bedding Regression has two variants based on
the type of embedding used - Hamming Em-
bedding (EmbHamming) and Lehmer Embedding
(EmbLehmer). We use hyperparameter grid search
on development sets corresponding to each pre-
training variant to get the best set of hyperparame-
ters, as mentioned in Section D.2 of Appendix.

4.3 Baselines

NPN-Cooking Dataset: We use Neural Process
Network Model (NPN-Model) (Bosselut et al.,
2017), KG-MRC (Das et al., 2018), DYNAPRO
(Amini et al., 2020), and RoBERTa-BASE (Liu
et al., 2019) as baselines.
ProPara Dataset: We use a rule-based method
called ProComp (Clark et al., 2018), a feature-
based method (Mishra et al., 2018) using Logis-
tic Regression and CRF, ProLocal (Mishra et al.,
2018), ProGlobal (Mishra et al., 2018), EntNet
(Henaff et al., 2016), QRN (Seo et al., 2016), and
RoBERTa-BASE (Liu et al., 2019) as baselines.

4.4 Analysis of Results

Table 1 shows results of proposed methods and
baselines on NPN-Cooking Dataset. We see that
all proposed methods perform better than baselines
w.r.t Test Accuracy. Permutation Classification
gives the best dev set result, but falls behind on
the test set, as classification on 100 classes leads to
overfitting. Skip-Clip gives best test accuracy, with
an improvement of 1.6% compared to RoBERTa-
BASE, suggesting that predicting next step from a
given context helps in Entity Tracking in Recipe
Domain. EmbHamming gives the second-highest

test accuracy, showing that predicting permutation
as an embedding is useful for this task.

Table 2 shows results of proposed methods and
baselines on ProPara. RoBERTa-BASE is the best
baseline. Most proposed methods beat baselines.
Skip-Clip does not perform as well, suggesting that
this pre-training method of predicting a future step
in recipes does not transfer to open domain. Per-
mutation Classification and Embedding Regression
perform much better. EmbLehmer performs better
on 5 out of 6 metrics compared to EmbHamming.
Permutation Classification has the best Status Ac-
curacy and Average Category Score and gives an
improvement of 7.4% and 9% respectively com-
pared to RoBERTa-BASE, showing that predicting
a permutation helps in a task in another domain.
Comparison with LLMs: We compare with
the following LLMs in Table 8 in Section D.4
of Appendix - (1) Open-source LLMs such as
Falcon-7B-Instruct (instruction-fine-tuned Falcon-
7B) (Penedo et al., 2023), Llama 2-7B-Chat
(instruction-fine-tuned Llama 2-7B) (Touvron et al.,
2023) (2) OpenAI’s GPT-3.5 (OpenAI, 2021). The
LLMs are used in a 1-shot and 3-shot In-Context
Learning Setting (Dong et al., 2022). Table 8 shows
that - (1) even though Falcon-7B-Instruct and
Llama 2-7B-Chat have almost 14x the number of
parameters compared to the proposed permutation-
based methods, they perform considerably worse in
comparison (2) the proposed methods outperform
GPT-3.5 in 1-shot setting across all metrics, and
GPT-3.5 in 3-shot setting across 3 out of 4 met-
rics, even though the number of parameters and
pre-training data is just a small fraction of that of
GPT-3.5.

Additionally, we compare predictions of Permu-
tation Classification and well-performing baseline
RoBERTa-BASE on a procedure in Table 9 in Sec-
tion D.4 of Appendix. We infer that Permutation
Classification is able to better predict the step when
an entity ceases to exist, compared to the baseline.

5 Combination of different pre-training
strategies

In this section, we explore sequential combinations
of pre-training strategies. As Permutation Clas-
sification performs consistently well, we experi-
ment with one of either Skip-Clip, EmbHamming,
or EmbLehmer, followed by Permutation Classifi-
cation.

Tables 3 and 4 reveal combinations of pre-

824



Model Test Acc
Permutation Classfn. 64.75
EmbHamming 64.92
EmbLehmer 64.29
Skip-Clip 65.33
EmbHamming + Permutation Classfn. 61.88
EmbLehmer + Permutation Classfn. 62.66
Skip-Clip+ Permutation Classfn. 0.01

Table 3: Results of sequential combination of different
pre-training strategies on NPN-Cooking Dataset.

Model Cat1
Acc.

Cat2
Acc.

Cat3
Acc.

Avg.
Cat.
Acc.

Permutation Classfn. 73.72 43.16 32.72 49.87
EmbHamming 68.5 30.43 36.16 45.03
EmbLehmer 73.3 38.82 35.05 49.06
Skip-Clip 66.94 34.46 32.73 44.71
EmbHamming + Permutation Classfn. 63.14 22.74 34.94 40.27
EmbLehmer + Permutation Classfn. 59.89 23.95 33.83 39.22
Skip-Clip+ Permutation Classfn. 44.63 12.44 5.44 20.84

Table 4: Results of sequential combination of different
pre-training strategies on ProPara Dataset.

training strategies being inferior to using individual
strategies, possibly because these strategies use
different supervision cues. For instance, while Per-
mutation Classification treats each permutation as
an independent target class, Skip-Clip pushes rep-
resentations of nearby steps closer, and vice versa.
Hence, Skip-Clip + Permutation Classification per-
forms poorly. EmbLehmer, unlike Permutation
Classification, uses distance between each step be-
fore and after permuting as target encoding, hence,
different permutations are not independent, making
methods slightly inconsistent. EmbHamming, like
Permutation Classification, has different targets for
each permutation, but has a larger target vector than
PC. Hence, EmbHamming + Permutation Classifi-
cation is reasonably good, but is inferior to each.

6 Conclusion

Our work is one of the first to propose order-based
in-domain pre-training for procedural data to en-
hance Entity Tracking performance. We introduce
3 pre-training tasks - Permutation Classification,
Embedding Regression, Skip-Clip to learn sequen-
tial nature of procedures. Skip-Clip performs best
on the in-domain NPN-Cooking Task, while Per-
mutation Classification and Embedding Regression
perform best on the open-domain ProPara Task.
We believe such methods could be extended to pro-
cedures in E-Manuals, manufacturing guides, etc.

Limitations

1. Our work focuses on recipes as a type of pro-
cedural text. It would require further study to
see if the results can be generalized to other
types of procedural text such as science pro-
cesses or how-to guides.

2. The Entity Tracking Task is only one aspect
of understanding procedural text. Other as-
pects such as identifying entities and their
attributes, and understanding causal relation-
ships between entities may also be important
for some applications.

3. Our work evaluates the proposed methods on
two specific datasets, which may not be rep-
resentative of all possible scenarios. The per-
formance of the methods on other datasets or
real-world applications may vary.

Ethics Statement

The proposed methodology can be used for any
type of procedural text, including user-generated
procedures. However, before applying the model
to such procedures, it is important to consider expo-
sure bias patterns. Additionally, the interpretability
of the model’s output is limited, so users should
exercise caution when using it.

References
Aida Amini, Antoine Bosselut, Bhavana Dalvi Mishra,

Yejin Choi, and Hannaneh Hajishirzi. 2020. Proce-
dural reading comprehension with attribute-aware
context flow.

Michał Bień, Michał Gilski, Martyna Maciejewska, Wo-
jciech Taisner, Dawid Wisniewski, and Agnieszka
Lawrynowicz. 2020a. RecipeNLG: A cooking
recipes dataset for semi-structured text generation. In
Proceedings of the 13th International Conference on
Natural Language Generation, pages 22–28, Dublin,
Ireland. Association for Computational Linguistics.

Michał Bień, Michał Gilski, Martyna Maciejewska, Wo-
jciech Taisner, Dawid Wisniewski, and Agnieszka
Lawrynowicz. 2020b. RecipeNLG: A cooking
recipes dataset for semi-structured text generation. In
Proceedings of the 13th International Conference on
Natural Language Generation, pages 22–28, Dublin,
Ireland. Association for Computational Linguistics.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2017. Simulating
action dynamics with neural process networks.

825

https://doi.org/10.48550/ARXIV.2003.13878
https://doi.org/10.48550/ARXIV.2003.13878
https://doi.org/10.48550/ARXIV.2003.13878
https://aclanthology.org/2020.inlg-1.4
https://aclanthology.org/2020.inlg-1.4
https://www.aclweb.org/anthology/2020.inlg-1.4
https://www.aclweb.org/anthology/2020.inlg-1.4
https://doi.org/10.48550/ARXIV.1711.05313
https://doi.org/10.48550/ARXIV.1711.05313


Khyathi Raghavi Chandu, Eric Nyberg, and Alan W.
Black. 2019. Storyboarding of recipes: Grounded
contextual generation. In ACL.

Peter Clark, Bhavana Dalvi, and Niket Tandon. 2018.
What happened? leveraging verbnet to predict the
effects of actions in procedural text.

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan,
Adam Trischler, and Andrew McCallum. 2018.
Building dynamic knowledge graphs from text us-
ing machine reading comprehension.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Alaaeldin El-Nouby, Shuangfei Zhai, Graham W Tay-
lor, and Joshua M Susskind. 2019. Skip-clip:
Self-supervised spatiotemporal representation learn-
ing by future clip order ranking. arXiv preprint
arXiv:1910.12770.

Hossein Rajaby Faghihi and Parisa Kordjamshidi. 2021.
Time-stamped language model: Teaching language
models to understand the flow of events.

R. W. Hamming. 1950. Error detecting and error cor-
recting codes. The Bell System Technical Journal,
29(2):147–160.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2016. Tracking the world
state with recurrent entity networks.

M. G. Kendall. 1938. A new measure of rank correla-
tion. Biometrika, 30(1/2):81–93.

Anna Korba, Alexandre Garcia, and Florence d’Alché
Buc. 2018. A structured prediction approach for
label ranking. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing
Systems, NIPS’18, page 9008–9018, Red Hook, NY,
USA. Curran Associates Inc.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Haejun Lee, Drew A. Hudson, Kangwook Lee, and
Christopher D. Manning. 2020. Slm: Learning a
discourse language representation with sentence un-
shuffling.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni,
and Julian McAuley. 2019. Generating personalized
recipes from historical user preferences.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and
Antonio Torralba. 2018a. Recipe1m+: A dataset for
learning cross-modal embeddings for cooking recipes
and food images.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and
Antonio Torralba. 2018b. Recipe1m+: A dataset for
learning cross-modal embeddings for cooking recipes
and food images.

Bhavana Dalvi Mishra, Lifu Huang, Niket Tandon,
Wen-tau Yih, and Peter Clark. 2018. Tracking state
changes in procedural text: A challenge dataset and
models for process paragraph comprehension.

Abhilash Nandy, Soumya Sharma, Shubham Mad-
dhashiya, Kapil Sachdeva, Pawan Goyal, and NIloy
Ganguly. 2021. Question answering over electronic
devices: A new benchmark dataset and a multi-task
learning based QA framework. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 4600–4609, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Mehdi Noroozi and Paolo Favaro. 2016. Unsupervised
learning of visual representations by solving jigsaw
puzzles. In Computer Vision–ECCV 2016: 14th Eu-
ropean Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VI, pages
69–84. Springer.

OpenAI. 2021. Gpt-3.5 turbo documentation.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2016. Query-reduction networks for ques-
tion answering.

Jizhi Tang, Yansong Feng, and Dongyan Zhao. 2020.
Understanding procedural text using interactive entity
networks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7281–7290, Online. Association for
Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Zhihan Zhang, Xiubo Geng, Tao Qin, Yunfang Wu, and
Daxin Jiang. 2021. Knowledge-aware procedural
text understanding with multi-stage training. In Pro-
ceedings of the Web Conference 2021. ACM.

826

https://doi.org/10.48550/ARXIV.1804.05435
https://doi.org/10.48550/ARXIV.1804.05435
https://doi.org/10.48550/ARXIV.1810.05682
https://doi.org/10.48550/ARXIV.1810.05682
https://doi.org/10.48550/ARXIV.2104.07635
https://doi.org/10.48550/ARXIV.2104.07635
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.48550/ARXIV.1612.03969
https://doi.org/10.48550/ARXIV.1612.03969
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.48550/ARXIV.2010.16249
https://doi.org/10.48550/ARXIV.2010.16249
https://doi.org/10.48550/ARXIV.2010.16249
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1909.00105
https://doi.org/10.48550/ARXIV.1909.00105
https://doi.org/10.48550/ARXIV.1810.06553
https://doi.org/10.48550/ARXIV.1810.06553
https://doi.org/10.48550/ARXIV.1810.06553
https://doi.org/10.48550/ARXIV.1810.06553
https://doi.org/10.48550/ARXIV.1810.06553
https://doi.org/10.48550/ARXIV.1810.06553
https://doi.org/10.48550/ARXIV.1805.06975
https://doi.org/10.48550/ARXIV.1805.06975
https://doi.org/10.48550/ARXIV.1805.06975
https://doi.org/10.18653/v1/2021.findings-emnlp.392
https://doi.org/10.18653/v1/2021.findings-emnlp.392
https://doi.org/10.18653/v1/2021.findings-emnlp.392
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.48550/ARXIV.1606.04582
https://doi.org/10.48550/ARXIV.1606.04582
https://doi.org/10.18653/v1/2020.emnlp-main.591
https://doi.org/10.18653/v1/2020.emnlp-main.591
https://doi.org/10.1145/3442381.3450126
https://doi.org/10.1145/3442381.3450126


Appendix

A Introduction

B Pre-training Methods

C Downstream Tasks

D Experiments and Results

D.1 Pre-training Setup
Compute Details: Number of trainable parameters
for each pre-training method is 488,126,475. We
use Tesla V100 GPUs for our experiments. Per-
mutation Classification and Embedding Regression
Methods take about 24 GPU-Hours, while Skip-
Clip takes about 8 GPU-Hours (GPU-Hours is the
number of GPUs used multiplied by the training
time in hours).
Pre-training Data: The statistics of Pre-training
Data is elaborated in Table 5.

Dataset No. of Recipes No. of words
(only steps)

No. of words
(only ingredients)

Recipe1M+ 1,029,720 137,364,594 54,523,219
RecipeNLG 1,643,098 147,281,977 73,655,858
Majumder et al. (2019) 179,217 23,774,704 3,834,978
Chandu et al. (2019) 33,720 26,243,714 -
Total 2,885,755 334,664,989 132,014,055

Table 5: Statistics of Pre-training Data

D.2 Fine-tuning
The set of hyperparameters used for performing
Grid Search are mentioned in Tables 6 and 7.

Hyperparameter Set of values
Number of recipe steps {4, 6, 9}

Size of the permutation set {2, 10, 50, 100}

Table 6: Set of hyperparameters used for grid search for
Permutation Classification and Embedding Regression

Hyperparameter Set of values
Number of steps used as input context {3, 4}

Number of target steps {3, 4}

Table 7: Set of hyperparameters used for grid search for
Skip-Clip

The best set of hyperparameters obtained are as
follows - (1) Permutation Classification: No. of
recipe steps = 6, Size of permutation set = 100 (2)
Embedding Regression: No. of recipe steps = 6,
Size of permutation set = 50 (3) Skip-Clip: No. of
steps used as input context = 4, No. of target steps
= 4.

D.3 Baselines
D.4 Analysis of Results
Comparison with LLMs: Table 8 compares per-
formance of our proposed methods with that of
LLMs in 1 and 3-shot In-Context Learning setting.

Cat1
Acc.

Cat2
Acc.

Cat3
Acc.

Avg. Cat
Acc.

Falcon-7B-Instruct (1-shot) 50.42 5.42 0.38 18.74
Falcon-7B-Instruct (3-shot) 48.44 3.15 1.94 17.84
Llama 2-7B-Chat (1-shot) 47.88 9.74 6.44 21.35
Llama 2-7B-Chat (3-shot) 51.27 13.98 11.97 25.74
GPT-3.5 (1-shot) 53.25 24.66 11.37 29.76
GPT-3.5 (3-shot) 62.43 34.66 15.81 37.63
Permutation Classfn. 73.72 43.16 32.72 49.87
EmbHamming 68.5 30.43 36.16 45.03
EmbLehmer 73.3 38.82 35.05 49.06
Skip-Clip 66.94 34.46 32.73 44.71

Table 8: Results on the ProPara Dataset - LLMs vs.
proposed permutation-based methods

Table 9 shows annotated ground truth, pre-
dictions of Permutation Classification, and well-
performing baseline RoBERTa-BASE for an entity
in the procedure.

827



Ground Truth
Permutation

Classification
RoBERTa-BASE

Procedure flower flower flower
(Before the process starts) - - -
1. A seed is planted. - - -
2. It becomes a seedling. - - -
3. It grows into a tree. - - -
4. The tree grows flowers. tree tree tree
5. The flowers become fruit. - - tree
6. The fruits contain seeds
for new trees.

- - tree

Table 9: Analysis of the ground truth and the predictions of Permutation Classification vs. a well-performing
baseline on a sample from the ProPara Dataset.

828


