@inproceedings{huang-etal-2024-systematic,
title = "Systematic Analysis for Pretrained Language Model Priming for Parameter-Efficient Fine-tuning",
author = "Huang, Shih-Cheng and
Wang, Shih-Heng and
Shih, Min-Han and
Sahay, Saurav and
Lee, Hung-yi",
editor = "Cao, Yang (Trista) and
Papadimitriou, Isabel and
Ovalle, Anaelia and
Zampieri, Marcos and
Ferraro, Francis and
Swayamdipta, Swabha",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-srw.1",
doi = "10.18653/v1/2024.naacl-srw.1",
pages = "1--7",
abstract = "Parameter-efficient (PE) methods (like Prompts or Adapters) for adapting pre-trained language models (PLM) to downstream tasks have been popular recently. However, hindrances still prevent these methods from reaching their full potential. For example, two significant challenges are few-shot adaptation and cross-task generalization. To tackle these issues, we propose a general PE priming framework to enhance and explore the few-shot adaptation and generalization ability of PE methods. In this framework, PLMs are primed with PE methods for rapidly adapting to various target tasks. To evaluate the generalization ability of these PE methods, we conduct experiments on a few-shot cross-domain benchmark containing 160 diverse NLP tasks. Our experiment not only reveals the best priming strategy but also verifies that priming facilitates the adaptation to target tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2024-systematic">
<titleInfo>
<title>Systematic Analysis for Pretrained Language Model Priming for Parameter-Efficient Fine-tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shih-Cheng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shih-Heng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Han</namePart>
<namePart type="family">Shih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saurav</namePart>
<namePart type="family">Sahay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-yi</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="given">(Trista)</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Papadimitriou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaelia</namePart>
<namePart type="family">Ovalle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Ferraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Parameter-efficient (PE) methods (like Prompts or Adapters) for adapting pre-trained language models (PLM) to downstream tasks have been popular recently. However, hindrances still prevent these methods from reaching their full potential. For example, two significant challenges are few-shot adaptation and cross-task generalization. To tackle these issues, we propose a general PE priming framework to enhance and explore the few-shot adaptation and generalization ability of PE methods. In this framework, PLMs are primed with PE methods for rapidly adapting to various target tasks. To evaluate the generalization ability of these PE methods, we conduct experiments on a few-shot cross-domain benchmark containing 160 diverse NLP tasks. Our experiment not only reveals the best priming strategy but also verifies that priming facilitates the adaptation to target tasks.</abstract>
<identifier type="citekey">huang-etal-2024-systematic</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-srw.1</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-srw.1</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Systematic Analysis for Pretrained Language Model Priming for Parameter-Efficient Fine-tuning
%A Huang, Shih-Cheng
%A Wang, Shih-Heng
%A Shih, Min-Han
%A Sahay, Saurav
%A Lee, Hung-yi
%Y Cao, Yang (Trista)
%Y Papadimitriou, Isabel
%Y Ovalle, Anaelia
%Y Zampieri, Marcos
%Y Ferraro, Francis
%Y Swayamdipta, Swabha
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F huang-etal-2024-systematic
%X Parameter-efficient (PE) methods (like Prompts or Adapters) for adapting pre-trained language models (PLM) to downstream tasks have been popular recently. However, hindrances still prevent these methods from reaching their full potential. For example, two significant challenges are few-shot adaptation and cross-task generalization. To tackle these issues, we propose a general PE priming framework to enhance and explore the few-shot adaptation and generalization ability of PE methods. In this framework, PLMs are primed with PE methods for rapidly adapting to various target tasks. To evaluate the generalization ability of these PE methods, we conduct experiments on a few-shot cross-domain benchmark containing 160 diverse NLP tasks. Our experiment not only reveals the best priming strategy but also verifies that priming facilitates the adaptation to target tasks.
%R 10.18653/v1/2024.naacl-srw.1
%U https://aclanthology.org/2024.naacl-srw.1
%U https://doi.org/10.18653/v1/2024.naacl-srw.1
%P 1-7
Markdown (Informal)
[Systematic Analysis for Pretrained Language Model Priming for Parameter-Efficient Fine-tuning](https://aclanthology.org/2024.naacl-srw.1) (Huang et al., NAACL 2024)
ACL