
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 4: Student Research Workshop), pages 1–7

June 18, 2024 ©2024 Association for Computational Linguistics

Systematic Analysis for Pretrained Language Model Priming for
Parameter-Efficient Fine-tuning

Shih-Cheng Huang1∗, Shih-Heng Wang1∗, Min-Han Shih2∗, Saurav Sahay2+, and Hung-yi Lee1∗
∗National Taiwan University, Taipei, Taiwan

+Intel Labs, Santa Clara, CA, USA
{r09942093,r11942079,b08502141,hungyilee}@ntu.edu.tw∗

saurav.sahay@intel.com+

Abstract
Parameter-efficient (PE) methods (like Prompts
or Adapters) for adapting pre-trained language
models (PLM) to downstream tasks have been
popular recently. However, hindrances still pre-
vent these methods from reaching their full po-
tential. For example, two significant challenges
are few-shot adaptation and cross-task gener-
alization. To tackle these issues, we propose a
general PE priming framework to enhance and
explore the few-shot adaptation and generaliza-
tion ability of PE methods. In this framework,
PLMs are primed with PE methods for rapidly
adapting to various target tasks. To evaluate
the generalization ability of these PE methods,
we conduct experiments on a few-shot cross-
domain benchmark containing 160 diverse NLP
tasks. Our experiment not only reveals the best
priming strategy but also verifies that priming
facilitates the adaptation to target tasks.

1 Introduction

In recent years, pre-trained language models
(PLMs) in natural language processing (NLP) are
blooming everywhere (Devlin et al., 2018; Lewis
et al., 2019; Liu et al., 2019; Joshi et al., 2020;
Raffel et al., 2019; Radford et al., 2019; Brown
et al., 2020). However, not only the number of
PLMs but also their size is rapidly growing, mak-
ing it harder to perform full fine-tuning. To address
the issue, tons of parameter-efficient fine-tuning
(PEFT) methods have bubbled up, such as adapters
(Houlsby et al., 2019; Pfeiffer et al., 2020; Zaken
et al., 2021; Fu et al., 2022), or prompts (Lester
et al., 2021; Li and Liang, 2021). These methods
have made it equitable for researchers with insuf-
ficient computational resources. However, there
is still a long way to go for these PE methods to
reach their full potential. Because the pre-training
objectives are not directly related to PE, it is fore-
seeable that there is a mismatch between the PLM
and PE methods, which may prevent PE meth-
ods from unleashing their full power. To address

Figure 1: We propose a general framework to improve
the performance of parameter-efficient fine-tuning. We
prime the PLM with source tasks for parameter-efficient
methods.

this problem, we introduce an additional "priming"
stage between pre-training and downstream fine-
tuning. As shown in Fig.1, we prime the PLM on
extra few-shot source tasks with multitask learning
(MTL) or meta-learning, and then fine-tune PE el-
ements to target tasks. Compared with traditional
PEFT methods, the PLM and PE elements can fit
each other better after priming. In other words, in-
stead of the conventional PEFT paradigm (pre-train
→ PEFT), we adopt the "pre-train → priming →
PEFT" pipeline.

Some recent studies explore how to bridge the
gap between pre-training tasks and target tasks.
Gu et al. (2021) pre-trains the soft prompt tokens
with self-supervised tasks to give a better initial-
ization. Huang et al. (2022); Hou et al. (2022)
exploits optimization-based meta-learning to find
an initialization for soft prompts to facilitate faster
adaptation to new tasks. Gheini et al. (2022) tweaks
the meta-learning algorithm MAML (Finn et al.,
2017) for priming and simulates the PEFT proce-
dure in the inner loop. However, they only focus
on priming for a single PE method with a specific
algorithm. In contrast, our work views priming as
a general method to boost PEFT from a higher per-

1



spective. Moreover, previous works explore only
single-domain tasks, which lack the exploration of
generalization ability. On the contrary, our work
evaluate PE methods with diverse NLP tasks in
various domains.

On top of that, we conduct comprehensive exper-
iments over well-known PE methods like adapters
and prompt tuning under different settings. The
experiment result reveals that priming by tuning
only PLM leads to the best adaptation result on tar-
get tasks. In addition, we shows priming does help
the whole model to converge more easily, which
validates the necessity of priming.

2 Related Work

2.1 Adapter

Adapters (Houlsby et al., 2019; Stickland and Mur-
ray, 2019; Wang et al., 2020; Bansal et al., 2022; Fu
et al., 2022; Pfeiffer et al., 2020; Karimi Mahabadi
et al., 2021; Hu et al., 2021; Zaken et al., 2021; He
et al., 2021) are lightweight modules introduced for
the transformer architecture. Adapters add extra
trainable parameters and freeze the original PLM
parameters during fine-tuning.

2.2 Prompt

Prompt-based tuning (Li and Liang, 2021; Lester
et al., 2021; Liu et al., 2021b; Huang et al., 2022;
Gu et al., 2021; Liu et al., 2021a; Han et al., 2021;
Hou et al., 2022; Vu et al., 2021; Liu et al., 2022)
is an innovative method to use the power of PLMs
efficiently. Gu et al. (2021) proposed the con-
cept of prompt initialization pre-training. Huang
et al. (2022) proposed Meta-learned Prompt Tuning
(MetaPT) to further improve prompt initialization.

3 Methodology

3.1 Framework

Our work aims to comprehensively analyze the
priming strategies by comparing the performance
of PE methods under few-shot scenarios. We in-
troduce a general framework to prime the whole
model (may include PLMs) to better adapt to down-
stream tasks. Our training approach consists of two
distinct stages: the upstream priming stage and
the downstream fine-tuning stage. Initially, the
model acquires knowledge from source tasks dur-
ing the upstream priming stage, followed by few-
shot fine-tuning on target tasks in the downstream
stage.

Specifically, we name parameters fine-tuned in
the upstream stage as upstream tunable elements,
while those in the downstream stage as down-
stream tunable elements. Upstream tunable el-
ements and downstream tunable elements may
be fully-overlapping, partially-overlapping or non-
overlapping.

3.2 Upstream Priming Stage
The upstream priming stage is designed to prime
the model’s upstream tunable elements, enabling
it to quickly adapt to a range of downstream few-
shot tasks. We employ a priming algorithm, pre-
dominantly Meta Learning or Multitask Learning
(MTL), to update the upstream tunable elements on
source tasks. Upstream tunable elements comprise
Pre-trained Language Models (PLM), adapters,
and prompts. In other words, the combination of
upstream tu

3.2.1 Multi-task Learning
In Multi-task Learning (MTL), multiple tasks are
learned concurrently by minimizing their combined
loss. This method enhances the model’s capability
to learn cross-task features and accelerates adap-
tation. Our implementation of MTL focuses on
training the upstream tunable elements during the
upstream priming stage. We define ψ as the whole
model’s parameters, with subsets ψu for upstream
and ψd for downstream tunable elements. The ob-
jective is to minimize loss across training tasks
while adjusting only ψu:

ψ′
u = argmin

ψu

∑

Ti∈T
L (ψ, Ti) (1)

Here, L is the loss function, and Ti represents
the ith task from the set of source tasks T .

It is important to note that if ψd is not included in
ψu, it is initialized but remains unchanged during
the upstream priming stage. For example, if PLM
is selected as the upstream tunable element and
adapters as the downstream element, the adapters
are initialized in the upstream stage but only tuned
during the downstream fine-tuning phase.

3.2.2 Meta Learning
In our study, we utilize the MAML(Finn et al.,
2017) algorithm, for our priming process. MAML
is distinctive in its dual-phase training approach:
the inner loop and the outer loop. The inner loop
is designed for task-specific adaptation, while the
outer loop focuses on finding an optimal initial-
ization for quick adaptation in the inner loop. We

2



modify some parts of MAML algorithm, which are
outlined in Alg.1 and illustrates in Fig. 2. It starts
by copying the current model parameters ψ as the
initial state for the inner loop. In this loop, we
specifically tune the downstream tunable element
ψd. The tuned parameters for the ith task in the
inner loop are represented as ψ′

i. The final step in-
volves calculating the loss from the adapted model
ψ′
i and the source tasks Ti, which is then used to

update ψu. The updated ψu are initialized for the
subsequent inner loop.

Figure 2: Illustration of Alg. 1

Algorithm 1 Parameter-Efficient MAML
1: T = {T1, T2, ...}: A set of source tasks
2: α, β: Outer lr, Inner lr
3: θ: PLM parameters
4: {ϕ1, ϕ2, ...}: Tunable elements
5: ψ = [θ;ϕ1;ϕ2; ...]: All parameters of the model
6:
7: Randomly initialize {ϕ1, ϕ2, ...}
8: while not done do
9: for Ti ∈ T do

10: Split ψ into two parts, ψd and ψ̃d
11: Evaluate∇ψdLTi(fψ) with respect to K samples
12: Compute adapted parameters with gradient
13: descent: ψ′

d,i = ψd − β∇ψdLTi (fψ)

14: ψ′
i = [ψ′

d,i; ψ̃d]
15: end for
16: Split ψ into two parts, ψu and ψ̃u
17: ψ′

u = ψu − α∇ψu

∑
Ti∼p(T ) LTi(fψ′

i
)

18: ψ ← [ψ′
u; ψ̃u]

19: end while
20: return ψ

3.3 Downstream Fine-Tuning Stage

In downstream fine-tuning stage, with the primed
initialization obtained from the upstream priming
stage, we directly fine-tune the downstream tunable
elements on the target tasks. Since the backbone of

our work is to explore the cross-domain few-shot
ability of PEFT methods w & w/o priming, only
prompt or adapter are tunable in downstream
stage.

4 Experiment

4.1 Dataset
We choose CrossFit Challenge (Ye et al., 2021) as
our benchmark, which provides 160 different NLP
few-shot tasks with a unified text-to-text format
gathered from existing open-access datasets.

In CrossFit Challenge, they divide all tasks into
non-overlapping Train, Dev, and Test tasks. We
select random split in Ye et al. (2021) to be the
task split setting in our work. We select the Train
tasks as the source tasks for upstream priming and
the Test tasks as the target tasks for downstream
fine-tuning. More explicit explanations of tasks
can be found in Ye et al. (2021). Briefly speaking,
CrossFit Challenge is able to evaluate the authentic
few-shot generalization ability of models.

4.2 Setup
4.2.1 Tunable Elements
Our experiment setup mainly follows Ye et al.
(2021). In the upstream priming stage, we can
tune prompt, adapter and PLM, but we only tune
prompt or adapters during the downstream fine-
tuning stage to accord with the spirit of PE methods.
It’s crucial to emphasize that the initialized param-
eters obtained from the upstream priming stage
are carried forward to the downstream fine-tuning
stage.

Adapter
In this work, we mainly adopt AdapterBias (Fu
et al., 2022) as our adapter module. AdapterBias
adds a token-dependent shift to the hidden output
of transformer layers, parameterized by only a vec-
tor and a linear layer. Compared with the original
adapter design (Houlsby et al., 2019), the train-
able parameters are further reduced while obtaining
comparable performance.

Prompt
Prompt is one of our tunable elements. In our set-
tings, we applied prompt tuning proposed by Lester
et al. (2021), which concatenates tunable tokens be-
fore the input sentence and ask the PLM to generate
corresponding output text. Following the settings
in Lester et al. (2021), we set the prompt length to
100 tokens.

3



4.2.2 Hyperparameters
In our research, we use the BART-base
model (Wolf et al., 2019) as our primary
language model. For both the MTL and the
outer loop of meta-learning, we employ the
AdamW (Loshchilov and Hutter, 2017) with
a weight decay of 0.01. Specifically in meta-
learning, we set different outer loop learning
rates for various elements: 8 × 10−5 for PLMs,
8× 10−3 for prompts, and 1× 10−5 for adapters.
The inner loop has its learning rates set at 0.025
for prompts and 0.001 for adapters. The training is
conducted over 80 epochs, with a batch size of 1
for training and an inner batch size of either 4 or 8,
contingent on GPU memory limits. For MTL, we
maintain a consistent learning rate of 3× 10−5 for
PLMs, prompts, and adapters. The MTL training
spans 10 epochs with a train batch size of 32.

4.3 Metrics
For the evaluation metric, we also follow Ye et al.
(2021), adopting Average Relative Gain (ARG) as
one of the performance indexes, and the definition
for ARG is:

ARG =
1

n

n∑

i=1

(
P i − P i0
P i0

) (2)

θ : Adapter and downstream model P i
0 represents

the performance of directly fine-tuning PLMs on
ith target tasks, and Pi is that of our experiment
combination. Since the comparing target is directly
fine-tuning PLMs, baselines with ARG greater than
0 are those that surpass fine-tuning PLMs.

4.4 Annotation
We use abbreviations to make the result more con-
cise, including M for PLM, P for prompts, and
A for adapters. Additionally, characters before
the underline represent the upstream tunable ele-
ments, while those after the underline represent
the downstream tunable elements of the baseline.
For example, P_P represents upstream and down-
stream tunable elements are both prompts; M+A_A
represents upstream tunable elements are PLM
and adapters, and downstream tunable element is
adapters. Lastly, we use FT_M, FT_A, and FT_P
to represent directly fine-tuning the PLM, adapter,
and prompt, respectively.

4.5 Main Result
The first block in Table 1 showcases baselines
without priming, while subsequent blocks feature

combinations of different priming strategies cat-
egorized by the priming algorithm. Among the
direct fine-tuning results, fine-tuning PLM serves
as a competitive baseline with high training costs,
while direct fine-tuning prompts/adapters are con-
sidered as primary baselines against each priming
prompts/adapters baseline.

Table 1 underscores the effectiveness of prim-
ing, with most baselines showing noticeable im-
provements (indicated by asterisks∗) across various
priming algorithms. Notably, some combinations
outperform direct fine-tuning of prompts, and a
few even surpass fine-tuning PLM, such as M_P
and M+P_P in multi-task learning (ARGs greater
than 0). For adapters, certain combinations demon-
strate remarkable progress, like M_A in both meta-
learning and multi-task learning, while others ex-
perience slight drops in performance, such as A_A
in both meta-learning and multi-task learning.

4.6 Parameter Efficiency

Fig 3 visually depicts the relationship between
the performance of each method and its tuned pa-
rameter scale. The best-performing combinations
from Table 1 represent priming prompts/adapters
(green ones). Other baselines include fine-
tuning prompts/adapters without priming, fine-
tuning PLM (BART-base), and existing works
like LoRA(Hu et al., 2021) and BitFit(Zaken
et al., 2021). Fig 3 demonstrates that priming
prompts/adapters baselines locate at the upper-left
region, indicating superior results and higher pa-
rameter efficiency brought by priming.

Figure 3: This figure shows the parameter efficiency of
different baselines.

4



Clf-F1 ACC EM Matthew Cor. QA-F1 Rouge-L ARG

Without
Priming

Direct
Fine-tuning

PLM (M) (100%) 0.6474 0.5839 0.3304 0.0896 0.2919 0.8033 0.0000
Prompt (P) (0.06%) 0.5570 0.5115 0.4147 0.0495 0.2765 0.8030 -0.1040
Adapter (A) (0.07%) 0.4503 0.4784 0.2824 -0.0276 0.2863 0.8081 -0.2886

With
Priming

Meta
Learning

P_P 0.6283 0.5321 0.4291 0.0436 0.3261 0.8010 -0.0331∗

M_P 0.6267 0.6441 0.1961 0.0505 0.3064 0.7962 -0.0143∗
M+P_P 0.6173 0.5783 0.1777 0.0626 0.2509 0.7690 -0.0477∗

A_A 0.4209 0.4257 0.2326 -0.0556 0.2899 0.7958 -0.3534
M_A 0.5546 0.6457 0.2253 0.0067 0.2656 0.7284 -0.1045∗

M+A_A 0.3528 0.4614 0.2580 -0.0050 0.3868 0.7479 -0.3025

Multi-Task
Learning

P_P 0.5524 0.5088 0.4055 0.0765 0.3390 0.7993 -0.0863∗

M_P 0.6646 0.6491 0.2509 0.0612 0.3841 0.8086 0.0488∗

M+P_P 0.6610 0.6519 0.2622 0.0716 0.3943 0.8032 0.0571∗
A_A 0.3358 0.4274 0.2743 -0.0469 0.3007 0.7405 -0.3808
M_A 0.6122 0.6496 0.2821 -0.0128 0.4432 0.7383 -0.0158∗

M+A_A 0.3815 0.5709 0.2048 -0.0483 0.4081 0.6713 -0.2531∗

Table 1: This table shows the detailed performance of different baselines. We divide the methods by whether it
is primed and its priming algorithm. The percentages beside each setting represent the proportion of parameters
trained in the downstream fine-tuning stage.

Figure 4: The loss curves of w & w/o priming prompt
in the fine-tuning stage.

5 Analysis

In this section, we emphasize the advantages of
priming by examining training loss during down-
stream fine-tuning. We compare loss curves be-
tween models w/ or w/o priming (FT_P and MTL
M_P, respectively) across three diverse tasks from
the target task training set. These tasks, unseen by
prompts/adapters, feature distinct evaluation met-
rics. Figure 4 presents the results, where the blue
curves represent FT_P (w/o priming) and the or-
ange curves represent MTL M_P (w/ priming). The
primed model not only converges faster but also
achieves a superior final level of loss. Further-
more, the orange curves exhibit steadier conver-
gence compared to the fluctuating and glitch-prone
blue curves. These findings underscore the benefits
of priming for prompts/adapters, facilitating rapid

adaptation to various target tasks.

6 Conclusion

In this paper, we systematically analyze priming
PEFT within a comprehensive framework. Our
framework not only incorporates existing priming
approaches but also explores previously uncharted
strategies. Our experimental results demonstrate
that the majority of priming strategies enhance the
performance of PE methods. Notably, "Priming
PLM only" emerges as the top-performing strategy
when used in conjunction with multi-task learn-
ing. Crucially, our study provides concrete evi-
dence that priming significantly facilitates the con-
vergence of fine-tuning prompts/adapters on unseen
tasks, underscoring the efficacy of priming.

7 Limitation

We provide a systematic analysis of different prim-
ing strategies on PE methods and successfully im-
prove the few-shot performance on diverse down-
stream tasks. However, there are some limitations
to our work. Though we empirically show that
MTL outperforms meta-learning, there are no fur-
ther explanations for it. Besides, a small propor-
tion of the priming strategies lead to a performance
drop, but the actual reason remains unexplained. In
addition, all the experiments are conducted on the
pre-trained BART-base model. Extra experiments
on other large language models may strengthen the
results.

5



References
Trapit Bansal, Salaheddin Alzubi, Tong Wang, Jay-

Yoon Lee, and Andrew McCallum. 2022. Meta-
adapters: Parameter efficient few-shot fine-tuning
through meta-learning. In First Conference on Auto-
mated Machine Learning (Main Track).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks.

Chin-Lun Fu, Zih-Ching Chen, Yun-Ru Lee, and Hung-
yi Lee. 2022. Adapterbias: Parameter-efficient token-
dependent representation shift for adapters in nlp
tasks. arXiv preprint arXiv:2205.00305.

Mozhdeh Gheini, Xuezhe Ma, and Jonathan May.
2022. Know where you’re going: Meta-learning
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2205.12453.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. Ptr: Prompt tuning with rules
for text classification.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li,
and Wanxiang Che. 2022. MetaPrompting: Learn-
ing to learn better prompts. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 3251–3262, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yukun Huang, Kun Qian, and Zhou Yu. 2022. Learn-
ing a better initialization for soft prompts via meta-
learning.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022–1035.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021a.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022. P-
tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Annual Meeting of
the Association for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

6

https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.48550/ARXIV.2105.11259
https://doi.org/10.48550/ARXIV.2105.11259
https://aclanthology.org/2022.coling-1.287
https://aclanthology.org/2022.coling-1.287
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2205.12471
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529
http://arxiv.org/abs/1907.10529
https://doi.org/10.48550/ARXIV.2104.08691
https://doi.org/10.48550/ARXIV.2104.08691
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.2103.10385
https://doi.org/10.48550/ARXIV.2103.10385
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692


Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Asa Cooper Stickland and Iain Murray. 2019. Bert and
pals: Projected attention layers for efficient adapta-
tion in multi-task learning.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Matthew Cer. 2021. Spot: Better frozen
model adaptation through soft prompt transfer. In
Annual Meeting of the Association for Computational
Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2020. K-adapter: Infusing
knowledge into pre-trained models with adapters.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
CrossFit: A few-shot learning challenge for cross-
task generalization in NLP. pages 7163–7189.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

7

https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1902.02671
https://doi.org/10.48550/ARXIV.1902.02671
https://doi.org/10.48550/ARXIV.1902.02671
https://doi.org/10.48550/ARXIV.2002.01808
https://doi.org/10.48550/ARXIV.2002.01808
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572

