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Abstract

We create an adaptive conversational agent that
assesses the quality of its knowledge and is
driven to become more knowledgeable. Unlike
agents with predefined tasks, ours can leverage
people as diverse sources to meet its knowl-
edge needs. We test the agent in social con-
texts, where personal and subjective informa-
tion can be obtained through dialogue. We pro-
vide the agent both with generic methods for
assessing its knowledge quality (e.g. correct-
ness, completeness, redundancy, interconnect-
edness, and diversity), as well as with generic
capabilities to improve its knowledge by lever-
aging external sources. We demonstrate that the
agent can learn effective policies to acquire the
knowledge needed by assessing the efficiency
of these capabilities during interaction. Our
framework enables on-the-fly learning, offering
a dynamic and adaptive approach to shaping
conversational interactions.

1 Introduction

Machines were initially designed as tools to help
people with heavy or repetitive tasks. Over time,
machines have become more advanced to the point
where a proportion can now perform tasks indepen-
dently. This challenges the societal perception of
machines as passive tools and shifts it to consider
them active participants performing the task in col-
laboration with people (Durante et al., 2024; Deng
et al., 2023a). Within a Hybrid Intelligence frame-
work (Akata et al., 2020), people and machine may
collaborate as part of a team that is more effective
than each individually.

With increased autonomy within such collabo-
rative contexts, machines are more likely to en-
counter unforeseen and complex problems sig-
nalled by negative feedback, failure to make deci-
sions, or unsuccessful actions (Kocoń et al., 2023).
To tackle these issues, agents must have the abil-
ity to identify problems and evaluate knowledge

conditions like missing information, uncertainty,
misunderstandings and conflicts. Addressing unex-
pected problems requires adaptability, in the form
of leveraging sources of knowledge and informa-
tion effectively to resolve them.

We therefore propose the concept of generic and
knowledge-centered agents that 1) can estimate the
quality of their current knowledge, in terms of how
sufficient it is to service certain needs and 2) have
the capacity to actively consult sources of knowl-
edge to become more knowledgeable. Unlike tradi-
tional task-oriented dialogue (TOD) agents (com-
parison shown in Figure 1), knowledgeable agents
can autonomously determine what they know and
do not know, what is the epistemic status of what
they know, what they need to learn, and how to
acquire that target knowledge.

This thesis proposal focuses on dialogue as the
way an agent learns and adapts in social context.
A flexible learning agent is able to acquire and
modify current knowledge through natural lan-
guage instead of solely relying on (structured) data.
This adaptability allows the agent to navigate a dy-
namic knowledge landscape, making open-domain
communication a versatile and practical approach.
Focusing on machines as social agents capable
of qualifying knowledge shared during human-
machine conversations, we position this research
in the broader context of conversational agents
and specifically within the HI framework in which
agents and people are expected to form teams.

2 Related work

Dialogue systems Task-oriented dialogue (TOD)
systems (represented as service dialogue systems
in Figure 1, left) are designed for specific service
tasks, relying on supervised training with user in-
put, dialogue state, and context such as history or
user profiles (Mesnil et al., 2014; Mensio et al.,
2018; Zhang et al., 2019). Reinforcement learn-
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Figure 1: Comparison of dialogue systems: On the left, the conventional service dialogue system (S-DS) undergoes
training on static data to subsequently service the needs of users. On the right, a knowledge-centered dialogue
system (KC-DS) evaluates its knowledge base and actively participates in dialogue with users to acquire targeted
knowledge, which is then integrated into its dynamic knowledge base.

ing (RL) further optimizes these agents for diverse
and functionally correct responses through user
feedback (Liu et al., 2017; Gao et al., 2018; Lippe
et al., 2020). For open conversational agents, eval-
uating the dialogue state and formulating an ad-
equate response to transit to the next, preferably
better state, is more challenging (Shum et al., 2018).
Furthermore, in open-domain dialogue (OOD) set-
tings, conversational agents must also be equipped
with various conversational skills like engagement,
knowledge, and empathy to thrive in different so-
cial interactions and keep people engaged (Smith
et al., 2020). Still, RL may improve the perfor-
mance of systems but does not adapt the service it
was designed for.

Adaptive conversational agents Several efforts
have focused on making dialogue systems flexi-
ble to a broader range of use cases, focusing on
different domains (Qian and Yu, 2019; Wen et al.,
2016; Le et al., 2020; Qian and Yu, 2019), different
tasks (Young et al., 2022; Chen et al., 2022; Deng
et al., 2023c), or different users (Yang et al., 2021).
However, adapting to entirely new tasks poses chal-
lenges, requiring generalizability or costly acqui-
sition of domain knowledge. For instance, slot-
filling actions lack adaptability in slot types or
value ranges (Ni et al., 2023), and recommender
systems are constrained by static knowledge (Liu
et al., 2021b). Thus, the support that an agent can
provide is inherently limited.
Making systems more adaptive has been generally
studied with different techniques. Meta-learning
is a data-driven approach that focuses on expos-
ing models to various learning scenarios, so they

can extract patterns that can be applied towards
novel tasks (Hospedales et al., 2021). Never-ending
learning focuses on developing systems that im-
prove continuously as they encounter new data
or tasks (Mitchell et al., 2018). While these ac-
knowledge the shortcomings of static or limited
knowledge, these techniques still rely on passive
learning, where the system is exposed to certain
situations instead of actively searching and priori-
tizing the learning of specific information. To con-
clude: these approaches do not determine a need to
learn.

Knowledge-grounded conversational agents
Knowledge-grounded conversational systems uti-
lize knowledge sources for the retrieval of factual
information. These sources can be unstructured
texts or domain-specific triples (Xu et al., 2020).
The dialogue task is conventionally modelled by
taking a user utterance as input, selecting relevant
knowledge items from a database, and verbalizing
them in accordance with a dialogue history (Kim
et al., 2023).
This process is typically unidirectional (Deng et al.,
2023b), starting from the user (expressing a re-
quest) to the agent and then from the agent (provid-
ing static information) back to the user to satisfy
the user need (left side of Figure 1). However, this
unidirectional perspective neglects the reciprocal
nature of information exchange. Agents can also
find themselves in a state of uncertainty or lack of
information, prompting a need to seek clarification
or additional details from the user. In collaborative
settings, a bidirectional flow is essential (adding the
right side of Figure1), initiating from the agent’s
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need for information and extending to the user, who
may provide the agent with new information.
As information flows from the user to the agent, un-
derstanding the status of the user (Liu et al., 2021a)
and the conveyed knowledge is critical. While
factual knowledge is well-handled, personal and
opinion-based knowledge is more complex, gain-
ing relevance in long-term interactions. Moreover,
successful collaboration requires that agents learn
to independently a) judge knowledge sources in
terms of capability, expertise, and trust and b)
judge specific perspectives in terms of diversity,
bias and distribution within populations. Tradi-
tional knowledge-grounded agents often lack such
an epistemic dimension in their representations.

Our research centres on developing a flexible
agent capable of navigating uncertainties across
various tasks. We consider adaptation within spe-
cific social and collaborative contexts, which re-
quires real-time assessment of the agent’s learning
needs and human input. This entails adaptation for
individual cases while remaining aware of the situ-
ational dependency of acquired knowledge when
considering new scenarios. The primary objective
is to enhance the agent’s ability to acquire and
process knowledge, extending beyond traditional
factual knowledge to include social understand-
ing.This expansion aligns with the evolving nature
of human-machine interactions, where social dy-
namics play a vital role in fostering collaboration.

3 Knowledge-centered conversational
agents

This thesis proposal tackles the research question:
"How can conversational agents be equipped to
adapt in social collaborative settings by acknowl-
edging and addressing knowledge limitations?".
In the next subsections, we address three dimen-
sions of focus and provide specific sub-questions,
methodologies and preliminary results.

3.1 Knowledge integration

Episodic memory for conversational agents
The role of memory in conversation is directly re-
lated to creating and retrieving shared memories.
Beyond the social dimension of human-machine in-
teraction, knowledge-centered agents benefit from
having a memory since keeping track of their own
knowledge also enables them to evaluate:

1. Its knowledge state: What do I know?

2. Its knowledge needs: What do I need to know?
3. Knowledge sources: Who knows about this

and can be trusted?
4. Knowledge changes: What things change, and

which ones stay the same?

The importance of memory poses the question of
"How can conversational agents be equipped with
the ability to aggregate knowledge over time?". In
our approach, we use graph technologies and the
W3C web standard RDF1 to model the knowledge
that dialogue agents acquire through conversations.
We design episodic Knowledge Graphs (eKG) to
represent an agent’s accumulated episodic experi-
ences. Through this, we bridge gaps between dis-
connected individual interactions and model the
cumulative knowledge of conversational agents
across interactions (Báez Santamaría et al., 2021).

Adaptability of knowledge A significant limita-
tion of current dialogue systems is that they follow
the Closed World assumption (Hustadt et al., 1994),
thus overly relying on the world model and current
information they have and considering it static and
complete. We challenge this and propose to follow
an Open World assumption, where information not
explicitly stated is considered unknown rather than
false or out of scope. Furthermore, this outlook
is better suited to address the concept of unknown
unknowns, or simply put: "We don’t know what
we don’t know".

Computationally representing this shift in as-
sumptions brings the question of "How to create
a generic model of the world (T-Box) that can be
adapted and extended during real-time interaction
with a user?". As preliminary work, we create a
social ontology that sufficiently covers essential
concepts for human-machine interaction (e.g. a
person’s name, place of origin, occupation, inter-
est) and thus enables basic communication for a
KC agent. The agent, however, does not depend
on this ontology to perform tasks or talk to a user
but instead is able to extract information from what
the user says and incorporate entities and their re-
lations into the agent’s knowledge base. Ideally,
entities are typed, either by exploiting the inter-
operability with Linked Open Data (LOD) (Bauer
and Kaltenböck, 2011) resources or by asking for
further details from users in dialogue. In that case,
these types are ingested as new classes of the on-

1Resource Description Framework: https://www.w3.
org/RDF/
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tology, while learned information is used to ex-
pand and enrich the class’ description and object
properties. This is a promising avenue to explore
ontology learning through open-domain communi-
cation (Vossen et al., 2019a).

Relativity of knowledge Open-domain commu-
nication involves non-factual information like opin-
ions, beliefs, and perspectives (Báez Santamaría
et al., 2023) . To effectively perform in these sce-
narios, conversational agents must handle informa-
tion from a social angle, recognizing the impor-
tance of acquiring diverse knowledge from differ-
ent sources, each with its own biases and comple-
mentary views. Processing this type of information
may involve reaching a consensus within a commu-
nity, identifying areas of disagreement or diversity
of perspectives, and recognizing that some perspec-
tives are dynamic and evolve over time. This com-
plexity mirrors human cognition, relying heavily
on the Theory of Mind (ToM) (Wimmer and Perner,
1983), allowing the attribution of mental states to
oneself and others for comprehending social inter-
actions and implications.

The complexity of non-factual information
brings forward the question of "How to model and
represent epistemic aspects of knowledge (A-Box)
as a Theory of Mind?". For this, we choose to
use the GRaSP (Fokkens et al., 2017) ontology
to represent mentions and perspectives. MENTIONS

differentiate between an INSTANCE in the world (e.g
Gabriela), and a reference to it (e.g. Gaby, the mother

of Karla, or my aunt). Each of these mentions is
linked to a SOURCE and was expressed with a spe-
cific ATTRIBUTION that qualifies the information re-
ceived according to the source’s perspective (i.e.
denial/confirmation, sentiment, emotion, and cer-
tainty). This approach enables the agent to repre-
sent social aspects of knowledge during human-
machine interactions and also to reason over its
epistemic status (Vossen et al., 2018, 2019c).

3.2 Knowledge evaluation

Quality of knowledge Beyond the accumulation
of knowledge, it is important to evaluate the quality
of the gathered knowledge. Specifically we want
to quantitatively and qualitatively evaluate specific
dimensions, such as correctness, completeness, re-
dundancy, interconnectedness, and diversity

This results in the question of "How can the
quality of the accumulated knowledge be mea-
sured?". We propose to exploit the eKG repre-

sentation to measure structural and semantic graph
aspects at three levels: as a mathematical object,
as an RDF knowledge representation object, and
as an episodic memory. To test this multidimen-
sional evaluation framework, we performed an ex-
ploratory analysis to search for correlations be-
tween these metrics and specific quality dimensions
of the knowledge accumulated. We demonstrate
that the framework can be used to evaluate any
conversation, among which human-human, agent-
human and agent-agent, by assessing the charac-
teristics and the quality of the information and
perspectives that are exchanged between the in-
terlocutors. Furthermore, the eKG representation
allows not only the evaluation of knowledge as a
static object but also a comparison over time, thus
assessing its potential improvements or deteriora-
tion (Báez Santamaría et al., 2022).

Drives to improve knowledge The previous sec-
tion dealt with evaluating the knowledge gathered
as a whole. While this is important, it might
be more meaningful to identify specific areas of
knowledge that are of low quality and might be cru-
cial to improve. These areas, encompassing aspects
like what is unknown, what is new, or what beliefs
are uncertain, serve as the agent’s specific objec-
tives in relation to its current informational state. In
scenarios where resources like time, energy, money,
or accessibility to knowledge sources are limited,
prioritizing targeted knowledge areas might lead to
more promising avenues of improvement.

As such, this leads to the question of "How can
knowledge quality be related to specific knowledge
drives?". As an approach we propose to exploit
the intrinsic reasoning capabilities of RDF and
OWL (McGuinness et al., 2004) to detect abstract
graph patterns that may signal poor knowledge
quality. We produce a set of eight2 SPARQL (Har-
ris and Seaborne, 21) queries that identify areas
of the eKG where knowledge might be deficient
or unreliable. These queries focus on gaps, analo-
gies, conflicts, overlaps and novelty aspects of the
accumulated knowledge.

Gaps and analogies are defined by the ontolo-
gies included, capturing what can be known, what
is typical or what is expected. These aspects might
behave similarly to slot-filling approaches and re-
late to a pre-defined world. In contrast, conflicts,
overlaps, and novelties are determined by the stored

2The process by which these particular queries were cre-
ated is generic and can produce additional drives.
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information thus far and relate to specific epistemic
aspects such as correctness, interconnectedness or
redundancy. Each identified graph pattern can be
translated into an agent’s utterance, thus enabling
the transition between specific knowledge states
through dialogue (Vossen et al., 2019b).

3.3 Knowledge acquisition

Instruments to improve knowledge We have fo-
cused so far on the knowledge management aspect
of dialogue, excluding the discussion of the capabil-
ity to communicate through natural language. Both
Natural Language Understanding (NLU) and Natu-
ral Language Generation (NLG) are crucial compo-
nents in this regard. Given the chosen technologies,
NLU requires implementing Information Extrac-
tion (IE) to transform natural language into RDF
triples (Martinez-Rodriguez et al., 2020), while
NLG verbalizes and summarizes knowledge sub-
graphs. Both of these are active areas of research
on their own with considerable achievements.

Yet, in the specific context of this research, the
question remains of "How can social knowledge-
centered agents be provided with the communica-
tive skills to pursue their knowledge drives?". To
answer this question, we developed specific triple
extraction models to cover the large linguistic vari-
ation present in open-domain dialogue, emphasiz-
ing the extraction of perspective values such as
polarity, certainty, sentiment, emotion, and tem-
porality3. Similarly, we have invested effort into
strengthening an agent’s capability to express its
knowledge state and drives transparently and con-
cisely (Krause et al., 2023)4.

As there is a strong dependency between the
triple extractor tool employed and the eKg gen-
erated, we have explored various extraction ap-
proaches.In particular, we have implemented five
triple extractors: 1. a tailored Context Free Gram-
mar, 2. a spacy-based dependency parser, 3. an
Open Information Extractor based on Standford’s
implementation (Angeli et al., 2015), 4. a fine–
tuned multilingual BERT based model, and 5. a
LLama3 prompting technique. It is important to
note that the performance of these extractors im-
pacts the graph’s reasoning capabilities, as the gran-
ularity and meaningfulness of the nodes and rela-
tions will change. However, the impact on the

3https://github.com/leolani/
cltl-knowledgeextraction

4https://github.com/leolani/
cltl-languagegeneration

graph-based comparative evaluations (either be-
tween agents or across time) is negligible, as the
same biases of the tool are present across graphs.

Strategies to improve knowledge The evalua-
tion framework established earlier produces an ex-
tensive repertoire of areas where knowledge can
be targeted for improvement. Considering the spe-
cific setting of conversational agents, selecting one
of these areas of knowledge will produce differ-
ent conversations with a user, sometimes leading
to valuable input, while others are less successful.
Thus, the selection of the best or next area to focus
on becomes an important one, potentially linked to
dialogue management or planning.

The previous raises the question of "How to
learn effective strategies to exploit the commu-
nicative options of knowledge-centered agents for
achieving their knowledge goals?". To explore
this question, we experiment with RL to enable
the agent to dynamically choose semantic patterns
when responding to human cues. Preliminary ev-
idence indicates that generic graph metrics as re-
wards elicit specific types of knowledge acquisition
behaviour. For instance, metrics measuring the vol-
ume of knowledge, like Total number of triples,
lead to an agent focused on addressing knowledge
gaps, thus directly asking questions to the user
around unknown values. Overall, this adaptive
approach allows the agent to acquire knowledge
through a conversation while also being flexible
across different tasks, domains, and users.

3.4 Applications

Knowledge-centered agents can be applied to a
wide range of conversational situations. Scenarios
where non-factual or personal knowledge is pre-
dominant or where access to diverse knowledge
sources is available could benefit the most. We
focus on three specific domains: Diabetes Lifestyle
Management (DLM) (de Boer et al., 2023), Re-
construction of Timelines and Personal Diaries
and Counter-narrative creation for Hate Speech
(HS) (Doğanç and Markov, 2023). In the con-
text of DLM, the framework allows for the ex-
traction of patient preferences to ensure a tailored
and effective treatment plan (example on the Ap-
pendix, Figure 2) (Dudzik et al., 2024; Chen et al.,
2024). For the Reconstruction of Timelines and Per-
sonal Diaries, attention is directed towards identi-
fying temporal gaps between conversations to learn
what happened since and what the user perspective
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is (Vossen et al., 2024). Lastly, in the case of com-
bating HS, the framework addresses the challenge
of detecting reasoning faults and distinguishing
differences of opinion from violations of modern
values, such as the dehumanization of vulnerable
groups. These cases have in common that an agent
must actively get input from a user and critically
evaluate the quality of the information received.

Finally, we demonstrate that the same framework
can be deployed as a text-based chat system and
as a multimodal robot. In either case, observations
and experiences are captured in the eKG on which
the agent can act using the proposed evaluative
strategies to interact with its environment. This
flexibility highlights our framework’s potential to
be integrated into various conversational modali-
ties, offering a robust and adaptable solution across
different interaction contexts (Baier et al., 2022).

4 Conclusion

We develop a framework for conversational agents
designed to expand its knowledge for a better un-
derstanding of the world. The agent does not focus
on servicing users in predefined tasks but instead
focuses on knowledge that is lacking and needs to
be acquired or verified from external sources.

Our approach is highly flexible, independent to
any task-specific goals and capable of handling
various dialogue domains without customization
effort5. Our framework enables agents to modify
task models on the fly and extend domain informa-
tion, allowing for a dynamic and adaptive approach
to shape conversational interactions.

4.1 Challenges
In real-world settings, the growth of these eKG can
be rapid, thus presenting scalability challenges. We
have identified two main challenges in particular.
Firstly, querying these graphs in an efficient man-
ner becomes crucial, demanding proper database
management techniques such as ensuring correct
indices and optimizing queries. Secondly, utilizing
these graphs in neurosymbolic approaches involves
storing these large graphs in memory for specific
graph machine learning libraries, which can pose
computational difficulties with very large graphs (<
3 million triples).

To tackle these challenges, various strategies can
be employed. One approach is to slice the graph

5In certain cases, further training on the NLU/NLG mod-
ules might lead to improvements on the overall knowledge
communication pipeline. However, this is not required.

over time, knowledge sources, or types of knowl-
edge. These slices can be processed individually
or stored separately. Another option is to summa-
rize the graph (Čebirić et al., 2019), either through
extractive or grouping methods, or to sample the
graph (Hu and Lau, 2013) according to the needs
of a given application. Overall, while none of these
challenges are severe enough to make the proposed
framework unfeasible, they do require careful plan-
ning and consideration.
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and Bram Kraaijeveld. 2018. Leolani: A refer-
ence machine with a theory of mind for social com-
munication. In 21st International Conference on
Text, Speech, and Dialogue, TSD 2018, pages 15–25.
Springer/Verlag.
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Figure 2: Example of dialogue in a Diabetes Lifestyle Management. A patient, Lupe, reports that she has done an
activity with friends, expressing joy. This information gets incorporated into the memory, where information has
been previously stored regarding a similar activity a week before, expressed in a neutral emotion. At the same time,
this new information updates the T-Box, registering that activities may be performed with different companions,
and some companions might be preferred over others. The accumulated information is assessed as a whole, in this
case particularly focusing on differences between interactions. Furthermore, several areas of knowledge arise for
potential improvement, including 1) improve certainty over Lupe’s improved emotional state, 2) acquire information
regarding the frequency of Lupe’s activity, and 3) Lupe’s preferences for performing activities with company. The
latter is selected to continue the dialogue, and the information is expressed in natural language.
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