
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 4: Student Research Workshop), pages 130–137

June 18, 2024 ©2024 Association for Computational Linguistics

Improving Repository-level Code Search with Text Conversion

Mizuki Kondo1 Daisuke Kawahara1 Toshiyuki Kurabayashi2
1Waseda University 2NTT Laboratory

{kondmiznotfound@toki., dkw@}waseda.jp toshiyuk.kurabayashi@ntt.com

Abstract

The ability to generate code using large lan-
guage models (LLMs) has been increasing year
by year. However, studies on code generation
at the repository level are not very active. In
repository-level code generation, it is necessary
to refer to related code snippets among mul-
tiple files. By taking the similarity between
code snippets, related files are searched and in-
put into an LLM, and generation is performed.
This paper proposes a method to search for re-
lated files (code search) by taking similarities
not between code snippets but between the texts
converted from the code snippets by the LLM.
We confirmed that converting to text improves
the accuracy of code search.

1 Introduction

Currently, the code generation capability of large
language models (LLMs) has significantly im-
proved. The accuracy of understanding and gener-
ating individual pieces of code has become high.
However, there is little research at the repository
level, which is closer to actual software develop-
ment, and the ability of LLMs to generate code at
the repository level is very low. LLMs’ best debug-
ging accuracy at the repository level is only 1.96%
on the debugging benchmark SWE-bench (Jimenez
et al., 2023).

Code-related tasks at the repository level require
referring to many files. However, most LLMs are
based on Transformer (Vaswani et al., 2017), which
has a limitation on input length, preventing the in-
put of many files. Therefore, methods have been
proposed to search for relevant code snippets based
on similarity and input only these into LLMs (Liu
et al., 2023). The accuracy of code search is low
on SWE-bench and RepoBench (Liu et al., 2023),
repository-level code completion and search bench-
mark.

This paper focuses on improving the code search
method for code completion tasks. The code com-

Figure 1: Overview of our proposed method.

pletion task is a task that predicts the next line
of unfinished code. For predicting the next line,
multiple related files are provided based on the de-
pendencies between files obtained by parsing the
unfinished code. In this paper, the unfinished code
is referred to as the target code, and the multiple
related files are referred to as code candidates. The
task of selecting the relevant code from the code
candidates based on the information of the target
code is referred to as code search.

Existing studies obtain features, such as embed-
dings from language models, of both the target
code and code candidates to calculate similarity for
code search (Liu et al., 2023). RepoCoder (Zhang
et al., 2023) searches for code using such methods,
generates code once, and then re-searches and gen-
erates the output code using the generated code. In
this study, instead of directly taking the similarity
between code snippets, similarity is calculated after
transforming the code with an LLM. Code candi-
dates are converted to text, and the target code is
converted to text or to the prediction of the next
line and its explanation, which is a combination of
RepoCoder’s method and text conversion. Figure
1 shows the flow of text conversion.

We confirmed an improvement in the accuracy
of code search in code completion experiments
using our proposed method. We also examined the
prompts used for text conversion with LLMs.

130



2 Related work

2.1 LLMs trained on code

In recent years, there has been an increase in
Transformer-based LLMs trained on code, includ-
ing CodeBERT (Feng et al., 2020) and UniX-
coder (Guo et al., 2022) for encoder models,
Codex (Chen et al., 2021), StarCoder (Li et al.,
2023), and Code Llama (Roziere et al., 2023) for
decoder models, CodeT5+ (Wang et al., 2023) for
encoder-decoder models. Especially, the devel-
opment of decoder models has been remarkable,
and their code generation capabilities have signif-
icantly improved. These models exhibit high ac-
curacy in generating individual pieces of code and
perform well on code benchmarks, such as Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021).

2.2 Repository-level studies

In software development, multiple files are used
rather than a single file. To deal with real-world
software development tasks, studies have been con-
ducted on repositories such as GitHub (Just et al.,
2014).

With the improvement of code generation capa-
bilities of LLMs, there has been an increase in stud-
ies and benchmarks at the repository level based on
LLMs (Jimenez et al., 2023; Liu et al., 2023; Zhang
et al., 2023; Ding et al., 2022; Shrivastava et al.,
2023). RepoCoder (Zhang et al., 2023) improved
accuracy by repeating search and generation twice
in code completion tasks. RepoBench (Liu et al.,
2023) is a benchmark for code completion, consist-
ing of three tasks: code search, code completion,
and two pipeline tasks. SWE-bench (Jimenez et al.,
2023) is a benchmark that collected GitHub issues
and corresponding pull requests from Python repos-
itories to compete on how well LLMs can solve
real-world problems.

The accuracy on SWE-bench is significantly low.
Compared to studies on single code, those at the
repository level are less conducted in terms of the
number of methods and datasets.

3 Proposed method

3.1 Overview

In previous methods of code search, the target code
and code candidates are input directly into a lan-

Figure 2: Code candidate conversion.

guage model.1 Then, the similarity between the tar-
get code and a code candidate is calculated based
on their embeddings (Liu et al., 2023). In our pro-
posed method, code is converted into text by an
LLM, and its embeddings are obtained using a lan-
guage model. For calculating similarity, we try two
methods: the cosine similarity of mean embeddings
and BERTScore (Zhang et al., 2020). An example
of text conversion of code candidates is shown in
Figure 2.

Furthermore, in addition to converting the target
code into text using an LLM, we also propose a
method that combines our proposed method with
the method of RepoCoder (Zhang et al., 2023). In
RepoCoder, the LLM is used to predict the next line
once, and the predicted line is used for re-searching.
In contrast, we propose adding explanations to the
prediction of the next line. An example of the
conversion that outputs an explanation in addition
to the prediction of the target code is shown in
Figure 3.

3.2 Prompt design

It is known that prompts have a significant impact
on the output of LLMs (Wei et al., 2022). There-
fore, we create and test several prompts. In addition
to manually created prompts, we propose automatic
prompts that are generated by the LLM itself. An
example of an automatic prompt is shown in Fig-
ure 4. The example in Figure 4 instructs the LLM

1In this paper, models to be converted to embeddings are
called “language models” rather than LLMs because of their
small model size.

131



Figure 3: Target code conversion. In this case, an LLM
converts the target code to a prediction of the next line
and an explanation of the prediction.

to describe a certain situation and then output a
prompt. This results in the generation of multiple
prompt candidates.

4 Experiments

4.1 Experimental settings

Code candidates and target code expressions
We examine several patterns of text conversion by
LLMs in the code completion tasks. The code
candidates are evaluated in three types: the origi-
nal code without conversion, text conversion using
prompts created by humans, and text conversion
using automatic prompts. In addition to these three
types, the target code is evaluated in a total of five
types, including the method of RepoCoder (Zhang
et al., 2023) described in Section 3.1 and the pro-
posed method. The manually created prompts and
the automatic prompts were determined by trying
several patterns and adopting the one with the best
accuracy on a small dataset. The actual prompts
used are shown in Table 1.

Used models / datasets Gpt-3.5-turbo2 is used
as the LLM for text conversion. The temperature
parameter is set to 0 to ensure consistent genera-
tion. The models used for conversion to embed-

2https://platform.openai.com/docs/models/
gpt-3-5

Figure 4: Auto Prompt. The green-highlighted section
instructs an LLM to generate a prompt, the orange-
highlighted section is an output of a text conversion
prompt for the target code, and the yellow-highlighted
section is an output of a prompt for text conversion for
the code candidates.

dings are RoBERTa3, UniXcoder4, CodeBERT5,
and text-embedding-ada-0026 (hereafter referred to
as ada-002). For calculating the similarity between
converted texts, the cosine similarity of mean em-
beddings and BERTScore (Zhang et al., 2020) were
compared.

For evaluation, we use the Java and Python
datasets of the repobench-r7 code search task from
RepoBench (Liu et al., 2023). Our evaluation is
conducted with a set of 8,000 pieces of target code
and code candidates under the settings of “XFF”
and “Easy”. “XFF” is the setting where the next
line to be predicted in the target code is the first one
to refer to external code. “Easy” is the task where,
on average, there are 6.6 files for Java and 6.7 files
for Python among the code candidates. The code
candidates are provided based on the dependencies
between files obtained by parsing the unfinished
code.

3https://huggingface.co/roberta-base
4https://huggingface.co/microsoft/

unixcoder-base
5https://huggingface.co/microsoft/

codebert-base
6https://platform.openai.com/docs/models/

embeddings
7https://huggingface.co/datasets/tianyang/

repobench-r

132

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://huggingface.co/roberta-base
https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/microsoft/unixcoder-base
https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base
https://platform.openai.com/docs/models/embeddings 
https://platform.openai.com/docs/models/embeddings 
https://huggingface.co/datasets/tianyang/repobench-r
https://huggingface.co/datasets/tianyang/repobench-r


Type Prompt
Common You will be given the code snippet.
Human Your task is to summarize the code into text for code retrieval. The

length should be around 500 characters.
Auto Translate the following code to text for code search:

Meta information
Repository name: Actual repository name
File path: Actual file path

(a) Prompt used to convert the code candidates.

Type Prompt
Common You will be given the unfinished code snippet.
Human Your task is to summarize the code into text for predicting the next

line of the code. The length should be around 500 characters.
Auto Convert the given incomplete code snippet into natural language

text:
Pred Predict the next line of the following code and output it. Make

sure to only output the prediction.
Pred+Explain Please predict and output the next line of the following code. Then,

explain why you made that prediction.

Meta Information
Repository name: Actual repository name
File path: Actual file path

(b) Prompt used to convert the target code.

Table 1: The prompts used for the code candidates and the target code. Type indicates the type of prompt: Common
is the first prompt entered at the beginning of every prompt; Human is a human-created prompt; Auto is a prompt
created by automatic prompting; Pred is a prediction of the next line; and Pred+Explain is a prediction of the next
line with its explanation. Meta Information is the information entered at the end of every prompt. The prompts
consist of the Common statement first, followed by the Human, Auto, Pred, or Pred+Explain statement, and finally
the Meta Information. After these prompts, the code is entered.

Evaluation metrics The evaluation of the code
search task follows the evaluation method of Re-
poBench. The metric is the percentage of correct
answers that are the code candidates with the high-
est similarity (acc@1) and the percentage of correct
answers that are included in the three most similar
ones (acc@3).

4.2 Results

The evaluation results for Python are shown in Ta-
ble 2, and the evaluation results for Java are pre-
sented in Appendix A. This paper discusses Table 2.
Table 2 lists, from left to right, the method of cal-
culating similarity, the model used to obtain em-
beddings for calculating similarity, the prompt for
code candidates, and the prompt for a target code.
The prompts are represented as follows: “Human”
for manually created prompts, “Auto” for automati-
cally generated prompts, “Original” for the original
code, “Pred” for the prediction of the next line, and
“Pred+Explain” for the prediction of the next line
with an added explanation.

The proposed method is more accurate than
the baseline. The highest accuracy was achieved
with ada-002 for both acc@1 and acc@3, using
the cosine similarity of embeddings, when the
code candidate was Original and the target code
was Pred+Explain. Among the publicly avail-
able models, it was achieved by UnixCoder with
BERTScore, when the code candidate was Human
and the target code was Pred+Explain. Compared
to the baseline, where the code candidate and the
target code were both Original, the accuracy of the
proposed method was significantly higher, confirm-
ing its effectiveness.

Pred+Explain is highly accurate. Overall, the
accuracy is good when the target code is
Pred+Explain, and in most cases, it is higher than
the other conversion methods. In particular, Pred,
which predicts the next line, is the existing method
proposed by RepoCoder, and the fact that accu-
racy improves by adding explanations confirms the
effectiveness of the proposed method.

133



Unfinished Code
Retrieval Model Candidate Human Auto Original Pred Pred+Explain

acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

BERTScore

RoBERTa
Human

17.06 48.77 15.92 48.95 18.29 51.09 20.85 53.64 24.27 55.39
CodeBERT 16.36 48.65 15.36 48.25 18.09 50.39 19.97 52.27 21.60 53.71
UniXcoder 20.52 52.92 18.94 51.84 25.90 58.74 30.57 61.91 31.34 63.09
RoBERTa

Auto
16.55 47.75 15.69 47.72 17.44 49.44 18.09 50.45 20.49 50.99

CodeBERT 16.54 47.72 15.84 46.85 17.60 49.71 17.64 50.21 18.24 49.90
UniXcoder 19.79 52.32 17.47 50.57 24.94 58.80 28.79 60.76 29.74 61.52
RoBERTa

Original
16.59 47.92 15.91 47.36 17.24 47.91 17.97 49.57 19.12 50.29

CodeBERT 16.21 46.99 15.74 46.50 16.84 48.51 17.86 49.34 18.26 49.06
UniXcoder 19.86 52.34 18.02 50.81 25.00 59.06 28.79 60.72 29.37 62.12

Embedding

RoBERTa

Human

16.52 48.14 16.17 48.57 16.45 47.50 16.95 47.97 19.41 50.19
CodeBERT 15.84 47.85 16.07 47.70 15.39 47.32 16.62 47.47 18.34 48.85
UniXcoder 20.29 53.64 19.00 51.75 25.06 58.90 29.79 61.32 30.65 62.46
ada-002 19.40 52.81 17.81 51.35 28.40 61.92 33.36 64.80 33.71 65.56
RoBERTa

Auto

16.35 47.51 15.72 47.14 15.85 47.74 16.55 47.77 17.37 47.71
CodeBERT 16.31 47.71 15.54 47.97 15.86 46.76 16.04 47.15 16.51 46.75
UniXcoder 19.70 52.24 17.16 50.15 24.16 58.12 27.82 60.61 29.40 61.35
ada-002 19.14 52.42 18.32 50.07 29.06 62.49 34.55 65.38 34.00 65.58
RoBERTa

Original

16.86 48.11 16.34 47.64 15.97 47.05 16.75 48.42 17.07 48.65
CodeBERT 16.15 46.91 16.04 46.85 15.77 46.26 15.95 47.37 16.00 47.12
UniXcoder 19.85 51.74 17.66 49.96 24.15 58.85 27.66 60.00 28.10 59.95
ada-002 19.64 52.56 17.62 50.49 27.95 63.31 33.66 65.76 34.82 66.61

Table 2: Result of the Python dataset. This table lists, from left to right, the method of calculating similarity,
the model used to obtain embeddings for calculating similarity, the prompt for code candidates, and the prompt
for a target code. The prompts are represented as follows: “Human” for manually created prompts, “Auto” for
automatically generated prompts, “Original” for the original code, “Pred” for the prediction of the next line, and
“Pred+Explain” for the prediction of the next line with an added explanation.

When the target code is Human or Auto, the
accuracy is low. On the contrary, when the target
code was Human or Auto, the accuracy was lower
than the baseline. This is thought to be because the
conversion of the code into text was done for the
entire code, which reduced the information about
the next line. When the target code was Original,
the last three lines were input into the model, fol-
lowing RepoBench. This treatment is believed to
have retained more information about the following
line.

High accuracy was achieved for code candidate
conversion through manual prompts. When we
focus on the text conversion of code candidates, the
overall trend in accuracy shows that Original and
Auto are roughly the same, with Human having
higher accuracy. This indicates that while the effec-
tiveness of text conversion was confirmed, that of
automatic prompts was not observed. The design
of prompts, under the conditions of this experiment,
resulted in higher accuracy when done manually,
making the automatic creation of prompts a chal-
lenge for future work.

UniXcoder and ada-002 are highly accurate.
When evaluating the accuracy for each model,
UniXcoder and ada-002 had high overall accuracy,
while RoBERTa and CodeBERT had low accuracy
for all prompts. The trends for CodeBERT and
UniXcoder were similar to those reported in Re-
poBench, with CodeBERT having low accuracy

and UniXcoder having high accuracy. RoBERTa,
which is not pre-trained on code, was supposed to
have higher accuracy because the code is converted
into text through text conversion. However, the
result was low. Ada-002 had high accuracy in the
CodeSearchNet (Husain et al., 2019) dataset8 and
also achieved high accuracy in repobench-r.

BERTScore is more accurate than Embed-
ding. For the calculation methods for similar-
ity, BERTScore is more accurate than Embedding
when comparing the same models. This is be-
cause BERTScore retrieves similarity for each to-
ken when calculating similarity, resulting in wide-
coverage information. However, the highest accu-
racy was achieved with Embedding’s ada-002, both
for acc@1 and acc@3, when the code candidate
was Original and the target code was Pred+Explain.
It should be noted that BERTScore cannot be ap-
plied to proprietary models such as ada-002.

Analysis of the computational resources re-
quired for text conversion Text conversion of
code candidates requires all files to be converted to
text by an LLM. However, by creating and caching
embeddings of the converted text, only a one-time
conversion is required, which requires relatively
few computational resources.

The text conversion of the target code generates
a prediction of the next line and its explanation to

8https://openai.com/blog/
new-and-improved-embedding-model

134

https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model


perform a code search. This requires more compu-
tational resources than simply predicting the next
line. However, the explanations are often short,
and thus the computational resources are not used
excessively.

5 Conclusion

In this study, we proposed a method for code search
in code completion tasks, which involves convert-
ing code into text to obtain similarity. Additionally,
we proposed an automatic prompting method that
creates prompts for LLMs. While an improvement
in accuracy was confirmed for text conversion, no
improvement in accuracy was observed for auto-
matic prompting.

We hope that this study will contribute to the
development of code generation tasks at the repos-
itory level. In the future, we aim to apply text
conversion not only to tasks other than code com-
pletion tasks, such as debugging, but also beyond
repository-level tasks.

Acknowledgements

This work was conducted in collaboration with
NTT Laboratory and Waseda University.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad,
Murali Krishna Ramanathan, Ramesh Nallapati,

Parminder Bhatia, Dan Roth, and Bing Xiang.
2022. Cocomic: Code completion by jointly mod-
eling in-file and cross-file context. arXiv preprint
arXiv:2212.10007.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

René Just, Darioush Jalali, and Michael D Ernst. 2014.
Defects4j: A database of existing faults to enable
controlled testing studies for java programs. In Pro-
ceedings of the 2014 international symposium on
software testing and analysis, pages 437–440.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Tianyang Liu, Canwen Xu, and Julian McAuley.
2023. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint
arXiv:2306.03091.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Disha Shrivastava, Hugo Larochelle, and Daniel Tar-
low. 2023. Repository-level prompt generation for
large language models of code. In International Con-
ference on Machine Learning, pages 31693–31715.
PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

135

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499


Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-
nan Li, and Steven Hoi. 2023. CodeT5+: Open code
large language models for code understanding and
generation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1069–1088, Singapore. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. RepoCoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2471–2484, Singapore. Association for Com-
putational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

136

https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


A Result of the Java dataset

Unfinished Code
Retrieval Model Candidate Human Auto Original Pred Pred+Explain

acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3 acc@1 acc@3

BERTScore

RoBERTa
Human

13.90 45.26 12.96 43.82 16.86 49.22 20.21 52.31 20.75 52.97
CodeBERT 14.55 46.27 13.32 45.10 17.11 48.99 18.84 51.22 18.61 50.70
UniXcoder 13.87 45.79 13.19 43.89 20.70 53.96 24.95 56.76 23.55 56.89
RoBERTa

Auto
15.11 46.64 14.19 45.47 16.75 48.61 19.59 51.10 19.76 52.22

CodeBERT 15.42 47.95 14.34 45.75 16.64 48.46 18.16 49.87 18.25 49.76
UniXcoder 14.12 45.47 12.97 44.09 19.80 53.69 23.40 55.32 22.91 55.72
RoBERTa

Original
14.75 46.65 13.99 45.74 16.46 49.45 17.31 50.85 16.96 50.30

CodeBERT 14.92 47.29 14.25 46.85 16.61 49.72 17.20 50.45 17.22 49.34
UniXcoder 14.85 46.27 13.55 45.14 20.24 54.04 24.06 57.62 22.75 56.30

Embedding

RoBERTa

Human

14.80 46.30 14.57 45.54 16.39 49.60 16.96 49.82 18.27 50.26
CodeBERT 14.95 47.46 14.89 46.19 15.85 48.29 16.67 49.21 17.04 49.14
UniXcoder 14.00 46.00 13.10 44.11 20.20 53.91 24.21 56.62 23.46 56.69
ada-002 12.90 44.74 12.34 43.15 21.61 55.97 25.81 58.71 24.70 58.86
RoBERTa

Auto

14.99 46.56 15.17 45.92 16.45 48.86 17.19 48.99 17.37 49.66
CodeBERT 15.62 47.46 14.81 46.29 15.87 48.60 16.72 48.35 16.70 48.57
UniXcoder 14.14 45.95 13.15 44.16 20.32 54.30 23.04 55.67 22.96 56.21
ada-002 13.39 44.99 12.46 43.71 22.25 56.95 26.44 59.21 25.90 59.16
RoBERTa

Original

14.77 46.34 14.21 46.26 16.21 47.79 15.96 47.80 15.30 47.06
CodeBERT 15.42 47.16 14.99 47.10 15.47 47.86 16.07 48.14 15.54 47.62
UniXcoder 14.89 47.16 13.84 45.94 20.05 52.97 22.66 55.92 21.00 54.69
ada-002 13.12 45.12 12.16 43.56 22.10 57.20 27.91 61.24 26.41 60.52

Table 3: Result of the Java dataset. The trend is generally the same as Python, but in many cases, Pred is more
accurate than Pred+Explain. The proposed method is effective because the results are better when the code
candidates are converted to text.

137


