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Abstract
Making decent multi-lingual sentence repre-
sentations is critical to achieve high perfor-
mances in cross-lingual downstream tasks. In
this work, we propose a novel method to align
multi-lingual embeddings based on the simi-
larity of sentences measured by a pre-trained
mono-lingual embedding model. Given transla-
tion sentence pairs, we train a multi-lingual
model in a way that the similarity between
cross-lingual embeddings follows the similar-
ity of sentences measured at the mono-lingual
teacher model. Our method can be considered
as contrastive learning with soft labels defined
as the similarity between sentences. Our ex-
perimental results on five languages show that
our contrastive loss with soft labels far outper-
forms conventional contrastive loss with hard
labels in various benchmarks for bitext mining
tasks and STS tasks. In addition, our method
outperforms existing multi-lingual embeddings
including LaBSE, for Tatoeba dataset. The
code is available at https://github.com/
YAI12xLinq-B/IMASCL

1 Introduction

Learning good representations (or embeddings) of
sentences and passages is crucial for developing de-
cent models adaptive to various downstream tasks
in natural language processing. Compared with the
high quality mono-lingual sentence embeddings
developed in recent years (Wang et al., 2023; Song
et al., 2020), multi-lingual sentence embeddings
have a room for improvement, mostly due to the dif-
ficulty of gathering translation pair data compared
to mono-lingual data. This motivated recent tri-
als on improving the performance of multi-lingual
embeddings.

One of the prominent approaches trains the
multi-lingual embeddings using contrastive learn-
ing (Zhang et al., 2022; Gao et al., 2021). Given

*Equal contribution
†Corresponding authors

a translation pair for different languages, this ap-
proach trains the model in a way that the embed-
dings for translation pairs are brought closer to-
gether, while embeddings for non-translation pairs
are pushed further apart (Feng et al., 2020). De-
spite several benefits of this contrastive learning
approach, Ham and Kim (2021) pointed out that
current training method ruins the mono-lingual em-
bedding space. To be specific, this issue arises
from the fact that existing contrastive loss treats
sentences that are not exact translation pairs identi-
cally (as negative pairs), irrespective of the seman-
tic similarity of those sentences.

Another prominent approach is distilling mono-
lingual teacher embedding space to a multi-lingual
student model. The basic idea is, letting the multi-
lingual embeddings of student models follow the
mono-lingual embeddings of teacher model. This
approach is motivated by the assumption that En-
glish embeddings are well constructed enough to
guide immature multi-lingual embeddings. For ex-
ample, Reimers and Gurevych (2020) proposed
a distillation method using mean-squared-error
(MSE) loss, which is shown to be effective in learn-
ing embeddings for low-resource languages. Also,
Heffernan et al. (2022) used a distillation method
where the teacher is the English embedding of a
multi-lingual model. Unfortunately, existing distil-
lation methods cannot fully utilize the translation
pairs. Since conventional methods choose the most
reliable English embeddings as the teacher model,
translation pairs from non-English language paral-
lel corpus are not fully leveraged.

In this paper, we propose a novel distillation
method for improving multi-lingual embeddings,
by using soft contrastive learning. See Figure 1.
Given N translation pairs {(si, ti)}N

i=1, our method
first computes the mono-lingual sentence similarity
matrix from the teacher model. Each element of
this similarity matrix is a continuous value. We
distill such soft label to the cross-lingual sentence
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similarity matrix computed for the multi-lingual
student model. In other words, the anchor similar-
ity matrix computed from the teacher model is used
as a pseudo-label for contrastive loss. Our main
contributions are as follows:

• We propose a novel method of fine-tuning
multi-lingual embeddings by distilling the sen-
tence similarities measured by mono-lingual
teacher models. Compared with the conven-
tional contrastive learning which uses hard
labels (either positive or negative for sentence
pairs), our method chooses soft labels for mea-
suring the sentence similarities.

• Compared with conventional contrastive learn-
ing and monolingual distillation method using
MSE, our soft contrastive learning has much
improved performance in bitext mining tasks,
Tatoeba, BUCC and FLORES-200, for five
different languages.

• For Tatoeba, our method outperforms exist-
ing baselines including LaBSE, LASER2 and
MPNet-multi-lingual.

2 Related Works

Constructing multi-lingual embedding has been ac-
tively studied for recent years (Heffernan et al.,
2022; Artetxe and Schwenk, 2019; Duquenne et al.,
2023). For example, LaBSE (Feng et al., 2020)
shows remarkable bitext retrieval performances,
which is first pretrained with masked language mod-
eling (MLM) (Devlin et al., 2018) and translation
language modeling (TLM) (Conneau and Lample,
2019) tasks, and then fine-tuned with translation
pairs using contrastive loss, i.e. translation ranking
task. Also, mUSE (Yang et al., 2019) uses trans-
lation based bridge tasks from Chidambaram et al.
(2018) to make a multilingual embedding space.
In short, mUSE (Yang et al., 2019) is trained for
translation ranking task with hard negatives.

Reimers and Gurevych (2020) introduced distill-
ing the mono-lingual embedding of a teacher model
(using sBERT (Reimers and Gurevych, 2019)) to
the multi-lingual embedding of a student model (us-
ing XLM-R (Conneau et al., 2019)) with MSE loss,
which enables a good bitext retrieval performance
only with small amounts of parallel data. Several
follow-up papers (Duquenne et al., 2023; Heffer-
nan et al., 2022) achieved good performances by
using this distillation approach. For example, Hef-
fernan et al. (2022) successfully improved the per-
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Figure 1: Overall framework of our method. Given N
sentence pairs from source/target languages, we train
a multi-lingual student model f by using the similarity
between sentences measured by a mono-lingual teacher
model g. Our contrastive loss function in Eq. 2 uses
soft-label w(i, j) defined in Eq. 4 and 5.

formance on low-resource languages with the aid
of the distillation approach. Compared with ex-
isting distillation methods, our work distills the
similarities between sentences measured by mono-
lingual embeddings, instead of directly distilling
the mono-lingual embedding space of the teacher
model.

3 Proposed Method

Suppose we are given N translation pairs, denoted
by (s1, t1), (s2, t2), · · · , (sN , tN ), where si is the
i-th sentence in the source language and ti is the
corresponding sentence in the target language. We
train a multi-lingual student model f by using the
similarities between mono-lingual sentences mea-
sured by a teacher model g. Here, g can be either
a mono-lingual model or using only a single lan-
guage from multi-lingual models. Specifically, we
first use the teacher network g to measure the simi-
larity of sentences {si}N

i=1 in the source language.
The cosine similarity between sentences si and sj

measured by encoder g is denoted by

simg(si, sj) =
cos(g(si), g(sj))

⌧
,

where ⌧ is the temperature parameter. Then, we
train multi-lingual encoder f in a way that

simg(si, sj) ⇡ simf (si, tj) ⇡ simf (ti, sj) (1)
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i.e., the similarity of i-th sentence and j-th sentence
is maintained across different language pairs. Such
objective is reflected in our contrastive loss

Lrow = � 1

N

NX

i=1

NX

j=1

w(i, j) log(
esimf (si,tj)

PN
n=1 esimf (si,tn)

) (2)

where w(i, j) is the label using similarity between
si and sj . The standard contrastive loss used in
LaBSE (Feng et al., 2020) and mE5 (Wang et al.,
2024) has the form of Eq. 2 where

w(i, j) =

(
1 if i = j

0 otherwise
(3)

i.e., two sentences (si and sj) are considered as a
positive pair only if i = j, and labeled as a negative
pair otherwise.

Since the naïve labeling method above cannot
fully capture the semantic relationship between dif-
ferent sentence pairs, we propose following w(i, j)
by applying the softmax function on the similarity
matrix measured at the teacher model.

w(i, j) =
esimg(si,sj)

PN
n=1 esimg(si,sn)

(4)

w(i, j), namely Priority label, calculates label
based on the similarity using the anchor language
sentences. In Eq 4, we assume the source language
as an anchor. Note that both the source and the tar-
get language are available as an anchor language,
thus we need to choose one.

Thus, we consider a variant of w(i, j), namely
Average label, which mixes monolingual embed-
ding spaces of source and target language by aver-
aging similarity.

w(i, j) =
e(simg(si,sj)+simg(ti,tj))/2

PN
n=1 e(simg(si,sn)+simg(ti,tn))/2

(5)

In fact, this only works when the teacher model is
multi-lingual, and the student encoder f trains in a
following way, which is different from the Eq. 1.

(simg(si, sj) + simg(ti, tj))/2 ⇡ simf (si, tj) ⇡ simf (ti, sj)

The contrastive loss discussed above is uni-
directional. Following the common symmetric bi-
directional contrastive loss, e.g., (Radford et al.,
2021), the symmetric loss using our soft label is
defined as

Lcross = Lrow + Lcol (6)

where Lrow is in Eq. 2 and

Lcol = � 1

N

NX

i=1

NX

j=1

w(i, j) log(
esimf (si,tj)

PN
n=1 esimf (sn,tj)

).

Training Monolingual Space (TMS) Note that
our objective Lcross given in Eq. 6 is to learn only
the cross-lingual similarity of the student model.
In addition to that, we consider learning with ad-
ditional mono-lingual loss Lmono in Eq. 7,the dis-
tillation loss measured by the similarity between
each monolingual sentence pair. This approach of
using Lmono on top of Lcross is dubbed as training
monolingual space (TMS). The combined loss term
is shown in Eq. 8, where the parameter � controls
the balance between the cross-lingual loss and the
mono-lingual loss term. Note that using TMS is
orthogonal to the choice of using the Priority label
or the Average label.

Lmono = � 1

N

NX

i=1

NX

j=1

w(i, j) log(
esimf (si,sj)

PN
n=1 esimf (sn,sj)

)

+ � 1

N

NX

i=1

NX

j=1

w(i, j) log(
esimf (ti,tj)

PN
n=1 esimf (tn,tj)

)

(7)

L = � · Lcross + Lmono (8)

4 Experimental Settings

This section describes the details of our experimen-
tal setting, for both training and evaluation.

4.1 Training setup

The translation pairs used for training are down-
loaded from OPUS1 (Tiedemann, 2012), where the
volume of each language corpus is given in Ap-
pendix B. We focus on five languages: English
(en), French (fr), Japanese (ja), Korean (ko), and
Russian (ru). We train two types of models, cross-
lingual and multi-lingual. For each cross-lingual
model, we use en-ko, en-ja, en-ru, and en-fr
pairs, respectively. For the multi-lingual model, we
train with all translation pairs for five languages.

As discussed in Sec. 3, we consider two types of
soft label w(i, j): the Priority label in Eq. 4 defines
the soft label by using the similarity measured at

1https://opus.nlpl.eu
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a mono-lingual embedding (for a pre-defined an-
chor language), while the Average label in Eq. 5
uses the similarity averaged out over mono-lingual
embeddings of both source and target language.
Note that we need to choose the anchor language
(among the source and the target language), for the
former one. By default, we set the priority of the
languages based on the volume of each language
corpus used in training, thus having the following
order: en, ru, ja, fr, and ko. The anchor language
is defined as the one with higher priority between
language pair. We also apply TMS, which is shown
in Eq. 8, using shared w(i, j) for the monolingual
alignment and cross-lingual alignment.

Each model is trained for 30 epochs2 on 2 RTX-
3090 GPUs with global batch size 32. We use the
cross-accelerator to expand negative samples, as
described in Appendix C.2. The initial learning rate
is set to � = 5 · 10�3, and we linearly decay the
learning rate. We use the AdamW optimizer. We
tune the temperature parameter on en-ko bilingual
dataset, and set it to ⌧ = 0.1. Also, we set the
portion of cross-lingual loss in TMS as � = 0.1.
We apply the mixed precision training, to improve
the training efficiency.

4.2 Evaluation tasks

Bitext Mining We evaluate our model on three
bitext mining datasets, Tatoeba (Artetxe and
Schwenk, 2019), BUCC (Zweigenbaum et al.,
2017) and FLORES-200 (Costa-jussà et al., 2022).
Tatoeba and BUCC are English-centric transla-
tion pair benchmark datasets that are included in
MTEB (Muennighoff et al., 2022), and FLORES-
200 is a N -way parallel benchmark dataset.
Throughout the paper, we use the average accu-
racy measured from both directions (e.g., en→ko
and ko→en) for BUCC and Tatoeba. We measure
the average xSIM error rate from (Heffernan et al.,
2022) for each languages in FLORES-200.

Semantic Textual Similarity (STS) We evaluate
our model on STS datasets to examine how well
mono-lingual and cross-lingual spaces are formed.
We test on STS12-STS22 and the STS benchmark
in MTEB (Muennighoff et al., 2022), and measure
the average spearman correlation for each of the
en, ko, fr, ru and en-fr.

2We early stopped with Tatoeba validation set. Most of the
trains were stopped at between 10 and 20 epoch.

Lang Student
Model

Teacher
Model

Tatoeba
(en-xx)

BUCC
(en-xx)

STS
(en)

STS
(xx)

en-ko

mE5base

mE5base 0.917 - 0.777 0.762
E5base 0.907 - 0.759 0.740
MPNet 0.869 - 0.692 0.685

XLM-R
mE5base 0.896 - 0.704 0.707
E5base 0.897 - 0.702 0.702
MPNet 0.864 - 0.648 0.650

en-fr

mE5base

mE5base 0.963 0.982 0.783 0.775
E5base 0.956 0.973 0.764 0.782
MPNet 0.944 0.963 0.706 0.785

XLM-R
mE5base 0.951 0.973 0.699 0.744
E5base 0.949 0.961 0.692 0.747
MPNet 0.942 0.956 0.637 0.761

Table 1: Comparison of various combinations of stu-
dent and teacher models, in terms of the bitext mining
(accuracy) and STS (spearman correlation score) perfor-
mances. The best performance is achieved when both
teacher and student use mE5base model.

5 Results

We first test the model trained with a single lan-
guage pair, and then show the result when the
model is trained with multiple language pairs.

5.1 Effect of the Student/Teacher Model
Table 1 shows the effect of the (student, teacher)
model pair on the performance of our soft
contrastive loss, using loss in Eq. 6, without
TMS. We test two student model architectures,
mE5base (Wang et al., 2024) and XLM-R (Con-
neau et al., 2019), and three teacher models,
mE5base (Wang et al., 2024), E5base (Wang et al.,
2022), and MPNet3 (Song et al., 2020). The details
of the student model selection are described in Ap-
pendix C.1. One can confirm that using mE5base
for both teacher and student performs the best in
both STS and bitext mining tasks. Thus, for the
following experiments, we use mE5base for both
teacher and student as a baseline.

5.2 Effectiveness of Our Loss
Recall that we propose training a student model
using the contrastive loss with soft labels obtained
from the teacher model. We denote our method as
soft contrastive loss, and observe the effect of dif-
ferent loss functions in Table 2 and Table 3. Given
a pre-trained student model, we fine-tune it with dif-
ferent losses. We compare two types of contrastive
loss in Eq. 2, where one uses soft label w(i, j) (Pri-
ority label in Eq. 4) with TMS (Eq. 8) and the
other uses hard label w(i, j) in Eq. 3. Note that
mUSE (Yang et al., 2019) and LaBSE (Feng et al.,
2020) use hard labels in contrastive loss where the
translation pair is the only available positive pair,

3https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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Lang Loss Tatoeba
(en-xx) BUCC STS

(en)
STS
(xx)

en-ko

Soft Contrastive (Ours) 0.916 - 0.788 0.778
Hard Contrastive 0.863 - 0.674 0.675

MSE (Reimers and Gurevych, 2020) 0.911 - 0.803 0.793
mUSE (Yang et al., 2019) 0.853 - 0.715 0.698

Pretrained Model 0.873 - 0.802 0.777

en-fr

Soft Contrastive (Ours) 0.960 0.987 0.796 0.791
Hard Contrastive 0.937 0.933 0.675 0.748

MSE (Reimers and Gurevych, 2020) 0.959 0.980 0.803 0.704
mUSE (Yang et al., 2019) 0.950 0.984 0.713 0.771

Pretrained Model 0.951 0.984 0.802 0.781

en-ja

Soft Contrastive (Ours) 0.956 - 0.798 -
Hard Contrastive 0.933 - 0.730 -

MSE (Reimers and Gurevych, 2020) 0.949 - 0.808 -
mUSE (Yang et al., 2019) 0.925 - 0.742 -

Pretrained Model 0.931 - 0.802 -

en-ru

Soft Contrastive (Ours) 0.951 0.979 0.787 0.616
Hard Contrastive 0.949 0.955 0.666 0.545

MSE (Reimers and Gurevych, 2020) 0.945 0.978 0.804 0.601
mUSE (Yang et al., 2019) 0.944 0.978 0.720 0.548

Pretrained Model 0.936 0.978 0.802 0.615

Table 2: Comparison of different loss functions used for
fine-tuning pre-trained student model, tested on bitext
mining tasks and STS tasks. The gray shaded method is
the baseline which uses the pre-trained student model
as it is. The best performance is indicated in bold, sec-
ond most performance is indicated with an underline,
throughout this paper. For Tatoeba dataset, our soft con-
trastive loss outperforms all compared losses.

Pretrained model Fine-tune loss Tatoeba BUCC FLORES-200
mE5base Soft Contrastive (Ours) 0.949 0.983 0.02
mE5base MSE 0.942 0.975 0.05
mE5base - 0.923 0.981 0.16

MPNet-multilingual - 0.945 0.970 0.28
LASER2 - 0.939 0.981 0.20
LaBSE - 0.948 0.985 0.01

Table 3: Comparison between existing models and fine-
tuning loss on multi-lingual data, tested on bitext min-
ing. Measured accuracy for Tatoeba and BUCC, while
measuring xSIM error rate for FLORES-200. Note that
fine-tuned with MSE is the same approach as Reimers
and Gurevych (2020). Ours show similar performance
to current SoTA, LaBSE.

corresponds to Eq. 3. We also test using MSE
loss for distilling the embeddings of the teacher
model to the embeddings of the student model, as
in (Reimers and Gurevych, 2020).

Table 2 provides the performances tested on bi-
text mining tasks and STS tasks trained with a sin-
gle language pair, i.e. cross-lingual version of ours.
We test on four different language pairs {en-xx}
where xx is either ko, fr, ja, or ru.

We have three major observations. First, our
soft contrastive loss outperforms conventional hard
contrastive loss in all performance metrics in all
language pairs. For example, in Tatoeba dataset,
our method has up to 5.3% accuracy gain (e.g.,
from 86.3% to 91.6% for en-ko pair) compared
with hard contrastive loss. Note that compared with
the pre-trained model (shown in the gray shaded
region in Table 2), additional training with hard

contrastive loss sometimes harms the performance,
e.g., the accuracy degrades from 87.3% to 86.3%
in Tatoeba dataset for the model trained with en-
ko pair, and the STS performance degrades from
0.802 to 0.666 for the model trained with en-ru
pair, which is critical.

Second, our soft contrastive loss provides the
best performance in the bitext mining task, Tatoeba,
and BUCC, for all language pairs. Compared with
the pre-trained student model, additional training
with soft contrastive loss improves the accuracy up
to 4.3%.

Third, the STS performance for non-English lan-
guages is improved, after training with our soft con-
trastive loss. For example, after training with en-fr
translation pair, the STS performance elevates by
0.01 when using soft contrastive loss, while 0.077
degradations (from 0.781 to 0.704) shown in MSE
loss (Reimers and Gurevych, 2020).

Furthermore, we demonstrate the effectiveness
of our loss through training with multiple language
pairs, i.e. multi-lingual version of ours. Table 3
shows the bitext mining performances of multi-
lingual models, tested on five languages, en, ko,
ja, fr and ru. We also test the performance of pre-
trained multi-lingual model checkpoints, namely,
mE5base (Wang et al., 2024), LASER2 (Artetxe
and Schwenk, 2019), LaBSE (Feng et al., 2020),
and MPNet-multilingual4 (Reimers and Gurevych,
2020). We trained with en-xx pairs (en-ko, en-ja,
en-ru, and en-fr) for the fine-tuning. As a result,
ours outperforms Reimers and Gurevych (2020) in
every bitext mining task. Moreover, compared to
other pretrained models, ours shows close results
to current bitext mining State-of-the-Art, LaBSE.

5.3 Factor Analysis on Our Method
Priority vs Average We compare the two soft la-
bel methods we proposed in Eq. 4, 5 by varying the
label functions, shown in Table 4, 5. Priority and
Average stand for the loss described in Eq. 6 with
w(i, j) from Eq. 4, 5, respectively. TMS stands
for the loss with monolingual alignment shown in
Eq. 8.

Table 4, 5 shows the performance of model
trained with single language pair data and multiple
language pairs data respectively (cross-lingual and
multi-lingual). Both Priority and Average signif-
icantly improved the performance of most bitext
mining compared to the pretrained model. While

4https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2
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Lang Loss Tatoeba
(en-xx) BUCC STS

(en)
STS
(xx)

en-ko

Average 0.912 - 0.771 0.757
Priority 0.917 - 0.777 0.762

Priority + TMS 0.916 - 0.788 0.778
Pretrained Model 0.873 - 0.802 0.777

en-fr

Average 0.959 0.981 0.767 0.794
Priority 0.963 0.982 0.783 0.775

Priority + TMS 0.960 0.987 0.796 0.791
Pretrained Model 0.951 0.984 0.802 0.781

en-ja

Average 0.957 - 0.787 -
Priority 0.960 - 0.787 -

Priority + TMS 0.956 - 0.798 -
Pretrained Model 0.931 - 0.802 -

en-ru

Average 0.955 0.980 0.775 0.612
Priority 0.953 0.979 0.781 0.607

Priority + TMS 0.951 0.979 0.787 0.616
Pretrained Model 0.936 0.978 0.802 0.615

Table 4: Comparison of each variation trained with
cross-lingual data, in terms of the bitext mining and
STS performances. Priority shows slightly better perfor-
mance than Average in bitext mining tasks, except for
en-ru. Applying TMS enhances the STS performance,
better than a pre-trained model for the non-English lan-
guage.

Loss Parallel
Corpus Tatoeba BUCC FLORES-200

Average All pairs 0.950 0.979 0.04
Priority All pairs 0.952 0.978 0.04

Priority + TMS All pairs 0.948 0.983 0.04
Average en-xx 0.948 0.979 0.04
Priority en-xx 0.942 0.979 0.05

Priority + TMS en-xx 0.949 0.983 0.02
Pretrained Model - 0.923 0.981 0.16

Table 5: Comparison of different loss on multi-lingual
data, in terms of the bitext mining task performances.

the performance gap between Priority and Average
is trivial in Table 5, Priority shows slightly better
performance than Average for bitext mining in Ta-
ble 4. Yet, Average performs better on STS (xx)
performances. For example, for models trained
with en-fr, Average achieves 0.794, which 0.019
higher than the Priority (0.775)

Effect of TMS We validate the effectiveness of
TMS by comparing Priority and Priority + TMS
in Table 4, 5. Table 4 shows that using TMS im-
proves the performance significantly on STS in all
language pairs. For example, TMS increases STS
performances with en-ko pairs from 0.011 higher
on STS (en) and 0.016 higher on STS (xx). Though
there was no performance gain in bitext mining af-
ter applying TMS, still Priority + TMS shows much
better performance than the pre-trained model.

The impact of TMS is more dramatic in a multi-
lingual experiment setting, shown in Table 5. Ap-
plying TMS shows the best STS performance
shown in Appendix A, and even the best perfor-
mance in bitext mining tasks shown in Table 5.

Effect of Language Pair Selection We expect
there was an interference that arose from using mul-

Data STS Tatoeba BUCC FLORES-200
en ko fr ru en-fr

en-xx, fr-xx 0.757 0.694 0.742 0.589 0.765 0.948 0.983 0.04
en-xx, ru-xx 0.757 0.696 0.718 0.586 0.758 0.946 0.979 0.07

Table 6: Comparison of varying language pairs for train
corpus, tested on bitext mining tasks) and STS tasks.
The model trained on en-xx, fr-xx performs better than
the model trained on en-xx, ru-xx for STS in all lan-
guages.

tiple languages as a teacher, as there was less per-
formance gain for BUCC and FLORES-200 when
expanding a corpus size (from using only en-xx to
all pairs). Thus, we made an additional experiment
to analyze the effects of language selection on the
performance.

Table 6 shows the results of training with our
method on less language pairs. We test our method
on language pairs containing en or fr (denoted by
en-xx and fr-xx), and language pairs containing
en or ru (denoted by en-xx and ru-xx). All tests
in Table 6 are trained without TMS on the priority
labels using our loss.

Using the pair en-xx, fr-xx performs better than
using en-xx, ru-xx in most of the benchmarks. Not
only bitext mining but also STS shows better per-
formances for most languages. Even for ru STS,
we can observe that en-xx, fr-xx performs better
than en-xx, ru-xx. This can be seen as a synergy
or interference between languages, which has a sig-
nificant impact on performance. Thus, by selecting
teacher languages that share similar monolingual
embedding space, we believe we can achieve much
better performance in multilingual tasks. We leave
this as a future work.

6 Conclusion

In this paper, we proposed a method of improv-
ing multi-lingual embeddings, with the aid of the
sentence similarity information measured at the
mono-lingual teacher models. Our method can be
considered as a variant of existing contrastive learn-
ing approach, where our method uses soft labels
defined as the sentence similarity, while existing
methods use hard labels. We tested our method on
five different languages including en, ko, ja, fr,
and ru. Our method shows the best performance
in the Tatoeba dataset, and achieved high perfor-
mance in other bitext mining tasks as well as STS
tasks.
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