
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 4: Student Research Workshop), pages 168–199

June 18, 2024 ©2024 Association for Computational Linguistics

Source Code is a Graph, Not a Sequence: A Cross-Lingual Perspective on
Code Clone Detection

Mohammed Ataaur Rahaman1, Julia Ive1

Queen Mary University of London1

m.a.rahaman@se22.qmul.ac.uk

j.ive@qmul.ac.uk

Abstract
Code clone detection is challenging, as source
code can be written in different languages, do-
mains, and styles. In this paper, we argue
that source code is inherently a graph, not a
sequence, and that graph-based methods are
more suitable for code clone detection than
sequence-based methods. We compare the per-
formance of two state-of-the-art models: Code-
BERT (Feng et al., 2020), a sequence-based
model, and CodeGraph (Yu et al., 2023), a
graph-based model, on two benchmark data-
sets: BCB (Svajlenko et al., 2014) and PoolC
(PoolC, no date). We show that CodeGraph
outperforms CodeBERT on both data-sets, es-
pecially on cross-lingual code clones. To the
best of our knowledge, this is the first work to
demonstrate that using graphs is more effec-
tive than sequences for identifying similar code
written in different languages.

1 Introduction

Existing methods for code clone detection can be
broadly classified into two categories: sequence-
based and graph-based. Sequence-based methods
rely on textual similarity of the code, such as token
sequences. Graph-based methods rely on structural
similarity of the code, such as Abstract Syntax
Tree (ASTs), or control flow graphs (CFGs) or
Code Property Graphs (CPGs). Sequence-based
methods are fast and scalable, but they may fail to
detect clones that have different syntax or structure.
Graph-based methods are more accurate and robust,
but they may be slow and complex, especially for
large-scale or cross-language code clone detection.

A python source code clone pair is presented in
Listing [1, 2]. The two code snippets have the same
semantic behavior: they print ‘A’ or ‘a’ depending
on the case of the input. However, they differ in
their syntactic forms. Further such examples can
be viewed in Appendix C.

In this paper, we argue that source code is natu-
rally a graph, not a sequence, and that graph-based

methods are more suitable for code clone detection
than sequence-based methods. We compare the
performance of sequence-based and graph-based
methods for code clone detection on two bench-
mark data-sets: BCB (Svajlenko et al., 2014) and
PoolC (PoolC, no date). BCB is a data-set of
Java code snippets where as PoolC is a data-set
of Python code snippets. We use CodeBERT (Feng
et al., 2020) as a representative sequence-based
modelling approach, and CodeGraph (Yu et al.,
2023) as a representative graph-based modeling ap-
proach. CodeBERT is a bimodal pre-trained model
for programming language (PL) and natural lan-
guage (NL) that learns general-purpose representa-
tions that support downstream NL-PL applications.
CodeGraph is a graph-based model for semantic
code clone detection based on a Siamese graph-
matching network that uses attention mechanisms
to learn code semantics from DFGs and CPGs.
S = input()

if S.isupper ():
print("A")

else:
print("a")

Listing 1: Python code 1

alp=input()

if alp==alp.upper():
print("A")

elif alp==alp.lower():
print("a")

Listing 2: Python code 2

We conduct various experiments to evaluate the
accuracy, recall, precision, and F1-score of Code-
BERT and CodeGraph on three experimental se-
tups: (i) in-domain static source code analysis , (ii)
cross-lingual generalization and semantic extrac-
tion, and (iii) zero-shot source code clone classi-
fication. We show that CodeGraph outperforms
CodeBERT across experimental setups and metrics.
The main contributions of this paper are as follows:

168



• To best of our knowledge, we are the first
one to demonstrate the superiority of graph-
based methods over sequence-based methods
for multilingual static source code analysis
tasks, such as clone detection, by exploiting
the natural graph structure of source code
across programming languages.

• We provide novel insights on the generaliza-
tion and cross-domain understanding of graph-
based models, compared to sequence-based
models, for source code analysis, as they lever-
age both the syntactic and semantic features of
source code in various cross-domain settings.

• We show how mixing cross-lingual data-sets
can improve the overall performance of the
graph-based model by 4.5%, as it can learn
from the commonalities and differences be-
tween programming languages.

• We focus on the so far under-explored clone
detection Python data-set PoolC, along with
the benchmark Java data-set BCB, and draw
parallel comparisons on both of the data-sets.

2 Related Work

2.1 Sequence based modeling

There has been various sequence based modelling
approaches used by source code clone detection
like, CodeBERT (Feng et al., 2020), UNIXCODER
(Guo et al., 2022), ContraBERT (Liu et al., 2023).
Here in sequence modeling the source code is tok-
enized as a piece of words (or source code). This
tokenized pieces of words in a sequence is learnt by
the model to understand a fragment of code. This
helps the model learn the semantics, by taking the
code in a sequential manner.

We use CodeBERT (Feng et al., 2020) which is
a bimodal pre-trained model for programming lan-
guage (PL) and natural language (NL) that learns
general-purpose representations that support down-
stream NL-PL applications such as natural lan-
guage code search, code documentation generation,
etc1. CodeBERT is developed with a Transformer-
based neural architecture, and is trained with a
hybrid objective function that incorporates the pre-
training task of replaced token detection, which
is to detect plausible alternatives sampled from
generators 1, along side with Masked Language
modelling. In this study, we use CodeBERT as

a pre-trained model for our sequence model for
source code clone detection.

2.2 Graph based modeling

On the other side, clone detection as a graph mod-
elling approach, we have models like TBCCD
(Yu et al., 2019), FA-AST (Wang et al., 2020),
HOLMES (Mehrotra et al., 2020), DG-IVHFS
(Yang et al., 2023), CodeGraph4CCDetector (Yu
et al., 2023). These types of graph models first
construct a tree or a graph like, abstract syntax
tree, Control flow graph etc from the source code.
This helps to retain the structural information of the
code, regardless of it being moved from its location
or variables being replaced. This ideally should
help the model concentrate more on the semantics,
rather than the structural learning, as it is already
baked into its structure.

We use CodeGraph4CCDetector (Yu et al., 2023)
as our graph-based model, from here on referred as
CodeGraph. This model is reported to have state of
the art results on the BCB (Svajlenko et al., 2014)
data-set. This is a Siamese graph matching network
which basically takes in two source code snippets
and output a similarity score between them. The
input for this is the Code Property Graph, which is
essentially graph having various nodes and edges.
This helps the network capture the source codes
syntactical and semantical information. The node
representation of this CodeGraph uses attention
mechanism on a node level to extract out a node
representation, before combining it to graph level
representation. The major advantage of a graph
level over the sequence level is, this can handle
code snippets of different lengths and structures, as
long as the hardware memory can load it.

3 Methods

In this section, for the source code representations,
two methods are employed: byte pair tokenization
(Sennrich et al., 2016) and code property graphs
(CPGs). Byte pair tokenization is used to sequence
source code into tokens using CodeBERT’s BPE
tokenizer, while CPGs represent source code as
graphs, combining abstract syntax trees (ASTs) and
data flow graphs (DFGs) into a unified graph. Tree-
sitter, a lexical parser, generates ASTs for various
languages, and Microsoft’s DFG generator (Guo
et al., 2020) adds data flow edges to these ASTs.
The CPGs are then standardized across languages
by pruning non-essential nodes and standardizing

169



Figure 1: This figure illustrates how the source code can be transformed into a sequence and a graph. (a) A sample
Python program that prints a number, 5. (b) The code tokens using CodeBERT’s BPE tokenizer. (c), (d), and (e)
are the graph representations of the code as Abstract Syntax Tree, Data Flow Graph, and Standard Code Property
Graph, respectively. This shows how Standard CPG (e) is the most concise and standardized graph representation
across languages, compared to raw, AST, or DFG.

node type labels. This standardization allows for
consistent recognition of code structures across
languages, proving advantageous for code clone
detection.

We use two models for source code clone de-
tection: CodeBERT, a sequence-based model, and
CodeGraph, a graph-based model. CodeBERT is
fine-tuned on a binary classification task to deter-
mine if a pair of source codes are clones, captur-
ing syntactic and semantic information through
pre-training on multiple languages. More details
in Appendix B.3. CodeGraph employs a trained
word2vec model (Mikolov et al., 2013) to generate
token embeddings, maintaining consistency with
CodeBERT. Both models process code pairs to pro-
duce representations used for binary classification,
with CodeGraph utilizing an LSTM layer for graph-
level representation analysis. More details in Ap-
pendix B.4.

4 Experimental Design

Based on our proposed methodology, we conduct
experimentation on the following research ques-
tions (RQs):

• RQ1: Will a graph-based model that leverages
both structural and semantic information sur-
pass a sequence-based model in an in-domain
static source code analysis?

• RQ2: Will a graph-based model trained on
multiple source code languages outperform a

sequence-based model in cross-lingual gener-
alization and semantic extraction?

• RQ3: Will a graph-based model excel over a
sequence-based model in the domain general-
ization of zero-shot source code clone classifi-
cation?

Please note, within our scope, “multi-lingual”
pertains to experiments conducted across a range
of programming languages. “Cross-lingual”, on
the other hand, denotes the concurrent utilization
of two programming languages, where the dataset
comprises a blend of both languages. This allows
the model to process and interpret the mixed lan-
guage data in tandem.

4.1 Experiment Data
For our experimental setups, we perform clone de-
tection on two publicly available data-sets. The
first one is Big Clone Bench (BCB), which is a java
language data-set that was originally introduced by
Svajlenko et al. (2014). We used the version of
BCB that was filtered according to FA-AST (Wang
et al., 2020). BCB contains 9,134 Java methods,
which generate over 2M combinations of clone and
non-clone code pairs. The second one is PoolC,
which consists of over 6M python code snippets
that were extracted from hugging face (PoolC, no
date). Our manual inspection has confirmed the
reliability and usefulness of this data-set for our ex-
perimental purposes. This data-set has so far been

170



Attribute BCB PoolC Mix_1
(Java) (Python) (Java + Python)

Actual File Counts 9,126 44,950 -

Filtered File Counts 2,048 17,570 19,063

Avg* Lines 12 10 10

Avg* Characters 450 158 190

Avg* Tokens 200 83 96

Avg* Nodes 76 67 68

Avg* Leaf Nodes 36 32 32

Avg* AST Edges 75 66 67

Avg* DFG Edges 15 22 21

*Avg: Average on the filtered files.

Table 1: Data-set counts of actual and filtered file counts,
with their static metrics.

under-exploited.
For environmental reasons, during the experi-

mentation phase we randomly sampled pairs of
clone and non-clone from the filtered files set to
form the data-set (see Appendix B.5 and G.1 for
more details). Table 5 summarizes the data-set
pairs according to each data-set.

4.2 Experimental Setup
We chose the state-of-the-art sequence model and
graph model, namely CodeBERT (Feng et al.,
2020) and CodeGraph (Yu et al., 2023), respec-
tively, to conduct various experiments. To answer
the research questions, we designed the experi-
ments around them as follows.

• Experiment 1: We train and evaluate Se-
quence and Graph models independently on
each of the data-sets, namely BCB and PoolC,
to compare their performance within the same
domain as baselines.

• Experiment 2: We train and evaluate Se-
quence and Graph models on Mix_1 Data-set,
which is a mixture of data from both domains,
to examine their cross-domain learning and
generalization capabilities.

• Experiment 3: We train Sequence and Graph
models on BCB data-set and test them on
PoolC data-set, and vice versa, to assess their
cross-domain zero-shot performance.

4.3 Model Hyper-parameters
We use the same machines with Intel® Xeon®
Gold 5222 and one Quadro RTX 6000 to train both
the sequence and graph models (CodeBERT and

CodeGraph, respectively) in order to maintain a
consistent experimentation environment. The maxi-
mum batch size that CodeBERT can run on a single
RTX 6000 is 16 code pairs, or 32 code snippets per
batch. We also set the batch size of CodeGraph to
the same value. The other hyper-parameters used
for training these models are given in Appendix E.

5 Results

5.1 Experiment 1
We train the sequence and graph models (Code-
BERT and CodeGraph, respectively) on two
datasets: BCB and PoolC. This leads to four model
trainings and evaluations, as shown in Table 2.
We select the best-performing epochs for each
model, which are the 3rd epoch for CodeBERT
and the 2nd epoch for CodeGraph. We find that
CodeGraph consistently outperforms CodeBERT
on both datasets, demonstrating that CodeGraph
has a better learning capability on the source code
than CodeBERT under limited data and constrained
environment conditions. We highlight statistically
significant experimental results in the tables based
on bootstrap testing (Fornaciari et al., 2022) with p
value below 0.05 for statistical significance, which
compares CodeBERT and CodeGraph.

Answer to RQ1: Baseline on the BCB and
PoolC data-sets, suggests that the graph based
model outperforms the sequence based model.
This suggests that the graph model can bet-
ter capture the structural and semantic infor-
mation of the source code than the sequence
model.

Model
Name

Train & Eval
Dataset

Metrics
A P R F1

CodeBERT
BCB

97.62 97.63 97.62 97.62

CodeGraph 98.88* 98.88* 98.88* 98.87*
CodeBERT

PoolC
81.82 83.92 81.82 81.54

CodeGraph 84.00* 84.86 84.00* 83.90*
A: accuracy, P: precision, R: recall, F1: F-score

Bold is best value, * is statistically significant.

Table 2: Experiment 1 | Performance of Graph-Based
and Sequence-Based Models on BCB and PoolC Data-
Sets.

5.2 Experiment 2
We use the same model architectures from Experi-
ment 1, but we train them on a cross-lingual data-

171



set (Mix_1) that combines both the BCB and PoolC
data sets. We then evaluate these models on the
Mix_1 data-set as well as the individual BCB and
PoolC data-sets. The results are shown in Table 3.
The evaluation results on the Mix_1 dataset for
both CodeBERT and CodeGraph are intermediate
between the single-language models trained in Ex-
periment 1. This is further confirmed by the evalua-
tion results on the individual BCB and PoolC data-
sets, where we observe that cross-lingual training
improves the performance of CodeGraph on both
data-sets, from 83.90 to 87.64 F1 on the PoolC
data-set and from 98.87 to 99.42 F1 on the BCB
data-set, indicating that CodeGraph generalizes bet-
ter on the source code with cross-lingual training.
On the other hand, we observe that cross-lingual
training does not improve the performance of Code-
BERT as much as CodeGraph, decreasing it by -
0.55 F1 on the BCB data-set and increasing it by
only +0.19 F1 on the PoolC data-set.

Answer to RQ2: The results on the cross-
lingual setting of CodeBERT and CodeGraph
models, i.e. trained on Mix_1 data-set, demon-
strate that CodeGraph is a more generalized
model than CodeBERT as evidenced by the
improvement in the performance of Code-
Graph especially on PoolC data-set, whereas
we observe a decline in the performance of
CodeBERT on BCB data-set and marginal im-
provement on PoolC dataset. This implies that
graph models are more adaptable for cross-
lingual source code analysis.

Model
Name

Train
Dataset

Eval
Dataset

Metrics
A P R F1

CodeBERT
Mix_1 Mix_1

90.35 90.51 90.35 90.34

CodeGraph 93.65* 93.77* 93.65* 93.65*
CodeBERT

Mix_1 BCB
97.08 97.11 97.08 97.07

CodeGraph 99.42* 99.43* 99.42* 99.42*
CodeBERT

Mix_1 PoolC
81.82 82.53 81.82 81.73

CodeGraph 87.68* 88.13* 87.68* 87.64*
A: accuracy, P: precision, R: recall, F1: F-score

Bold is best value, * is statistically significant

Underlined is statistically significant & better w.r.t Experiment 1.

Table 3: Experiment 2 | Performance of Graph-Based
and Sequence-Based Models on Mix_1 Data-Set.

5.3 Experiment 3
We test the domain generalization of the pre-trained
models from Experiment 1, i.e., CodeBERT and
CodeGraph, on a different source code language

than the one they were trained on. For instance, we
evaluate CodeBERT trained on BCB on PoolC,
and vice versa. We repeat the same procedure
with CodeGraph without changing the experimen-
tal setup. The results of this experiment are shown
in Table 4.
This experiment simulates the domain generaliza-
tion from Python source code to Java source code
and vice versa. The results show that CodeBERT
performs very poorly on a different domain, with
F1 scores of 33.71 and 36.56 for PoolC and BCB
evaluation, respectively. This indicates that the
model has over-fitted on the domain and cannot
generalize well to a new domain. We observe the
same trend with more epochs. On the other hand,
CodeGraph performs much better than CodeBERT
on a different domain, with F1 scores of 53.67 and
46.44 for PoolC and BCB evaluation, respectively.
This demonstrates that CodeGraph has a better do-
main generalization capability than CodeBERT in
a zero-shot learning setting, although it does not
achieve state-of-the-art performance. This suggests
that representing source code as a graph rather than
a sequence is a promising direction for future re-
search.

Answer to RQ3: The results on the domain
generalization task show that CodeGraph out-
performs CodeBERT in adapting to a new
source code language domain without any la-
beled data for that domain during training.
This indicates that graph-based model has
an advantage over sequence-based model in
the domain generalization of zero-shot source
code clone classification task.

Model
Name

Train
Dataset

Eval
Dataset

Metrics
A P R F1

CodeBERT
BCB PoolC

50.05 53.58 50.05 33.71

CodeGraph 53.67 53.68 53.68* 53.67*
CodeBERT

PoolC BCB
48.95 45.20 48.95 36.56

CodeGraph 54.88* 63.16* 54.88* 46.44*
A: accuracy, P: precision, R: recall, F1: F-score

Bold is best value, * is statistically significant.

Table 4: Experiment 3 | Performance of Graph-Based
and Sequence-Based Models on Cross-Domain Zero-
Shot Evaluation.

5.4 Discussion
We analyze the false predictions made by both
the models, CodeBERT and CodeGraph, and find
that most of them are false positives, especially

172



from CodeBERT. Furthermore, when we examine
these examples from CodeBERT, we notice that the
model predicts them as false positives with high
confidence, whereas the CodeGraph model either
predicts them as true negatives or false positives
with low confidence. This indicates that adjusting
the classification threshold for CodeGraph could
even further improve its overall performance. How-
ever, for CodeBERT, we observe that the model ex-
hibits difficulty distinguishing between code snip-
pets when identical tokens or keywords are present,
even if they serve different semantic purposes. This
often results in the model erroneously identifying
non-clone pairs as clones due to superficial lexical
similarities.. We provide a detailed analysis of this
in Appendix F.2.
We also analyze the false negatives for CodeGraph
on the PoolC data-set, which are the most fre-
quent among all the models and data-sets. We
find that these false negatives are mainly due to
the large size differences between the code pairs in
the PoolC data-set. The examples we inspect are
clones of type IV, but they have one code snippet
much longer than the other. This makes it difficult
for CodeGraph to recognize them as clones and it
predicts them as non-clones instead. We provide
some detailed explanation and examples of these
false negatives in Appendix F.3.
A significant factor that appears to contribute to the
superiority of the graph-based approach over the
sequence-based method is the visual similarity of
Code-Property Graphs across various programming
languages, as illustrated in Figure 2 and elaborated
upon in Appendix B.2.3.

6 Future Research

Some possible directions for the future research
based on the limitations G.1 are as follows:

• To evaluate the impact of data-set size on the
performance of the models, future research
could use the complete and more diverse data-
set that include source code files with more
than 100 nodes and data-set samples itself go-
ing upwards of a million samples. This would
help to test the generalizability and robustness
of the models across different domains and
languages at a larger scale.

• Train a mixture model on various source code
languages, not just limiting to two, such as
JavaScript, SQL, HTML, etc., and evaluate
its generalization ability on different domains

together. Moreover, cross-domain example
pairs could be generated from Code Forces
(Yeo, 2023), which is an online platform for
competitive programming that supports multi-
ple languages.

7 Conclusion

In this paper, we have shown that graph-based
methods are superior to sequence-based methods
for source code clone detection. We have used
the state-of-the-art models CodeBERT (Feng et al.,
2020) and CodeGraph (Yu et al., 2023) to conduct
various experiments on two benchmark data-sets:
BCB (Svajlenko et al., 2014) and PoolC (PoolC,
no date). We have demonstrated that graph models
can better capture the structural and semantic infor-
mation of the source code than sequence models
in a series of 3 experimental setups, and that they
can generalize better across different source code
languages and domains. We have also provided
efficient and scalable code for generating standard
CPG representations of source code, along with the
re-implemented code for the sequence and graph-
based models. Our work has important implica-
tions for future research on source code analysis, as
it suggests that representing source code as a graph
rather than a sequence is a promising direction for
enhancing the performance and generalization of
static source code analysis models.

References
Barry W. Boehm. 1981. Software engineering eco-
nomics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natural
languages.

Tommaso Fornaciari, Alexandra Uma, Massimo Poesio,
and Dirk Hovy. 2022. Hard and soft evaluation of NLP
models with BOOtSTrap SAmpling - BooStSa. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 127–134, Dublin, Ireland. Association for Com-
putational Linguistics.

Google. no date. Google code jam dataset.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun

173

https://doi.org/10.1007/978-3-642-48354-7_5
https://doi.org/10.1007/978-3-642-48354-7_5
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2002.08155
https://doi.org/10.18653/v1/2022.acl-demo.12
https://doi.org/10.18653/v1/2022.acl-demo.12
https://github.com/Jur1cek/gcj-dataset
http://arxiv.org/abs/2203.03850
http://arxiv.org/abs/2203.03850


Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. 2020. Graph-
codebert: Pre-training code representations with data
flow. CoRR, abs/2009.08366.

Melina Kulenovic and Dzenana Donko. 2014. A survey
of static code analysis methods for security vulnerabili-
ties detection. In 2014 37th International Convention on
Information and Communication Technology, Electron-
ics and Microelectronics (MIPRO), pages 1381–1386.

Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng,
and Yang Liu. 2023. Contrabert: Enhancing code pre-
trained models via contrastive learning.

Nikita Mehrotra, Navdha Agarwal, Piyush Gupta, Saket
Anand, David Lo, and Rahul Purandare. 2020. Mod-
eling functional similarity in source code with graph-
based siamese networks. CoRR, abs/2011.11228.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

PoolC. no date. Poolc/1-fold-clone-detection-600k-
5fold.

Radim Rehurek and Petr Sojka. 2011. Gensim–python
framework for vector space modelling. NLP Centre,
Faculty of Informatics, Masaryk University, Brno, Czech
Republic, 3(2).

Chanchal Kumar Roy and James R. Cordy. 2007. A
survey on software clone detection research.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany. Association for Computational Linguistics.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,
Chanchal K. Roy, and Mohammad Mamun Mia. 2014.
Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference on
Software Maintenance and Evolution, pages 476–480.

Tree-Sitter. no date. Parser generator tool.

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin.
2020. Detecting code clones with graph neural net-
workand flow-augmented abstract syntax tree. CoRR,
abs/2002.08653.

Haixin Yang, Zhen Li, and Xinyu Guo. 2023. A novel
source code clone detection method based on dual-gcn
and ivhfs. Electronics, 12:1315.

Geremie Yun Siang Yeo. 2023. Dataset and Code for:
Code problem similarity detection using code clones
and pretrained models.

Dongjin Yu, Quanxin Yang, Xin Chen, Jie Chen, and
Yihang Xu. 2023. Graph-based code semantics learning
for efficient semantic code clone detection. Inf. Softw.
Technol., 156(C).

Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and
Qianxiang Wang. 2019. Neural detection of seman-
tic code clones via tree-based convolution. In 2019
IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), pages 70–80.

174

http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
https://doi.org/10.1109/MIPRO.2014.6859783
https://doi.org/10.1109/MIPRO.2014.6859783
https://doi.org/10.1109/MIPRO.2014.6859783
http://arxiv.org/abs/2301.09072
http://arxiv.org/abs/2301.09072
http://arxiv.org/abs/2011.11228
http://arxiv.org/abs/2011.11228
http://arxiv.org/abs/2011.11228
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://huggingface.co/datasets/PoolC/1-fold-clone-detection-600k-5fold
https://huggingface.co/datasets/PoolC/1-fold-clone-detection-600k-5fold
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://tree-sitter.github.io/tree-sitter/
http://arxiv.org/abs/2002.08653
http://arxiv.org/abs/2002.08653
https://doi.org/10.3390/electronics12061315
https://doi.org/10.3390/electronics12061315
https://doi.org/10.3390/electronics12061315
https://doi.org/10.21979/N9/VPCR7H
https://doi.org/10.21979/N9/VPCR7H
https://doi.org/10.21979/N9/VPCR7H
https://doi.org/10.1016/j.infsof.2022.107130
https://doi.org/10.1016/j.infsof.2022.107130
https://doi.org/10.1109/ICPC.2019.00021
https://doi.org/10.1109/ICPC.2019.00021


A Related Work

A.1 What is static source code analysis?
Static code analysis is a valuable technique for improving software quality and security without actually
compiling the code. It can find errors that are hard to detect at run time, improve the quality and
maintainability of the code, and reduce the cost and time of testing and debugging. This is basically a
form of white-box testing. According to Boehm (1981) the cost of fixing a defect increases exponentially
as it moves from the coding phase to the testing phase to the maintenance phase. Therefore, having a
static tools to analyse and fix a source code as soon as possible helps save lot of resources and efforts.

A.2 What are applications of static code analysis?
There are various different applications for static code analysis. Security Vulnerability detection, is one
of the major static code analysis, which can help developers identify and fix security vulnerabilities
before they are exploited by the attackers as extensively stated by Kulenovic and Donko (2014). Another
important area of static code analysis is in helping developers find inefficient algorithms and improve
the resource utilization, response time, and other throughput of the software. Clone Detection is another
application that can help identify similar functional code fragments which may indicate code duplication,
plagiarism or reuse. This can improve quality, maintainability and the security of the code by eliminating
redundant and inconsistent or outdated code (Roy and Cordy, 2007).

A.3 What is source code clone detection?
Source code clone detection is the process of finding code fragments that have similar functionalities or
structures, which could indicate that the code is a duplicate, plagiarised or reused, which may be done
purposefully, negligently or accidentally by a developer as said by Roy and Cordy (2007). Clone detection
is very harmful to the quality of the entire source code (Roy and Cordy, 2007). A broad categorization on
various types of code clones is given by (Roy and Cordy, 2007).

• Textual Similarity

– Type I: Changes in White-spaces, comments, layouts.
– Type II: Renaming of variable names, or changes in types and identifiers.
– Type III: Addition or removal of statements.

• Functional Similarity

– Type IV: Complete change in syntax, but functionally same behavior.

A.4 Types of Clone detection approaches?
According to Roy and Cordy (2007) there are multiple techniques to detect a source code clones, like Text
based, token based, tree based, Program dependency graph based, metrics based, or hybrid approaches.
Here we deal and compare token based vs tree based clone detection approach. As we know that, to
detection semantically same code clones, the model should not just rely on difference of syntax, but also
understand the semantics of the structure. This becomes hard, if we pass the source code to the model as
sequence rather than a Tree like Abstract Syntax Tree which naturally holds the syntatical information of
a source code.

175



Figure 2: (a) and (b) show the Java and Python programs that print hello, name, respectively. (c) and (d) show
the corresponding standard CPGs, which are generated by applying lexical parsing, data flow generation, and
graph standardization to the source code. The standard CPGs look identical for both languages, as they capture the
common structure and logic of the programs.

B Methods

This section describes the methods and models that we employ for our experiments on the sequence and
graph representations of source code. We organize this section into four parts. First, we present how we
use byte pair tokenizers to represent source code as a sequence of tokens. Second, we illustrate how we
use code property graphs (CPGs) to represent source code as a graph. Third, we introduce CodeBERT
(Feng et al., 2020), the sequence-based model that we employ for code clone detection. Fourth, we present
CodeGraph (Yu et al., 2023), the graph-based model that we employ for code clone detection.

B.1 Code Tokenization

We apply the default Byte Pair Encoding, BPE tokenizer of CodeBERT (Feng et al., 2020) to represent
the source code as a sequence of tokens. Figure 1b shows an example of how the BPE tokenizer splits the
source code in Figure 1a into word and subword tokens.

B.2 Code Representations

We use a graph representation of source code that consists of nodes and edges connecting source code
tokens. To generate this representation, we apply the following steps: First, we use a lexical parser, to
produce the abstract syntax tree (AST) of the source code. Second, we extract the data flow information
from the AST. Third, we merge the AST and DFG, to form one graph which we call it as Code Property
Graph. This is further pruned and standardized across source code languages to make the standard CPG.

B.2.1 Abstract Syntax Tree (AST)
We use Tree-sitter (Tree-Sitter, no date), a lexical parser, to generate the abstract syntax tree (AST) of
the source code for any language. We currently use it for Java and Python, but it supports 141 different
languages. Figure 1c shows the AST generated from the sample source code in Figure 1a.

B.2.2 Data Flow Graph (DFG)
We use Microsoft’s Data Flow Generator (DFG) (Guo et al., 2020) to generate a data flow graph (DFG).
This DFG generator takes the AST from the previous step and adds the data flow edges to it to form the
DFG. Figure 1d shows the DFG graph for the same example source code in Figure 1a. We can see that
there is a data flow edge between the integer literal ‘5’ and the variable ‘num’, as ‘5’ is assigned to ‘num’.
There is also a data flow edge between the second occurrence of ‘num’ and the print statement, as ‘num’
is used as an argument.

176



B.2.3 Standard Code Property Graph (CPG)
We standardize the DFG to a code property graph (CPG), which is our final graph representation of source
code. We perform two main operations to standardize the DFG across languages. First, we prune the graph
from nodes that do not add value to the model’s understanding, such as opening and closing brackets that
are implicitly understood when there is a method call. Second, we standardize the node type labels across
languages so that the model can recognize them consistently across languages. For example, in Figure 1e
we see that the root node ’module’ and ’integer’ node are standardized and replaced with ‘_program’ and
‘_integer’ as standard node types.
The major impact of a standard CPG can be seen in Figure 2, where two programs that print hello, name in
Java and Python are written. The programs look different as raw code, but they have the same functionality
and semantics. The standard CPGs look very similar in both cases, as shown in Figure 2c and 2d. We
provide more examples of standard CPGs in Appendix C. This supports our claim that this type of code
representation is more suitable than the sequence of code for identifying code clones.

B.3 Sequence-based Model: CodeBERT
In order to model a sequence model for source code clone detection, we use CodeBERT (Feng et al., 2020)
as a pre-trained model. We fine-tune CodeBERT on the source code clone detection labelled data-set. The
fine tuning task is a binary classification task where the source code pair is passed sequentially through
the CodeBERT which acts as an encoder, and the 2 representation vectors coming out from this encoder,
is concatenated and passed to a shallow 2 layer MLP classifier to give the final output, if the pair is a
clone or a no clone. The major advantage of using this state of the art encoder CodeBERT is that it can
help capture both the syntactic and semantic information of the PL code, by leveraging the large-scale
pre-training data of multiple languages.

B.4 Graph-based Model: CodeGraph
We use CodeGraph4CCDetector (Yu et al., 2023) as the graph based model for our source code clone
detection, it is from here on refered to as CodeGraph model. This model initially is used by its authors on
BCB data-set for its classification, and hence we keep the pipeline as it is. However, we trained our own
word2vec model (Mikolov et al., 2013), using gensim (Rehurek and Sojka, 2011) to keep it consistent with
respect to the sequence model. We call this model as Code2Vec model, which helps to generate the source
code token embedding for our source code. We train this Code2Vec model using the source tokens which
are tokenized by the CodeBERT’s (Feng et al., 2020) tokenizer, which is a Byte Pair encoding tokenizer.
This helps in two ways, Firstly, it helps to keep it consistent with the comparison of the sequence model,
and secondly it helps to retain the word meanings of the human written source code variable names etc.
Once we get the tokenized vector format of each graph nodes using the Code2Vec model on every node of
CPG, we then use the CodeGraph architecture as it is. Here similar to the sequence model, we pass the
code pair sequentially to the CodeGraph model, which then generates the graph level representation. This
representation is the taken to a shallow LSTM layer (which is trained along with the graph model) helps
to perform a binary classification on this graph level representation.

B.5 Dataset
We applied various parameters to limit the data-set for the experimentation phase. We restricted the
number of lines to be between 5 and 100, the maximum number of characters to be 2000, and the
maximum number of nodes in the graph to be 100. The details of how the distribution changed before and
after applying the thresholds are given in Appendix D. Table 1 shows the summary of the average counts
for the filtered files according to each data-set (BCB, PoolC, and their combination, Mix_1).

177



Dataset Split Total pairs Positive Negative
Train 50,855 29,070 21,785

BCB Test 4,000 2,000 2,000

Val 4,000 2,000 2,000

Train 50,500 25,250 25,250

PoolC Test 4,000 2,000 2,000

Val 4,000 2,000 2,000

Train 50,000 25,000 25,000

Mix_1 Test 4,000 2,000 2,000

Val 4,000 2,000 2,000

Positive: Clone pairs | Negative: Not a Clone pair.

Table 5: Data-set sample size. Equally sampled from each of the data-sets.

C Code Representations

C.1 Python Standard Code Property Graphs Example pairs

Figure 3: An example of python code clone pairs with its Standard Code Property Graphs. (a) & (b) are the source
codes, and (c) & (d) are its respective Standard Code Property Graphs.

178



Figure 4: An example of python code clone pairs with its Standard Code Property Graphs. (a) & (b) are the source
codes, and (c) & (d) are its respective Standard Code Property Graphs.

C.2 Java Standard Code Property Graphs Example pairs

Figure 5: An example of Java code clone pairs with its Standard Code Property Graphs. (a) & (b) are the source
codes, and (c) & (d) are its respective Standard Code Property Graphs.

179



Figure 6: An example of Java code clone pairs with its Standard Code Property Graphs. (a) & (b) are the source
codes, and (c) & (d) are its respective Standard Code Property Graphs.

D Data-set

Data set is filtered based on various parameters like number of lines, number of characters, and number of
nodes. Given below are the charts how the data looks before and after filtering.

D.1 Java Data : BCB
Given in Figure 10 are the original and filtered distributions for Java dataset from BigCloneBench BCB
dataset (Wang et al., 2020).

180



[b]0.32

Figure 7: Original
[b]0.32

Figure 8: Original (no outliers)
[b]0.33

Figure 9: Filtered to Max 100 nodes

Figure 10: Python Data : BCB

181



D.2 Python Data : PoolC
Given in Figure 14 are the original 11 and filtered 13 distributions for Python dataset from PoolC dataset
(PoolC, no date).

182



nu_lines nu_characters nu_nodes nu_leaf_nodes nu_ast_edges nu_dfg_edges nu_token_ids nu_pad_tokens

count 9126.0 9126.0 9126.0 9126.0 9126.0 9126.0 9126.0 9126.0

mean 33.9 1579.9 247.6 121.3 246.6 74.9 787.0 113.8

std 40.0 2415.3 327.0 167.0 327.0 153.9 1270.3 133.6

min 5.0 234.0 44.0 16.0 43.0 1.0 81.0 0.0

25% 16.0 605.2 105.0 50.0 104.0 23.0 277.0 0.0

50% 24.0 989.0 169.0 82.0 168.0 42.0 478.0 34.0

75% 38.0 1707.0 271.0 132.0 270.0 77.0 841.0 235.0

max 917.0 68541.0 9041.0 4811.0 9040.0 5981.0 36823.0 431.0

Table 6: BCB original distribution

nu_lines nu_characters nu_nodes nu_leaf_nodes nu_ast_edges nu_dfg_edges nu_token_ids nu_pad_tokens

count 2048.0 2048.0 2048.0 2048.0 2048.0 2048.0 2048.0 2048.0

mean 12.2 449.9 76.3 35.7 75.3 14.8 199.7 312.4

std 3.0 107.8 14.3 7.4 14.3 5.5 56.6 56.4

min 5.0 234.0 44.0 16.0 43.0 1.0 81.0 0.0

25% 10.0 369.0 65.0 30.0 64.0 11.0 157.0 274.8

50% 12.0 440.0 76.0 35.0 75.0 15.0 195.0 317.0

75% 14.0 520.0 89.0 41.0 88.0 19.0 237.2 355.0

max 26.0 1500.0 100.0 52.0 99.0 43.0 592.0 431.0

Table 7: BCB filtered distribution

nu_lines nu_characters nu_nodes nu_leaf_nodes nu_ast_edges nu_dfg_edges nu_token_ids nu_pad_tokens

count 44950.0 44950.0 44950.0 44950.0 44950.0 44950.0 44950.0 44950.0

mean 19.1 392.4 141.5 69.8 140.5 58.6 213.6 326.6

std 17.5 2061.9 118.9 61.7 118.9 68.2 538.9 147.5

min 1.0 16.0 6.0 2.0 5.0 0.0 8.0 0.0

25% 8.0 137.0 63.0 29.0 62.0 19.0 71.0 251.0

50% 14.0 248.0 105.0 51.0 104.0 38.0 132.0 380.0

75% 24.0 475.0 182.0 90.0 181.0 74.0 261.0 441.0

max 384.0 426657.0 1596.0 846.0 1595.0 2335.0 97574.0 504.0

Table 8: Poolc original distribution

nu_lines nu_characters nu_nodes nu_leaf_nodes nu_ast_edges nu_dfg_edges nu_token_ids nu_pad_tokens

count 17570.0 17570.0 17570.0 17570.0 17570.0 17570.0 17570.0 17570.0

mean 9.8 158.5 67.2 31.6 66.2 21.8 83.2 428.8

std 3.8 68.0 18.5 9.6 18.5 10.4 36.5 36.1

min 5.0 33.0 9.0 4.0 8.0 0.0 17.0 0.0

25% 7.0 113.0 53.0 24.0 52.0 14.0 59.0 412.0

50% 9.0 149.0 67.0 32.0 66.0 21.0 77.0 435.0

75% 12.0 193.0 82.0 39.0 81.0 29.0 100.0 453.0

max 61.0 1748.0 100.0 69.0 99.0 69.0 890.0 495.0

Table 9: Poolc filtered distribution

183



[b]0.3

Figure 11: Original
[b]0.3

Figure 12: Original (no outliers)
[b]0.3

Figure 13: Filtered to Max 100 nodes

Figure 14: Python Data : PoolC

184



D.3 Java and Python Data : mix 1
Given in Figure 16 we have the distribution for the mixture of BCB and PoolC dataset. This dataset is
made by randomly sampling the filtered datasets of BCB and PoolC examples from each of train, valid,
and test splits. This results in total 19K files for source code from both Java and Python together, which
results in total 25K Java and 25K python labelled pairs.

185



[b]0.3

Figure 15: Filtered to Max 100 nodes

Figure 16: Data : Mix 1

nu_lines nu_characters nu_nodes nu_leaf_nodes nu_ast_edges nu_dfg_edges nu_token_ids nu_pad_tokens

count 19063.0 19063.0 19063.0 19063.0 19063.0 19063.0 19063.0 19063.0

mean 10.1 189.7 68.2 32.0 67.2 21.0 95.7 416.4

std 3.8 116.3 18.2 9.5 18.2 10.2 53.3 53.0

min 5.0 33.0 9.0 4.0 8.0 0.0 17.0 0.0

25% 7.0 117.0 54.0 25.0 53.0 14.0 61.0 400.0

50% 9.0 157.0 68.0 32.0 67.0 20.0 82.0 430.0

75% 12.0 214.0 83.0 39.0 82.0 28.0 112.0 451.0

max 61.0 1748.0 100.0 69.0 99.0 69.0 890.0 495.0

Table 10: Mix 1 filtered distribution

186



E Training

E.1 Model hyper-parameters

Parameter CodeBERT CodeGraph
BATCH_SIZE 16 16

LEARNING_RATE 5e-05 1e-03

OPTIMIZER AdamW Adam

SCHEDULER OneCylceLR NA

LOSS_FUNCTION CrossEntropy FocalLoss

SEQUENCE_LENGTH 512 NA

Table 11: Hyper-parameters of Sequence CodeBERT and Graph CodeGraph models.

187



E.2 CodeBERT : Sequence Model

(a) BCB data-set.

(b) PoolC data-set.

(c) Mix_1 data-set.

Figure 17: Training curves for CodeBERT model

188



E.3 CodeGraph : Graph Model

(a) BCB data-set.

(b) PoolC data-set.

(c) Mix_1 data-set.

Figure 18: Training curves for CodeGraph model

189



F Result Analysis

F.1 Confusion Matrix
F.1.1 BCB Dataset
Given in Figure 19 are the confusion matrix for CodeBERT and CodeGraph models.

(a) CodeBERT (b) CodeGraph

Figure 19: Confusion Matrix : BCB

F.1.2 PoolC Dataset
Given in Figure 20 are the confusion matrix for CodeBERT and CodeGraph models.

(a) CodeBERT (b) CodeGraph

Figure 20: Confusion Matrix : PoolC

190



F.2 False Positive Analysis
F.2.1 BCB Dataset

• There are 18 False positive from both the models combined. Here we observe that the prediction
confidence from CodeBERT is very high above 0.9, where as CodeGraph has prediction confidence
on a lower side at 0.5 to 0.6. As observed from Code Pair Listings [3 & 4], [5 & 6]. This suggest that
adjusting the classification threshold for CodeGraph can help reduce the False positives which are
common in both.

• The False Positives from CodeGraph, but True Negative from CodeBERT is seen to be consistently
having less confidence, which is below 0.7. Although these False positives are only predicted by
CodeGraph, and CodeBERT very strongly predicts them as True Negative. Examples of Code Pair
Listing [7 & 8] following this trend.

• The False Positives from CodeBERT, but True Negative from CodeGraph, is seen to have a consistent
prediction with confidence less than 0.9. This can be misleading as this is a higher confidence from
CodeBERT. on the same side, CodeGraph doesn’t have very strong prediction either, but it is atleast
consistently predicting them as TN. Example of Code Pair Listing [9 & 10]

Code Pair Example | true_label : NoClone | pred_CodeBERT : Clone(0.91) | pred_CodeGraph :
Clone(0.62)

public PhoneDurationsImpl(URL url)
throws IOException {
BufferedReader reader;
String line;
phoneDurations = new HashMap ();
reader = new BufferedReader(new
InputStreamReader(url.openStream ()))
;
line = reader.readLine ();
while (line != null) {

if (!line.startsWith("***")) {
parseAndAdd(line);

}
line = reader.readLine ();

}
reader.close();

}

Listing 3: code 1

public static String getMyGlobalIP () {
try {

URL url = new URL(IPSERVER);
HttpURLConnection con = (

HttpURLConnection) url.
openConnection ();

BufferedReader in = new
BufferedReader(new InputStreamReader
(con.getInputStream ()));

String ip = in.readLine ();
in.close();
con.disconnect ();
return ip;

} catch (Exception e) {
return null;

}
}

Listing 4: code 2

Code Pair Example | true_label : NoClone | pred_CodeBERT : Clone(0.91) | pred_CodeGraph :
Clone(0.59)

public static LinkedList <String > read(
URL url) throws IOException {
LinkedList <String > data = new
LinkedList <String >();
HttpURLConnection con = (
HttpURLConnection) url.
openConnection ();
BufferedReader br = new
BufferedReader(new InputStreamReader
(con.getInputStream ()));
String input = "";

while (true) {
input = br.readLine ();
if (input == null) break;
data.add(input);

}
br.close();
return data;

}

Listing 5: code 1

191



protected Reader getText () throws
IOException {
BufferedReader br = new
BufferedReader(new InputStreamReader
(url.openStream ()));
String readLine;
do {

readLine = br.readLine ();

} while (readLine != null &&
readLine.indexOf(" </table ><br clear=
all >") < 0);
return br;

}

Listing 6: code 2

Code Pair Example | true_label : NoClone | pred_CodeBERT : NoClone(0.99) | pred_CodeGraph :
Clone(0.65)

public PhoneDurationsImpl(URL url)
throws IOException {

BufferedReader reader;
String line;
phoneDurations = new HashMap ();

reader = new BufferedReader(new
InputStreamReader(url.openStream ()))
;
line = reader.readLine ();

while (line != null) {
if (!line.startsWith("***")) {

parseAndAdd(line);
}

line = reader.readLine ();
}

reader.close();
}

Listing 7: code 1

public void
alterarQuestaoMultiplaEscolha(

QuestaoMultiplaEscolha q) throws
SQLException {
PreparedStatement stmt = null;
String sql = "UPDATE
multipla_escolha SET texto=?,
gabarito =? WHERE id_questao =?";
try {

for (Alternativa alternativa : q
.getAlternativa ()) {

stmt = conexao.
prepareStatement(sql);

stmt.setString(1,
alternativa.getTexto ());

stmt.setBoolean (2,
alternativa.getGabarito ());

stmt.setInt(3, q.
getIdQuestao ());

stmt.executeUpdate ();
conexao.commit ();

}
} catch (SQLException e) {

conexao.rollback ();
throw e;

}
}

Listing 8: code 2

Code Pair Example | true_label : NoClone | pred_CodeBERT : Clone(0.90) | pred_CodeGraph :
NoClone(0.67)

public static String getMyGlobalIP () {
try {

URL url = new URL(IPSERVER);
HttpURLConnection con = (

HttpURLConnection) url.
openConnection ();

BufferedReader in = new
BufferedReader(new InputStreamReader
(con.getInputStream ()));

String ip = in.readLine ();
in.close();
con.disconnect ();
return ip;

} catch (Exception e) {
return null;

}
}

Listing 9: code 1

private FTPClient loginToSharedWorkspace
() throws SocketException ,
IOException {
FTPClient ftp = new FTPClient ();
ftp.connect(mSwarm.getHost (),
mSharedWorkspacePort);
if (!ftp.login(
SHARED_WORKSPACE_LOGIN_NAME ,
mWorkspacePassword)) {

throw new IOException("Unable to
login to shared workspace.");
}
ftp.setFileType(FTPClient.
BINARY_FILE_TYPE);
return ftp;

}

Listing 10: code 2

192



F.2.2 PoolC Dataset
• There are 344 total False positives predicted by both the models combine. But here we observe that

the confidence is following similar trend with BCB dataset, CodeBERT is having higher prediction
confidence of Fasle positive, where as CodeGraph has a lower prediction confidence, with max being
at 0.71. Here we see that the positive prediction is majorly coming from confusion of syntactically
same keywords present in both, for example having extensive usage of if and for loops. This can be
seen in the example Code Pair Listing [11 & 12].

• The False positive from CodeGraph, but True Negative from CodeBERT is seen to have consistently
lower prediction score from CodeGraph, max being 0.78 and average being 0.58. This again suggests
that the CodeGraph is understanding the semantics, and with a high classification threshold, should
improve significantly. Here the rational behind why the Graph model seem to get them wrong, is it
seems to confused on the syntactic structure of the codes. They might not have same keywords, but
the structure syntactically is dominating. A code pair Listing [13 & 14].

• The false positives from CodeBERT, but True negatives from CodeGraph, seems to have stronger
prediction of True negatives from Graph models, again showing the Graph models are superior to
learn the structural and symatic information with an average score of 0.81. Looking at what might be
going wrong with Sequence model would mostly be the keywords having similar names in sequence,
but not syntactically similar, as observed in code pair Listing [15 & 16].

Code Pair Example | true_label : NoClone | pred_CodeBERT : Clone(0.64) | pred_CodeGraph :
Clone(0.63)

n=int(input())
x=list(map(int ,input().split()))
m=10**15
for i in range (101):

t=x[:]
s=sum(list(map(lambda x:(x-i)**2,t))
)
m=min(m,s)

print(m)

Listing 11: code 1

a,b,c,d = map(int , input().split())

ans = -10**18+1
for i in [a,b]:

for j in [c,d]:
if ans < i*j: ans = i*j

print(ans)

Listing 12: code 2

Code Pair Example | true_label : NoClone | pred_CodeBERT : NoClone(0.96) | pred_CodeGraph :
Clone(0.60)

import sys
x=int(input())

n=1
while (100*n<=x):

if(x <=105*n):
print (1)
sys.exit()

n+=1
print (0)

Listing 13: code 1

s = str(input ())
t = str(input ())
revise = 0
len_str = len(s)
for i in range(len_str):

if s[i] != t[i]:
revise += 1

print(int(revise))

Listing 14: code 2

193



Code Pair Example | true_label : NoClone | pred_CodeBERT : Clone(0.83) | pred_CodeGraph :
NoClone(0.93)

K, N= map(int , input().split ())
A = list(map(int , input().split()))
max=K-(A[N-1]-A[0])
for i in range(N-1):

a=A[i+1]-A[i]
if max <a:

max=a
print(K-max)

Listing 15: code 1

x = float(input())
if 1 >= x >= 0:

if x == 1:
print (0)

elif x == 0:
print (1)

Listing 16: code 2

194



F.3 False Negative Analysis
F.3.1 BCB Dataset

• There is zero overlap of False Negative between both the models. This is also due to the fact that
there are very low false negative overall, due to the model tending to overfit on the dataset.

• The False Negatives from the CodeGraph, but True Positives from CodeBERT, shows consistently
lower confidence at an average of 0.7. This shows that we can tweak the classification threshold to
handle these lower confidence scores. On further inspection of these cases, which where just 14,
shows that this prediction of false negatives are more cause of variation in parameters, which seems
to mislead the model to not detect them as clone. Morover we can argue these are Type IV clones,
which would be better identified, given more context. An example can be seen in the Code Pair
Listing [17 & 18]

• The False Negatives from the CodeBERT, but True Positives from CodeGraph, have a strong very
high confidence. This is not helpful, as it is clearly seen that the sequence model is predicting them
wrongly as Negataives with a conf average of 0.99. This is a very intersting case, as all the 52 of
these cases seems to have the code very different syntactically, but semantically they are same. This
shows how the graph model has an edge over the sequence model. This can be seen in the Code Pair
Listing [19 & 20]

Code Pair Example | true_label : Clone | pred_CodeBERT : Clone(0.91) | pred_CodeGraph : No-
Clone(0.58)

public FTPClient sample1c(String server ,
int port , String username , String

password) throws SocketException ,
IOException {

FTPClient ftpClient = new
FTPClient ();

ftpClient.setDefaultPort(port);
ftpClient.connect(server);
ftpClient.login(username ,

password);
return ftpClient;

}

Listing 17: code 1

public FTPClient sample3b(String
ftpserver , String proxyserver , int
proxyport , String username , String
password) throws SocketException ,
IOException {

FTPHTTPClient ftpClient = new
FTPHTTPClient(proxyserver , proxyport
);

ftpClient.connect(ftpserver);
ftpClient.login(username ,

password);
return ftpClient;

}

Listing 18: code 2

Code Pair Example | true_label : Clone | pred_CodeBERT : NoClone(0.99) | pred_CodeGraph :
Clone(0.97)

public static String getMD5(String s) {

try {
MessageDigest m = MessageDigest.

getInstance("MD5");
m.update(s.getBytes (), 0, s.

length ());
s = new BigInteger (1, m.digest ()

).toString (16);
}
catch (NoSuchAlgorithmException ex)
{

ex.printStackTrace ();
}

return s;
}

Listing 19: code 1

private static byte[] getKey(String
password) throws
UnsupportedEncodingException ,
NoSuchAlgorithmException {
MessageDigest messageDigest =
MessageDigest.getInstance(Constants.
HASH_FUNCTION);
messageDigest.update(password.
getBytes(Constants.ENCODING));

195



byte[] hashValue = messageDigest.
digest ();
int keyLengthInbytes = Constants.
ENCRYPTION_KEY_LENGTH / 8;
byte[] result = new byte[
keyLengthInbytes ];
System.arraycopy(hashValue , 0,

result , 0, keyLengthInbytes);
return result;

}

Listing 20: code 2

196



F.3.2 PoolC Dataset
• There are 34 False Negatives predicted by both the models combined. Here we see that the average

score from Graph model is 0.64 where as 0.87 is the average score from the sequence model. This
shows how the sequence model is very confidently wrong, which is not a good sign although, when
examples are examined for this case, we find the clone pairs distinctly have a difference in length in
the code, which seems to be the reason for these wrong predictions. Code Pair Listing [21 & 22]
demonstrates this.

• The False Negatives from CodeGraph, but True positives from CodeBERT, shows a consistently
lower score of confidence with average confidence being 0.63. where as the true positives as well
from codeBERT have lower confidence average of 0.78. Here the CodeGraph is marignaly doing
wrong, and this seems to be due to the code length again. the difference in the size of code snippet is
larger. This can be seen again from the Code Pair Listing [23 & 24].

• The False Negatives from CodeBERT, but True Positives from CodeGraph, are around 83. This cases
seems to be strongly False at an average score of 0.81 for the CodeBERT, which is not a good sign of
the model predicting them wrong confidently, again, the reason looks the same as the snippet sizes
being very different. Simialarly average confidence of True positive from CodeGraph is 0.61, which
is again not that confident. This can be seen with the Code Pair Listing [25 & 26].

Code Pair Example | true_label : Clone | pred_CodeBERT : NoClone(0.88) | pred_CodeGraph :
NoClone(0.96)

while True:

a = input()

if a == '0':
break

print(sum(map(int ,*a.split())))

Listing 21: code 1

n = int(input ())
res = 0
while n != 0:
res = n%10
dropped = n
while dropped //10 != 0:
dropped = dropped //10
res += dropped %10

print(res)
res = 0
n = int(input())

Listing 22: code 2

Code Pair Example | true_label : Clone | pred_CodeBERT : Clone(0.52) | pred_CodeGraph : No-
Clone(0.59)

while True:

n = input()

if n == "0":
break

print(sum([int(i) for i in n]))

Listing 23: code 1

while True:
num = input()
if int(num) == 0:

break
sum = 0
for i in num:

a = int(i)
sum += a

print(sum)

Listing 24: code 2

197



Code Pair Example | true_label : Clone | pred_CodeBERT : NoClone(0.62) | pred_CodeGraph :
Clone(0.66)

H,A = map(int ,input().split ())
cnt = 0
while True:

if H <= 0:
print(cnt)
break

else:
H -= A
cnt += 1

Listing 25: code 1

h,a = map(int , input().split ())
an, bn = divmod(h,a)
if bn == 0:

print(an)
else:

print(an+1)

Listing 26: code 2

198



G Discussion

G.1 Limitations
We note the following limitations and concerns in the study:

• The experimental setup data-set size is drastically reduced in order to time-bound the experiments
for this research project. Majorly, there are 2 cuts in the data-set size, Firstly, source code files are
filtered to only those which have less than or equal to 100 nodes. Secondly, the sample size of the
data-set clone and no clone pair is restricted to 50K data-points only. Refer the Appendix D to check
the filtering criterion and Section 4.1 to understand the data-point split samples.

• The BCB data-set was significantly reduced after applying the thresholding criterion, resulting in
only 2K files out of the original 9K. This led to a over-sampled distribution of the training pairs,
which consisted of 50K data-points. As shown in the Results Section 5, this caused the BCB data-set
model to over-fit the data, unlike the PoolC data-set model.

• A potential limitation of this study is the discrepancy in the number of trainable model parameters
between the sequence model (CodeBERT) and the graph model (CodeGraph). The sequence model
has 125M parameters, which is 125 times more than the graph model’s 1.1M parameters. This could
raise the question of whether the graph model’s superior performance is due to its inherent advantages
or its lower complexity. However, this also suggests that there is room for further improvement on
the graph model by increasing its number of parameters.

G.2 Future Research
Some possible directions for the future research based on the limitations are as follows:

• To help reduce over fitting problem on the Java data-set (i.e. BCB data-set), future research could
use samples from other data-sets, like CodeForces (Yeo, 2023), Google Code Jam (Google, no date),
which can yield in more diversified data-set for Java language.

• To explore the potential of the graph model (CodeGraph), future research could increase its number
of trainable parameters and compare its performance with the sequence model (CodeBERT) under
the same complexity level. This would help to determine whether the bigger graph model would still
have inherent advantages over the sequence model or not. conversely, one can reduce the parameters
on sequence model and check its impact.

• To investigate the effect of batch size on the learning ability of the models, future research could use
different batch sizes for both the sequence model (CodeBERT) and the graph model (CodeGraph)
and compare their results. This would require a bigger, and / or multiple GPUs. This would help to
understand how batch size influences the convergence and stability of these models.

• PoolC data-set false Negatives are majorly due to the code size length differences. This can be solved
if trained with longer snippet of codes.

• Qualitiative analysis on examples of experiment 2 to understand the similarity of code-snippets on
how multi-lingual settings helped the CodeGraph outperform CodeBERT.

H Data Availability

We have made the data and source code that we used in this paper publicly accessible. Source code
is available for replication at: https://github.com/Ataago-AI/clone-detection, and the filtered
data-sets can be downloaded from here: https://drive.google.com/drive/folders/1phx8k_JB8HC_
HW3nhZLec9BKjRxNCN2b?usp=drive_link

199

https://github.com/Ataago-AI/clone-detection
https://drive.google.com/drive/folders/1phx8k_JB8HC_HW3nhZLec9BKjRxNCN2b?usp=drive_link
https://drive.google.com/drive/folders/1phx8k_JB8HC_HW3nhZLec9BKjRxNCN2b?usp=drive_link

