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Abstract

Humans can learn a new language task effi-
ciently with only few examples, by leveraging
their knowledge and experience obtained when
learning prior tasks. Enabling similar cross-
task generalization abilities in NLP systems is
fundamental for approaching the goal of gen-
eral intelligence and expanding the reach of
language technology in the future. In this thesis
proposal, I will present my work on (1) bench-
marking cross-task generalization abilities with
diverse NLP tasks; (2) developing model ar-
chitectures for improving cross-task generaliza-
tion abilities; (3) analyzing and predicting the
generalization landscape of current state-of-the-
art large language models. Additionally, I will
outline future research directions, along with
preliminary thoughts on addressing them.

1 Introduction

In recent years, large language models (LLMs)
have greatly revolutionized natural language pro-
cessing research, demonstrating remarkable ca-
pabilities in various natural language processing
benchmarks (Devlin et al. 2019; Radford et al.
2019; Raffel et al. 2020; Brown et al. 2020, in-
ter alia). As their capabilities have expanded, there
has been a corresponding increase in their adoption.
LLM-powered tools are now playing an essential
role in daily activities, from translation and search
engines, to personalized chatbots and tutors. Look-
ing ahead, we can expect LLMs to be applied to a
wider spectrum of downstream applications with
increasing complexity and intricacy.

However, building these applications still re-
quires extensive task-specific efforts. This involves
data collection, model architecture modifications
and training procedure design. Even with the most
powerful LLMs, manual selection of in-context ex-
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Figure 1: Instance-level Generalization vs. Cross-
task Generalization. This thesis proposal advocates
for the crucial role of cross-task generalization in NLP
systems and presents my research efforts in this area.

amples or prompt engineering is often required to
fully unlock their performance.

From a practical perspective, these task-specific
approaches lack scalability. Every new application
in the future will demand repeating these tedious
and costly processes. From a research perspective,
achieving human-level performance on individual
tasks through extensive data collection and engi-
neering efforts falls short of the ideal general intel-
ligence. A truly intelligent system should be able to
“reuse previously acquired knowledge about a lan-
guage and adapt to a new task quickly” (Yogatama
et al., 2019; Linzen, 2020). Evaluating these sys-
tems based on their “skill-acquisition efficiency”
(Chollet, 2019) becomes crucial in this context.

Existing work has approached the problem of
learning efficiency by developing better few-shot
learning algorithms, e.g., re-formulating tasks into
formats that resembles the pre-training objective
(Schick and Schütze, 2020a,b). Such progress pri-
marily focus on improving instance-level general-
ization, i.e., how to better generalize from a few
labeled instances to make predictions about new
instances, within the scope of one individual task.
From a broader perspective, human-like learning
efficiency also benefits from task-level generaliza-
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tion, or cross-task generalization (Fig. 1). Humans
accumulate their learning experience on previous
seen tasks, so that when confronted with a novel
task, we are able to grasp the essence of it quickly
and learn it efficiently.

My research goal is to enable human-like adapt-
ability and learning efficiency in NLP systems. I
argue that achieving cross-task generalization is
an essential building block for this goal. In the
following, I will first revisit the background and
prior works (§2). Next, I will introduce my con-
tributions in three areas: (1) benchmarking cross-
task generalization with diverse NLP tasks (§3.1);
(2) developing new model architectures that not
only improve cross-task generalization but also en-
hance interpretability (§3.2.1) and inference speed
(§3.2.2). (3) analyzing the generalization landscape
of LLMs and predicting their performance across
different model families, model scales and tasks
(§3.3). Finally, I will discuss future directions for
my research, including (1) pushing the limits of in-
context learning with various types of contexts, and
(2) developing autonomous learning agents that can
acquire their own learning materials (§4).

2 Background

Few-shot Fine-tuning. Pre-trained language
models (e.g., BERT, Devlin et al. 2019) have
demonstrated great few-shot learning ability via
fine-tuning (Zhang et al., 2021). Schick and
Schütze (2020a,b) proposed pattern-exploiting
training (PET), which formulates text classifica-
tion and NLI tasks into cloze questions that resem-
ble the masked language modeling objective. PET
can be further improved by incorporating demon-
strations into the input (Gao et al., 2021); and by
densifying the supervision signal with label condi-
tioning (Tam et al., 2021). While successful, these
approaches focus on instance-level generalization
(Fig. 1), and different downstream tasks are learned
in isolation. Our research work aims to boost few-
shot learning ability on unseen tasks via acquiring
cross-task generalization ability from seen tasks.

Few-shot In-Context Learning. In-context
learning (ICL) is an alternative approach for few-
shot learning by simply concatenating the few-shot
examples and using them as a prompt before the
inference example. Popularized by more recent
language models like GPT-3 (Brown et al., 2020)
and PaLM (Chowdhery et al., 2022), ICL allows
models to learn from a few examples without

any gradient updates and achieve competitive
performance. While this approach works well
for very large models, smaller models requires
meta-training to gain similar capabilities (Chen
et al., 2022; Min et al., 2022). Our research on
cross-task generalization aligns more with the
latter approach. However, the former approach
remains relevant, as the next-token prediction
objective during pre-training can be seen as a
superset of language tasks, and ICL can be viewed
as generalizing to unseen tasks at inference time.

Meta-learning in NLP. The goal of rapid task
adaptation and cross-task generalization is closely
related to the research field of meta-learning, or
learning to learn (Schmidhuber, 1987). While
widely explored in computer vision and robotics
community (Yu et al., 2020; Triantafillou et al.,
2020), meta-learning is relatively underexplored in
NLP. Existing NLP research has primarily focused
on applying meta-learning algorithms to a narrow
distribution of tasks, e.g., relation classification
(Han et al., 2018; Gao et al., 2019), text classifi-
cation (Dou et al., 2019; Bansal et al., 2020a,b),
low-resource machine translation (Gu et al., 2018).
Our work explores a more realistic scenario: learn-
ing from NLP tasks covering diverse formats, goals
and domains. To emphasize our focus on task-level
meta-learning, as opposed to cross-domain or cross-
lingual meta-learning, we primarily adopt the term
“cross-task generalization” in this work.

Unifying NLP Task Formats. Researchers have
explored unifying the formats of different tasks,
in order to better enable knowledge transfer, e.g.,
DecaNLP (McCann et al., 2018), UFO-Entail (Yin
et al., 2020) and EFL (Wang et al., 2021). Fol-
lowing T5 (Raffel et al., 2020), we adopt a uni-
fied text-to-text format that subsumes all text-based
tasks of interest. Related to our work, UnifiedQA
(Khashabi et al., 2020) examines the feasibility
of training a general cross-format QA model with
multi-task learning. Our work extends from these
ideas, and we significantly scale the number of
tasks to 160 to broaden the coverage, in hopes to
build a general-purpose data-efficient learner.

3 Research Work

3.1 Benchmarking Cross-Task Generalization

To investigate and enable cross-task generalization
abilities in large language models (LLMs), a suit-
able benchmark is essential as a starting point. In
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the following, we describe our efforts in building
the CROSSFIT benchmark (Ye et al., 2021).

Problem Setting. We define a task T as a tuple
of (Dtrain,Ddev,Dtest). Each set D is a set of
annotated examples {(xi, yi)} in text-to-text for-
mat. To benchmark cross-task generalization, we
first gather a large repository of few-shot tasks T ,
and partition them into three non-overlapping sets
Ttrain, Tdev, Ttest. A method for this proposed set-
ting is expected to first learn from Ttrain and per-
form necessary hyperparameter tuning with Tdev in
an upstream learning stage; it is then evaluated on
each task in Ttest in an downstream learning stage.

Data. We use huggingface datasets library
(Lhoest et al., 2021) and collect 160 tasks to for-
mulate our task repository T . They cover diverse
formats (classification, multiple choice, etc.), goals
(question answering, fact checking, etc.) and do-
mains (biomedical, social media, etc.). We subsam-
ple the training sets for each task to simulate the
few-shot setting (16 shots per class for classifica-
tion tasks, 32 shots for other tasks). In our main
experiments, we randomly partition T into (Ttrain,
Tdev, Ttest). In later analysis, we also create parti-
tions according to a task taxonomy we created for
the 160 tasks (Fig. 2).

Experiments. For the upstream learning stage
with Ttrain, we compare simple multi-task learning
and three meta-learning algorithms: (1) Model-
Agnostic Meta-Learning (MAML; Finn et al.
2017), (2) the first-order variant of MAML, and
(3) Reptile (Nichol et al., 2018), another memory-
efficient, first-order meta-learning algorithm. After
the upstream learning stage, we fine-tune the re-
sulting models on each task in Ttest. We report the
performance gains achieved by models trained with
upstream learning compared to those trained with-
out, expressed as the relative percentage increase.

Main Findings. (1) An upstream learning stage
can improve the model’s few-shot learning perfor-
mance on unseen tasks. By aggregating results
from all upstream learning methods and task par-
titions investigated, we find that the performance
on 51.47% test tasks are significantly improved
(>5% relative improvement compared to direct fine-
tuning); 35.93% tasks are relatively unaffected (be-
tween ±5%); and 12.60% tasks suffer from worse
performance (<−5%). We also find that the most
straight-forward multi-task learning method out-
performs more sophisticated meta-learning algo-
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Figure 2: Taxonomy of NLP tasks included in the
CROSSFIT benchmark (§3.1).

rithms. (2) The selection of tasks in the upstream
learning stage plays an important role in perfor-
mance on unseen tasks. Meanwhile, the transfer
mechanism does not clearly align with our naive
categorization of tasks based on task format (e.g.,
classification, QA). For example, when control-
ling the composition of upstream tasks (Ttrain) to
be 100% classification, 100% non-classification,
or 50%-50%, the average performance on unseen
tasks are comparable. (3) We find that enlarging
the size of Dtrain in upstream tasks does not neces-
sitate better cross-task generalization. By enlarging
Dtrain of upstream tasks by 8x, the downstream
performance is improved by merely 4%.

3.2 Improved Modeling Techniques

3.2.1 Task-level Mixture-of-Experts

Our CROSSFIT work in §3.1 and recent work
(Aghajanyan et al., 2021) suggest that training lan-
guage models to multi-task on a diverse collection
of NLP tasks is beneficial. The resulting model
is not only better at handling seen tasks, but also
better at adapting to unseen tasks in the few-shot
setting. However, the potential of these multi-task
models may be limited as the exact same set of
weights is applied, and the same computation is
executed, for very different tasks. Humans, on the
other hand, develop modular skill sets and accu-
mulate knowledge during learning, and can readily
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reuse and recompose only the necessary ones when
facing a task. Although multi-task models may
develop latent skills within their weights, we are
interested in enabling this modular, skill-sharing
process more explicitly.

A natural fit for our goal would be task-level
mixture-of-expert models (Jacobs et al., 1991;
Kudugunta et al., 2021), where the model com-
putation is dependent on the task at hand. In
our CrossTask-MoE work (Ye et al., 2022), we
adapt and train such mixture-of-expert models in
the cross-task generalization setting. Our model
contains a collection of experts and a router that
chooses from the experts. For a given task Tk ∈ T ,
with k as its task index, the router first takes the
task representation (Tk) from a look-up embed-
ding table (T). The router network outputs a ma-
trix L ∈ Rm×n, where Li,j represents the logits
of using expert E(i,j) in layer i. L goes through
a selection function f to normalize the routing
decisions in each layer, resulting in a final deci-
sion matrix D ∈ Rm×n. We then use the de-
cision matrix D from the router to control the
computation conducted by the experts. In layer
i, given input hidden states h

(i)
in , the output h(i)

out

would be the weighted sum of all experts in the
layer, and the weights are specified in Di,·, i.e.,
h
(i)
out =

∑m
j=1Di,jE

(i,j)(h
(i)
in ).

We first conduct detailed ablations on different
design choices of Task-level MoEs and converge
to a final method. Our results suggest that training
task-level mixture-of-experts can alleviate negative
transfer and achieve better few-shot performance
on unseen tasks. We find that these models help
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methods to incorporate examples for in-context learning.
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how fusion is implemented.

improve the average performance gain (ARG) met-
ric by 2.6% when adapting to unseen tasks in the
few-shot setting and by 5.6% in the zeroshot gen-
eralization setting. In our interpretability analysis,
we find that the learned routing decisions and ex-
perts partially align with human categorization of
NLP tasks – certain experts are strongly associated
with extractive tasks, some with classification tasks,
and some with tasks requiring world knowledge.
By disabling these experts with high associations,
performance will deteriorate significantly. In one
extreme case, disabling 3 experts for the emotion
classification task results in a dramatic drop in F1
score, from 82% to a mere 16%.

3.2.2 Fusion-in-Decoders for Efficient
In-Context Learning

As previously described in §2, in-context learning
(ICL) is a new way to perform few-shot learning
without updating model weights, by concatenating
a few demonstrations and preprending them before
the test input. One limitation of in-context learning
is that the concatenated demonstrations are often
excessively long and induce additional computation
costs. Inspired by fusion-in-decoder (FiD; Izacard
and Grave 2021) models which efficiently aggre-
gate passages and thus outperforms concatenation-
based models in open-domain QA, we hypothesize
that similar techniques can be applied to improve
the efficiency and end-task performance of ICL.

In our FiD-ICL work (Ye et al., 2023a),
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we present a comprehensive study on three
methods—concatenation-based (early fusion), FiD
(intermediate), and ensemble-based (late)—to ag-
gregate few-shot examples in ICL. See Figure 4 for
an illustration of these three methods. We adopt a
cross-task generalization setup where a model is
first trained to perform ICL on a mixture of tasks
using one selected fusion method, then evaluated
on held-out tasks for ICL (Sanh et al., 2022).

Results on 11 held-out tasks show that FiD-ICL
matches or outperforms the other two fusion meth-
ods across three different model scales (250M,
800M, 3B). Notably, FiD-ICL, a gradient-free in-
context learning method, narrows the performance
gap between ICL and T-Few (Liu et al., 2022), a
state-of-the-art few-shot fine-tuning method, to be
less than 3%. Additionally, we show that FiD-
ICL is 10x faster at inference time compared to
concat-based and ensemble-based ICL, as we can
pre-compute the representations of in-context ex-
amples and reuse them. FiD-ICL also enables scal-
ing up to meta-training 3B-sized models, which
would lead to out-of-memory errors with concat-
based ICL when on an academic budget.

3.3 Modeling and Predicting the LLM
Generalization Landscape

Because a large language model excels at one task,
can we expect it to perform well on another task?
Are there any patterns that govern how well state-
of-the-art LLMs generalize across different tasks?
To answer these questions, we use data-driven ap-
proaches to investigate the predictability of large
language model capabilities across different tasks,
model families, model scales and numbers of in-
context examples (Ye et al., 2023b).

We investigate this question using experiment
records from BIG-bench (BIG-bench authors,
2023), a collaborative benchmark that contains a
diverse set of tasks contributed by the community,
covering “problem from linguistics, childhood de-
velopment, math, common-sense reasoning, biol-
ogy, physics, social bias, software development,
and beyond.” We gather and carefully filter these
records, yielding a total of 56k records which we
use as the “dataset” for our analysis.

Through extensive experiments, we find that
LLMs’ performance on BIG-bench follows pre-
dictable patterns. In the default setting where we
create train and test sets with random sampling, our
best predictor, an MLP model, achieves an RMSE
lower than 0.05 (i.e., on average mis-predict by

< 0.05 when the range is [0, 1]) and an R2 greater
than 95% (i.e., explains more than 95% variance
in the target variable). However, the predictor’s
performance is dependent on the assumptions of
the train-test distribution. In a more challenging
setting where we hold out the Cartesian product
of complete model families (all model scales) and
complete tasks (all numbers of shots), the predic-
tor’s performance decreases (R2 : 95% → 86%).

We further explore to what extent emergent abil-
ities (Wei et al., 2022a) can be predicted, and how
our performance prediction models can be used to
create more efficient benchmarks for future LLMs.

4 Future Directions

Pushing the Limit of In-Context Learning. As
an alternative to model fine-tuning, in-context
learning has shown to be effective in adapting an
LLM to perform novel tasks. Existing works on
in-context learning mostly focus on conditioning
on demonstrations of one single task. It is pos-
sible to break this convention by conditioning on
diverse and heterogeneous contexts. For exam-
ple, Pruksachatkun et al. (2020); Vu et al. (2020)
highlight the benefits of intermediate task transfer
in the fine-tuning paradigm. Revisiting this tech-
nique with in-context learning may help improve
end-task performance and also enhance our under-
standing of in-context learning. Recent progresses
on long-context LMs open up new opportunities
for scaling not only the length, but also the diver-
sity and composition of “contexts” for in-context
learning, which we plan to investigate in the future.

From Data-Efficient Learners to Self-Sufficient
Learners. So far in our efforts, the models are ex-
pected to perform few-shot learning when the few-
shot training data are provided and fixed. A more
ambitious goal will be to build intelligent systems
that can acquire their own learning material and
learn in the open-endedness. As the capabilities
of LLMs continue to grow, they demonstrate agen-
tic behaviors such as reasoning (Wei et al., 2022b),
planning (Wang et al., 2023), tool use (Schick et al.,
2023), self-refinement (Madaan et al., 2023), etc.
All of these are also fundamental aspects of hu-
man learning processes. In the future, we plan to
incorporate these latest advances into building an
autonomous, self-sufficient learning agent capable
of devising a learning plan, executing it, reflecting
on its own limitations, and dynamically adjusting
the plan throughout the course of learning.
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