@inproceedings{wang-yoshinaga-2024-commentary,
title = "Commentary Generation from Data Records of Multiplayer Strategy Esports Game",
author = "Wang, Zihan and
Yoshinaga, Naoki",
editor = "Cao, Yang (Trista) and
Papadimitriou, Isabel and
Ovalle, Anaelia and
Zampieri, Marcos and
Ferraro, Francis and
Swayamdipta, Swabha",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-srw.28",
doi = "10.18653/v1/2024.naacl-srw.28",
pages = "263--271",
abstract = "Esports, a sports competition on video games, has become one of the most important sporting events. Although esports play logs have been accumulated, only a small portion of them accompany text commentaries for the audience to retrieve and understand the plays. In this study, we therefore introduce the task of generating game commentaries from esports{'} data records. We first build large-scale esports data-to-text datasets that pair structured data and commentaries from a popular esports game, League of Legends. We then evaluate Transformer-based models to generate game commentaries from structured data records, while examining the impact of the pre-trained language models. Evaluation results on our dataset revealed the challenges of this novel task. We will release our dataset to boost potential research in the data-to-text generation community.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-yoshinaga-2024-commentary">
<titleInfo>
<title>Commentary Generation from Data Records of Multiplayer Strategy Esports Game</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zihan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoki</namePart>
<namePart type="family">Yoshinaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="given">(Trista)</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Papadimitriou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anaelia</namePart>
<namePart type="family">Ovalle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Ferraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swabha</namePart>
<namePart type="family">Swayamdipta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Esports, a sports competition on video games, has become one of the most important sporting events. Although esports play logs have been accumulated, only a small portion of them accompany text commentaries for the audience to retrieve and understand the plays. In this study, we therefore introduce the task of generating game commentaries from esports’ data records. We first build large-scale esports data-to-text datasets that pair structured data and commentaries from a popular esports game, League of Legends. We then evaluate Transformer-based models to generate game commentaries from structured data records, while examining the impact of the pre-trained language models. Evaluation results on our dataset revealed the challenges of this novel task. We will release our dataset to boost potential research in the data-to-text generation community.</abstract>
<identifier type="citekey">wang-yoshinaga-2024-commentary</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-srw.28</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-srw.28</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>263</start>
<end>271</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Commentary Generation from Data Records of Multiplayer Strategy Esports Game
%A Wang, Zihan
%A Yoshinaga, Naoki
%Y Cao, Yang (Trista)
%Y Papadimitriou, Isabel
%Y Ovalle, Anaelia
%Y Zampieri, Marcos
%Y Ferraro, Francis
%Y Swayamdipta, Swabha
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F wang-yoshinaga-2024-commentary
%X Esports, a sports competition on video games, has become one of the most important sporting events. Although esports play logs have been accumulated, only a small portion of them accompany text commentaries for the audience to retrieve and understand the plays. In this study, we therefore introduce the task of generating game commentaries from esports’ data records. We first build large-scale esports data-to-text datasets that pair structured data and commentaries from a popular esports game, League of Legends. We then evaluate Transformer-based models to generate game commentaries from structured data records, while examining the impact of the pre-trained language models. Evaluation results on our dataset revealed the challenges of this novel task. We will release our dataset to boost potential research in the data-to-text generation community.
%R 10.18653/v1/2024.naacl-srw.28
%U https://aclanthology.org/2024.naacl-srw.28
%U https://doi.org/10.18653/v1/2024.naacl-srw.28
%P 263-271
Markdown (Informal)
[Commentary Generation from Data Records of Multiplayer Strategy Esports Game](https://aclanthology.org/2024.naacl-srw.28) (Wang & Yoshinaga, NAACL 2024)
ACL