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Abstract

In this paper, we study the generalization abil-
ity of large language models (LLMs) with re-
spect to compositional instructions, which are
instructions that can be decomposed into sev-
eral sub-instructions. We argue that the ability
to generalize from simple instructions to more
intricate compositional instructions represents
a key aspect of the out-of-distribution gener-
alization for LLMs. Since there are no spe-
cialized datasets for studying this phenomenon,
we first construct a dataset with the help of
ChatGPT, guided by the self-instruct technique.
Then, we fine-tune and evaluate LLMs on these
datasets. Interestingly, our experimental results
indicate that training LLMs on higher-order
compositional instructions enhances their per-
formance on lower-order ones, but the reverse
does not hold true. The code and data are
available at https://github.com/LHRYANG/
Compositional_Generalization.

1 Introduction

Large language models (LLMs) such as
GPT3 (Brown et al., 2020), LLaMA (Touvron
et al., 2023a) and LLaMA-2 (Touvron et al., 2023b)
have demonstrated excellent multitask-solving
abilities largely due to instruction tuning (Ouyang
et al., 2022) which fine-tunes LLMs to follow
diverse and natural instructions.

This study aims to advance the understanding
of the instruction-tuning process, specifically fo-
cusing on the compositional generalization abil-
ity of LLMs. Compositional instructions can be
vaguely defined as complex instructions that are
divisible into several simpler sub-instructions. Sev-
eral studies have delved into different aspects of
compositionality with different interpretations of
the above definition. For instance, Lake and Ba-
roni (2018) found that on their proposed SCAN
dataset, RNN performs poorly when testing on
longer sequences or primitive commands unseen

during training. Keysers et al. (2020) constructed
a realistic dataset based on question-answering
datasets and regarded the novel compounds i.e.,
new ways of composing the atoms of the train
set, as the out-of-domain test set on which they
found the RNN model fails to generalize compo-
sitionally. Finlayson et al. (2022) conducted ex-
periments on their built regular expression match-
ing classification dataset and found T5-based mod-
els (Raffel et al., 2020) struggle with non-starfree
or bigger r-languages. Anil et al. (2022) examined
length generalization in LLMs, revealing signifi-
cant deficiencies in their generalization capabilities
when fine-tuned on tasks with different lengths. Al-
though length can be positively correlated with the
degree of compositionality, the two are not equiva-
lent. Zhou et al. (2023) used instruction decompo-
sition as an inference-time method for performance
enhancement. This approach only focuses on task-
specific prompt design and does not involve fine-
tuning, which provides a limited understanding of
the compositional generalization of LLMs.

Different from the above works, which either
build unrealistic datasets that do not necessarily
translate to the real world, or construct domain-
specific datasets, which are limited in the era of
multitask-solving LLMs, we aim to analyze the
compositionality of LLMs by fine-tuning them on
instructions drawn from general domains and of
different complexities. Due to the lack of existing
datasets tailored for this purpose, we leverage Chat-
GPT1 and the self-instruct technique (Wang et al.,
2023) to construct suitable datasets. Specifically,
we generate compositional instructions with dif-
ferent orders (an order-n instruction means that
the instruction can be decomposed into n sub-
instructions). Following this, we proceed to fine-
tune and evaluate a popular LLM series, LLaMA
(Touvron et al., 2023a), using these datasets.

1https://chat.openai.com
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Our primary objective is to investigate the
prospect of whether LLMs, once trained on in-
structions of a particular order, can generalize ef-
fectively to instructions of a different order. Our
experiments present a fascinating outcome. When
LLMs are trained on higher-order compositional
instructions, they show an enhancement in perfor-
mance when dealing with lower-order ones. How-
ever, the reverse situation, where LLMs are trained
on lower-order instructions and then assessed on
higher-order ones, does not yield the same improve-
ment in performance. This discovery could pave
the way for new directions in the fine-tuning strate-
gies of LLMs, potentially leading to more efficient
and effective models.

2 Data Collection

2.1 Concept of Compositional Instructions

There are different interpretations of compositional-
ity. For example, in Lake and Baroni (2018), com-
positional generalization usually refers to the abil-
ity to combine primitives into structures in novel
ways, as exemplified by the SCAN dataset. In Hot-
PotQA (Yang et al., 2018), compositional questions
require reasoning over multiple steps to arrive at the
right answer. For instance, “Who was president in
the year Justin Bieber was born” requires the model
to first determine when Justin Bieber was born, and
then who the president was that year. In this work,
we define compositional instruction as one that can
be decomposed into multiple sub-instructions or
steps2. More specifically:

An instruction is compositional if it can be de-
composed into n(n > 1) sub-instructions. This in-
struction is also called a n-decomposition or order-
n instruction.

This definition is well-suited for real-world com-
plex instructions in general domains, particularly
when combined with techniques for robots to fol-
low natural language instructions step-by-step to
complete a task.

Here are some examples of compositional
instructions, “Translate the following
paragraph to English and summarise the
translated paragraph” is a 2-decomposition
(order-2) instruction, and “Extract all the
names in the following paragraph and
Count the frequency of each name appearing

2Due to the complexity of languages, it is difficult to pro-
vide a very precise definition. Please refer to the limitation
section.

and order them based on alphabet” is a
3-decomposition (order-3) instruction. If an in-
struction is not compositional (e.g., “Write an
article about Summer.”), we call it a 1-
decomposition (order-1) instruction.

2.2 Dataset Generation
We take the idea of self-instruct (Wang et al., 2023)
to generate compositional instructions with some
modifications. In this paper, we only consider n-
decomposition instructions where n ranges from
1 to 4. The 1-decomposition instruction dataset
Alpaca-52k (Taori et al., 2023) has already been
generated. We verified that these are overwhelm-
ingly 1-decomposition instructions by randomly
inspecting 200 instructions. The details of the
checking process can be found in Appx. A. As
a result, our efforts are concentrated on generating
2/3/4-decomposition instructions.

Seed Instruction Generation Seed instructions
play a vital role in ensuring the diversity and qual-
ity of the generated data. Generating hundreds
of sensible compositional instructions, particularly
of high orders, can be a challenging task for hu-
mans. To address this, we begin by soliciting some
2-decomposition instructions from the extensive
Belle corpus (about 2M instructions) (Ji et al.,
2023a,b). The soliciting step involves querying
gpt-3.5-turbo (Prompt used and detailed steps are
provided in Appx. B.), followed by human labeling.
Using these 2-decomposition instructions as a base,
we then prompt gpt-3.5-turbo (with temperature
0.7) to generate higher-order instructions, which
are again subject to human labeling (similar to pro-
cedures in Appx. A.). The prompt input submitted
to gpt-3.5-turbo is depicted in Figure 1. It’s note-
worthy that the gray section of the prompt is not uti-
lized in generating seed instructions. We discover
that this configuration can enhance the diversity of
high-order seed instructions. This may be due to
the fact that without the presence of order-(i+1) ex-
amples, gpt-3.5-turbo is afforded a greater freedom
of thought. Ultimately, we generate 159/89/112
seed instructions with order 2/3/4, respectively.

Full Dataset Generation We utilize the same
prompt to generate the full dataset as illustrated in
Figure 1, including the gray section. In particular,
when generating order-(i+1) instructions, we sam-
ple instructions of orders ranging from 2 to i+ 1.
These samples are drawn from both the seed set
and the set already generated. Subsequently, we in-
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Prompt used to generate instrcutions

[concept of compositional instruction]
Below are examples of 2-decomposition
instructions:
[2-decomposition instrcutions]
· · ·
Below are examples of i-decomposition
instructions:
[i-decomposition instructions]
Below are examples of (i + 1)-decomposition
instructions:
[i+ 1-decomposition instrctuins]

Please generate some (i + 1)-decomposition
instructions:

Figure 1: Compositional instruction generation prompt.
The text in color gray is not used during generating seed
instructions to improve diversity.

corporate these samples into the prompt to further
generate more order-(i+ 1) instructions. Finally,
we have a total of 7000 instructions for each order
and we regard the output of gpt-3.5-turbo (temper-
ature 0.7) for these instructions as the ground truth.
6000 of them are regarded as the training set, the
remaining 1000 are regarded as the test set. Analy-
sis and some examples of the dataset are provided
in Appx. C.

3 Experiments

Our study focuses on investigating the generaliza-
tion ability of LLMs. Specifically, for each order
instruction training dataset, we fine-tune a model
and subsequently evaluate the model on instruc-
tions of various orders to assess their performance
and adaptability.

3.1 Setup

Models We conduct experiments on LLaMA.
LLaMA (Touvron et al., 2023a) is a collection of
autoregressive language models ranging from 7B
to 65B. In this paper, we report the results of the
7B and 13B models. We take two different tuning
methods, full-finetuning and parameter-efficient
tuning. Specifically, for parameter-efficient tuning,
we choose LoRA (Hu et al., 2022) which injects
trainable rank decomposition matrices into each
layer of the Transformer architecture while keep-
ing the pre-trained model weights frozen.

Evaluation Metrics We report Rouge-L 3 and
BLEU (averaged from BLEU-1 to BLEU-4) 4 to
measure two different aspects of the generated text
in comparison to the reference text generated by
ChatGPT. The BLEU metric is employed to calcu-
late precision, while the ROUGE score is used to
quantify recall.

Implementation Details For full-tuning, we
adopt the AdamW (Kingma and Ba, 2017) opti-
mizer, and the learning rate is set to 2e-5. The
epoch is set to 2 and we use the last checkpoint
to conduct evaluation on the test set. For LLaMA-
LoRA (parameter-efficient tuning), the learning
rate is set to 3e-4 and the epoch is set to 3. We use
the last checkpoint to evaluate.

3.2 Results

We specifically examine two types of generaliza-
tions: forward generalization and backward gener-
alization. Forward generalization refers to training
the models on lower-order compositional instruc-
tions and evaluating their performance on higher-
order instructions. Conversely, backward general-
ization involves training on higher-order instruc-
tions and evaluating on lower-order instructions.
We report the results of LLaMA and LLaMA-
LORA in Table 1 and Table 2 for the 7B model
and 13B model respectively.

Forward Generalization The diagonal entries
denote the results obtained from evaluating order-i
instructions using the model trained on the order-i
training set. By comparing the upper triangle en-
tries with the corresponding diagonal entries, we
notice obvious performance degradation for both
full-tuning and parameter-efficient tuning models.
An illustrative example is the (order-1, order-3) sce-
nario in Table 1, where the achieved performance is
18.5/8.35, while 22.0/11.89 is achieved when using
the model trained on order-3 datasets. We also no-
tice that as the models are trained on higher-order
datasets, the discrepancy between the forward re-
sults and the diagonal results gradually diminishes.
For instance, when evaluated on the order-4 dataset,
the (order-1, order-4) performance is 20.9/10.12,
exhibiting a larger performance gap than the per-
formance of (order-3, order-4) 24.0/13.09, when
compared with the desired result 24.2/13.16. The
conclusion is that forward generalization is usually

3https://github.com/pltrdy/rouge
4https://github.com/mjpost/sacrebleu
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order-1 order-2 order-3 order-4

LLaMA ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU

order-1 16.7/6.94 20.9/10.46 18.5/8.35 20.9/10.12
order-2 17.2/6.82 23.2/12.39 21.8/11.51 23.2/12.35
order-3 17.2/7.00 23.3/12.72 22.0/11.89 24.0/13.09
order-4 17.7/6.93 22.8/12.25 21.8/11.74 24.2/13.16

LLaMA-LoRA ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU

order-1 13.6/5.28 19.5/9.28 20.3/9.61 19.4/9.20
order-2 13.6/5.53 20.9/10.83 22.9/11.97 22.5/12.06
order-3 13.3/5.05 21.0/10.57 23.5/12.66 22.6/12.45
order-4 13.6/5.36 20.9/10.62 23.9/12.78 22.9/12.45

Table 1: Results of forward generalization (upper triangle of diagonal) and backward generalization (lower triangle
of diagonal). The ith row and jth column means the model is trained on order-i instructions and evaluated on
order-j instructions.

order-1 order-2 order-3 order-4

LLaMA-13b ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU

order-1 21.0/8.01 21.4/10.65 21.2/9.73 21.4/10.86
order-2 21.4/8.19 24.7/13.28 23.0/11.16 22.5/11.78
order-3 22.1/8.74 23.5/13.32 23.6/11.94 23.3/12.71
order-4 21.2/7.84 25.1/12.31 23.4/12.28 23.7/12.07

LLaMA-LoRA-13b ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU ROUGE-L/BLEU

order-1 15.5/6.21 20.1/9.54 19.2/8.57 19.9/9.05
order-2 17.1/7.26 22.5/11.8 21.86/10.9 22.9/11.73
order-3 16.7/6.62 22.2/11.76 22.3/11.28 23.1/12.00
order-4 16.2/6.57 21.9/11.63 22.3/11.36 23.0/11.77

Table 2: Results of forward generalization (upper triangle of diagonal) and backward generalization (lower triangle
of diagonal) of LLaMA-13b.

negative but the gap can be gradually narrowed by
training on higher-order datasets.

Backward Generalization By analyzing the
lower triangle entries with the corresponding di-
agonal entries, we find that there is a considerable
proportion of positive backward generalization (in-
dicated by the numbers in brown color.). As an il-
lustration, the LLaMA-7B model, trained on order-
3 dataset yields improved performance (23.3/12.72)
as compared to that trained on order-2 dataset when
evaluated on order-2 test set (23.2/12.39). It should
also be noted that this phenomenon is also observed
in LLaMA-13B as shown in Table 2. In conclu-
sion, our findings suggest that LLMs trained on
higher-order datasets can often outperform their
counterparts trained on lower-order datasets when
evaluating on the same lower-order test set. This
phenomenon, termed as positive backward general-
ization, underscores the potential benefits of using
higher-order datasets for model training to achieve
improved performance even on lower-order tasks.

Impact of Output Length The ground-truth out-
put length in high-order training set is obviously
longer than the length in low-order training set as
shown in Figure 4 Appx. C. And the length of the
generated output also has an impact on ROUGE
and BLEU. A natural question that arises is how
reliable are the aforementioned conclusions. From
Table 1 and Table 2, we can observe that BLEU and
ROUGE often exhibit the same trend rather than
one metric increasing while the other decreases.
This implies that improvements in these metrics
are indicative of overall enhancement in the quality
of the generated text, rather than a trade-off be-
tween different evaluation criteria. We also plot the
average generation length for each order test set, as
illustrated in Figure 2. We can see that generation
length is largely related to the test set instead of
the models trained on datasets with different or-
ders. It reveals that the model trained on datasets
with short/long ground-truth output can still gen-
erate outputs with reasonable length based on the
complexity of the instructions.
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Figure 2: Average generation length comparison. The
x-axis represents the test set with different orders while
four colors represents four models tuned with different
order training set.

forward backward

ROUGE (7B) -7.6 3.1
ROUGE (13B) -7.0 1.5

BLEU (7B) -13.0 2.6
BLEU (13B) -11.0 3.6

Table 3: Percentage (%) of performance drop and im-
provement. We only consider the positive forward and
negative backward generalization.

3.3 Effect of Model Scale
To investigate whether the scale of the model can
influence the degree of negative forward general-
ization and positive backward generalization, we
compute the average percentage of performance
deterioration and enhancement for the LLaMA-7b
results (Table 1) and the LLaMA-13b results (Ta-
ble 2). The statistics are presented in Table 3. Our
analysis reveals that increasing the model scale in-
deed mitigates the extent of the performance drop
in forward generalization (the 13B model has a
small performance drop compared with the 7B
model in both BLEU and ROUGE.). However, it
remains inconclusive whether the model scale im-
pacts the performance improvement in backward
generalization. We leave it as a future work.

4 Conclusion

We studied the generalization ability of LLMs
on compositional instructions. Our explorations
highlighted the significant impact of the order of
training instructions on performance. Specifically,
while LLMs demonstrate negative forward general-
ization, they often exhibit positive backward gen-
eralization. Furthermore, we discern that a larger

model scale can alleviate the negative forward gen-
eralization. We hope these discoveries will aid the
research community in designing more effective
instruction tuning strategies.

Limitations

In this work, we study the generalization ability of
LLMs on compositional instructions. However, it
is hard to precisely define the concept of compo-
sitional instruction due to the complexity of lan-
guage and various interpretations. For example,
“Write an article about Summer." can be further
broken down into “Write an article" and "The arti-
cle should be about Summer.". However, we regard
it as a 1-decomposition instruction. Moreover, we
use compositional instructions which are gener-
ated by ChatGPT. The diversity of these generated
datasets may not be sufficiently high. The experi-
ments are only conducted on LLaMA and the scale
effect is also not thoroughly studied on much larger
LLMs.

Ethics Statement

Due to the nature of language models, the genera-
tions may have offensive, toxic, unfair, or unethical
biases. One can use post-process steps such as tox-
icity identification and fact checking to alleviate
these issues.
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Prompt used to identify 2-decomposition instruction

[concept of compositonal instruction]
[1-decomposition instructions with
explanations]
[2-decomposition instructions with
explanations]

So please determine if [target instruction]
is a 2-decomposition instruction.]

Figure 3: Identify 2-decomposition instructions.

A Process of Labeling Alpaca-52k

We check whether most of the instructions in
Alpaca-52k are 1-decomposition institutions. The
annotation process is conducted by two annotators
with high English proficiency. Firstly, we present
them with the definition of compositional instruc-
tion as shown in Sec. 2.2. Then, for each order
n ∈ [1, 2, 3, 4], we give two example instructions.
Finally, we ask the annotator to decide whether an
instruction is compositional or non-compositional.
If both annotators agree the instruction is composi-
tional, then we label it as compositional instruction.

B Selecting 2-decomposition instructions
from Belle Corpus

Due to the large size of the Belle Corpus (Ji et al.,
2023a,b), it is impossible for human to label each
instruction one by one. Therefore, we facilitate
the powerful gpt-3.5-turbo to first distill some can-
didate 2-decomposition instructions. The prompt
used to query gpt-3.5-turbo is shown in Figure 3.
The temperature used for controlling generation
is set to 0.7. We stop the running of gpt-3.5-
turbo until 1000 candidate 2-decomposition instruc-
tions are collected. Then, we conduct the same
step in Appx. A to manually label the valid 2-
decomposition instructions. Finally, we obtain 159
2-decomposition instructions as the seed instruc-
tions.

C Dataset Analysis

Statistics We analyze (a) the proportion of in-
structions without input, (b) the average instruction
length (excluding the input field), (c) the average
input length, and (d) the average output length of
different orders, as illustrated in Figure 4. We find
(1) the percentage of instructions without input
field are roughly close for instructions with dif-
ferent orders. (2) The average instruction length
(the input field is not considered.) exhibits greater

differences, where lower-order instructions are ob-
viously shorter than high-order instructions. (3)
The difference between the average input length
for different orders (statistics on instructions that
have an input filed) is not very significant. (4) The
average output length of instructions with differ-
ent orders is obviously different. This is expected,
as higher-order instructions necessitate the com-
pletion of multiple tasks which should naturally
result in longer instructions and outputs compared
to lower-order prompts.

Diversity We also analyze the similarity of in-
structions for each order as shown in Figure 5. We
plot the maximum Rouge-L score distribution all
each order prompts test dataset. Specifically, for
each prompt, we compute its Rouge-L score with
each remaining prompt in the same datasets and
take the largest value. A higher Rouge-L score
indicates there is a prompt that is very similar to
the current prompts. We find the similarity for
order-2/3/4 instruction is slightly higher than order-
1 instructions i.e., Alpaca-52k (Taori et al., 2023).
We leave it as a future work to further improve the
diversity.

Examples We provide some example instruc-
tions with different orders in Table 4.
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Figure 4: Basic statistics of the generated datasets, the order-1 dataset is built from alpaca while the other three
are generated by ourselves. The main difference between these four datasets is in average instruction length and
average. output length.
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Figure 5: Rouge-L score distribution.
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2-decomposition instructions

instruction: Write a research paper on the effects of social media on mental health, citing at least five
academic sources.

input: Topic: Effects of social media on mental health.
output: Introduction \n Social media has become an integral part of modern society...

instruction: Come up with at least 3 new menu items for a popular restaurant and provide a brief
description of each dish, including ingredients and cooking method.

input: None
output: 1. Spicy Mango Chicken: This dish ...

3-decomposition instructions

instruction: Extract all email addresses from the given text, sort them alphabetically, and count their
occurrence.

input: To contact us, please email support@company.com or sales@company.com. For general
inquiries, you can also reach us at info@company.com.

output: info@company.com (1)\n sales@company.com (1)\n support@company.com (1)

instruction: Design a workout plan for a beginner. First, identify the fitness goals of the beginner.
Second, suggest exercises that target all major muscle groups. Third, create a weekly
schedule that incorporates cardio and strength training.

input: None
output: Fitness goals: The beginner wants to improve overall fitness, build strength, and lose

weight...

4-decomposition instructions

instruction: Given a sample of employee resumes, identify the top three most qualified candidates,
analyze their work experience and education, calculate the average salary range for the
industry, and identify any potential red flags in the resumes.

input: Resume1: Education=Bachelor’s degree, Work Experience=5 years, Salary
Range=$50,000-$60,000; Resume2: Education=Master’s degree, Work Experience=3
years, Salary Range=$45,000-$55,000; Resume3: Education=Associate’s degree, Work
Experience=8 years, Salary Range=$40,000-$50,000; Resume4: Education=High School
diploma, Work Experience=10 years, Salary Range=$30,000-$40,000; Resume5: Educa-
tion=Bachelor’s degree, Work Experience=2 years, Salary Range=$50,000-$60,000

output: Based on the given information, the top three most qualified candidates are Resume1,
Resume2, and Resume3 ...

instruction: Develop a training program for new employees. Identify four key skills that new
employees should learn, create training materials such as presentations and quizzes
to test their knowledge, choose a training delivery method, and evaluate the effectiveness
of your training program.

input: None
output: Training Program for New Employees \n Introduction:\n Congratulations on your new

role as an employee of our company!...

Table 4: Some examples of the generated compositional instructions.
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