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Abstract

Pretrained transformer-based language mod-
els have produced state-of-the-art performance
in most natural language understanding tasks.
These models undergo two stages of training:
pretraining on a huge corpus of data and fine-
tuning on a specific downstream task. The pre-
training phase is extremely compute-intensive
and requires several high-performance com-
puting devices like GPUs and several days
or even months of training, but it is crucial
for the model to capture global knowledge
and also has a significant impact on the fine-
tuning task. This is a major roadblock for
researchers without access to sophisticated
computing resources. To overcome this chal-
lenge, we propose two novel hybrid architec-
tures called HybridBERT (HBERT), which
combine self-attention and additive attention
mechanisms together with sub-layer normal-
ization. We introduce a computing budget
to the pretraining phase, limiting the training
time and usage to a single GPU. We show that
HBERT attains twice the pretraining accuracy
of a vanilla-BERT baseline. We also evalu-
ate our proposed models on two downstream
tasks, where we outperform BERT-base while
accelerating inference. Moreover, we study
the effect of weight initialization with a lim-
ited pretraining budget. The code and mod-
els are publicly available at: www.github.
com/gokulsg/HBERT/.

1 Introduction

The last few years have witnessed ground-breaking
research on pretrained transformer-based language
models. These large language models usually fol-
low a two-stage training process: the initial pre-
training stage for learning global knowledge using
large text collections and the later fine-tuning stage
for adapting the learned knowledge to a specific
task. Pretraining is the most crucial and most com-
putationally expensive phase and often requires
modern computing devices like GPUs or TPUs and

several weeks or even months. Pretraining is thus a
major roadblock for researchers who do not have
access to sophisticated computing resources. For
example, the BERT model (Devlin et al., 2018) was
pretrained on 16 TPUs for 4 days. Such modern
computing devices cannot be easily accessed by
individual researchers, which limits the freedom
of researchers to explore other architectures for a
given task and is a hurdle to the development of
highly optimized neural architectures.

Following the scaling laws (Kaplan et al., 2020),
researchers tried to improve the performance by
increasing the model size, data volume and training
time. This resulted in extremely huge models with
several billion parameters. Even fine-tuning such
enormous language models with a limited compute
power is extremely challenging and it is one of
the main reasons that motivated researchers to ex-
plore alternative approaches to make the best use
of the existing pretrained models rather than train-
ing from scratch. Though approaches like prompt
tuning (Lester et al., 2021) or adapters (Houlsby
et al., 2019) provide competitive results, they re-
strict any architectural modifications to the under-
lying pretrained model. Making the pretraining
process more computationally inexpensive would
motivate researchers to explore other architectures.

In our work, we try to address this problem
by imposing restrictions on computational devices
and training time during the pretraining stage of a
BERT model. We also introduce two new models
which we call HybridBERT (HBERT) and use - for
the first time, to the best of our knowledge - a hy-
brid mixture of self-attention and additive attention
together with sub-layer normalization. We show
that on a limited time budget of 1 or 2 days, our
usage of additive attention and sub-layer normal-
ization increases both the pretraining performance
and downstream performance of a reference vanilla
BERT model on two tasks, namely intent classifi-
cation and emotion recognition.
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With our work, we aim to provide a means to
researchers without access to large computing de-
vices to pretrain their own high-performance lan-
guage models. Making pretraining more efficient
and not dependent on sophisticated computing re-
sources also helps to save cost and lower the emis-
sion of CO2, thus proving to be more environmen-
tally friendly.

2 Related work

The BERT model (Devlin et al., 2018) was pre-
trained on 16 TPUs for 4 days. The equivalent time
on 8 Nvidia V100 GPUs will be 11 days. There has
been recent work on introducing restrictions on the
BERT pretraining: Izsak et al. (2021) tried to train
BERT-large for a single day using 8 V100 GPUs.
Later work (Geiping and Goldstein, 2022) reduced
the GPU usage from 8 to 1, still training the model
for a single day. Inspired by these works, we re-
strict the pretraining to a single GPU, utilizing one
of the most commonly used GPUs for pretraining.

After the success of transformer-based models
on natural language understanding tasks, the field
of efficient attention mechanisms came into the
spotlight. Several works (Child et al., 2019; Belt-
agy et al., 2020) tried to reduce the quadratic com-
plexity of the self-attention mechanism. Few ap-
proaches (Kitaev et al., 2020) used hashing tech-
niques to accelerate the self-attention computation.
Approximating the self-attention mechanisms by
low-rank matrices (Wang et al., 2020; Xiong et al.,
2021) is also an active research direction. With
a linear time complexity, additive attention (Wu
et al., 2021) proves to be an efficient alternative to
self-attention, which is why we employ it in this
work.

Layer normalization is a lightweight compo-
nent in the BERT architecture that can influence
the learning capabilities of the model. While the
conventional BERT-based models use post-layer
normalization, the decoder-based model (Radford
et al., 2019) and vision transformers (Dosovit-
skiy et al., 2020) show improvements using pre-
layer normalization. Earlier work (Geiping and
Goldstein, 2022) suggested pre-layer normaliza-
tion to be more beneficial during computing re-
source crunch. Recent work (Wang et al., 2022)
tries to generalize layer normalization across differ-
ent models by introducing sub-layer normalization.
Sub-layer normalization has been shown to im-
prove the performance of models on various tasks

in the text, speech, and vision domains, which is
why we decided to employ it for our work.

3 Method

3.1 Additive attention

The architecture of additive attention mechanism is
as shown in the figure 1. Unlike the pairwise inter-
action of tokens in self-attention, additive attention
uses a global context vector for transforming the
representations of tokens as follows:

Figure 1: Additive attention mechanism
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Figure 2: Architectural modifications on HBERT high-
lighting sub-LayerNorm compared to vanilla BERT.

where βi is the attention weight of the key vector
i, w is a learnable parameter,

√
d is a scaling fac-

tor and Kglobal is the global key vector. Finally,
a linear transformation is performed to capture
global context-aware attention values which are
then added to the attention query vectors.

3.2 HybridBERT (HBERT)

Although additive attention (Wu et al., 2021) can
reduce the complexity of the model, it can hurt
the performance. To mitigate the drop in perfor-
mance, we propose a hybrid architecture that com-
bines self-attention (Vaswani et al., 2017) and addi-
tive attention (Wu et al., 2021) in a single network
with sub-layer normalization. The overall archi-
tecture of our proposed hybrid model is similar to
the BERT-base (Devlin et al., 2018) architecture.
Figure 4 (in the appendix) compares the overall
architecture of our proposed hybrid models with
BERT-base model. Both our hybrid models have 12
layers and a hidden dimension of 768. In Hybrid-
BERTv1 (HBERTv1), additive attention is used in
the odd-numbered layers (1, 3, 5, 7, 9, and 11), and
self-attention is used in the even-numbered layers
(0, 2, 4, 6, 8, and 10) thus giving equal importance
to the additive and self-attention mechanisms. In
HybridBERTv2 (HBERTv2), self-attention is used
in the early and later layers (0, 1, 10, and 11) and
additive attention in the remaining intermediate
blocks. The intuition behind this split is that the
earliest and latest layers in BERT encode crucial in-
formation (Lin et al., 2019; Kovaleva et al., 2019),
indicating that changes in the middle layers might
be less critical. In HBERTv2, additive attention
dominates in the model architecture with a ratio of
2:1.

We also use sub-layer normalization (Wang et al.,

2022) in our HBERT models, where layer normal-
ization is applied four times instead of twice in
each encoder layer, as depicted in figure 2. Fol-
lowing the architectural modifications suggested
in (Geiping and Goldstein, 2022), we remove bias
from the feed-forward network (FFN) layers. Since
the model is only pretrained for a limited time, the
chances of over-fitting are extremely low. Conse-
quently, we reduce the dropout value to a very small
number. Following the optimization technique to
accelerate inference (Sun et al., 2020), we use the
RELU activation function instead of GELU.

4 Experiments

4.1 Dataset

We pretrain our hybrid models on a Wikipedia
dump and the BookCorpus (Zhu et al., 2015), fol-
lowing Devlin et al. (2018), and reserved 5% of the
data as the test set. We evaluate all models on two
downstream classification tasks. Massive (FitzGer-
ald et al., 2022) is a parallel dataset with more than
1 million utterances in 51 languages annotated for
Natural Language Understanding tasks. We use
only the English subset for our experiments, which
has annotations for 60 intents. Models are fine-
tuned on 11,514 training samples and validated on
2,033 samples. The Emotion dataset (Saravia et al.,
2018) consists of annotations of 6 emotion classes:
sadness, joy, love, anger, fear, and surprise. It has
16,000 training samples and 2,000 testing samples.
Accuracy is used as an evaluation metric for all
experiments.

4.2 Implementation details

We train our models on a single Nvidia RTX
A6000 GPU. We use the same word-piece tokenizer
and follow the same Masked Language Modeling
(MLM) training procedure as vanilla BERT. Adam
is used for optimization with a learning rate of 1e-
4. We use sinusoidal positional embeddings and
limit the maximum length of our input to 512. We
reduce the dropout value from 0.1 to 0.005 and
use a batch size of 48 for pretraining. We set the
vocabulary size to 30,522. Deepspeed zero stage-2
(Rasley et al., 2020) is used for memory off-loading
on a single GPU. For fine-tuning, the models are
trained for 10 epochs on the Emotion dataset and
15 epochs on the Massive dataset. We use a batch
size of 64 for all fine-tuning experiments. We use a
BERT-base model and a BERT-base model with ad-
ditive attention on all layers (henceforth AddBERT)
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Figure 3: Comparison of masked language modeling accuracy (MLM) after each day of pretraining for different
models. X-axis: number of days of pretraining on a single GPU. Y-axis: MLM accuracy.

as baselines.

4.3 Results and Discussion

Figure 3 plots the pretraining accuracy of our
HBERT models and both baselines over 5 days.
From this chart, we can see that HBERTv1 reaches
a pretraining accuracy of 31.59% after just one day
of training, compared to 15% for vanilla BERT and
AddBERT, which is more than double the accuracy
of the baselines. HBERTv2, with a higher fraction
of additive attention layers, seems to learn slower
and lags behind v1.

Even increasing the training time to two days
shows very little improvement in the performance
of the baseline models. Our proposed model is
more effective for pretraining under a period of 2
days. After 2 days, the BERT model shows a sharp
rise in accuracy, and at the end of 5 days, the BERT-
base model can provide competing results with our
hybrid models. AddBERT shows a minimal in-
crease in accuracy after each training day, showing
that the use of additive attention alone seems to be
problematic for performance. At the end of day
5, the performance gap between AddBERT and
BERT-base is more than 35%.

Table 1 shows the performance of all models on
the fine-tuning tasks. Especially after pretraining
for one day only, the hybrid architectures outper-
form vanilla BERT by 1% (Massive) and 2.5%
(Emotion). After 2 days of pretraining, vanilla
BERT performs almost on par with the hybrid mod-
els after fine-tuning. Interestingly, AddBERT per-
forms almost at par with the other models, despite

its much worse performance during pretraining.
This indicates that a minimal amount of pretraining
seems to help the models during the fine-tuning
stage, even if pretraining accuracy is low.

Table 2 compares the number of parameters and
the inference time of all models. For computing
the inference, the model is loaded into a CPU that
has 4 cores, and an input sentence with 211 word
tokens was used. Our hybrid models have slightly
more parameters when compared with the BERT-
base model, due to the addition of 2 normalization
layers. Their inference time is slightly faster due
to the presence of additive attention layers which
has been shown to accelerate model inference.

Consequently, AddBERT, employing only ad-
ditive attention, shows the lowest inference time
of 606 ms, which is around 15% lower than the
BERT-base model.

4.4 Additional Experiments: Weight
Initialization

We additionally experiment with initializing
HBERT from a pretrained BERT model, for the
self-attention parts of HBERT that are common
with the vanilla implementation (i.e. excluding ad-
ditive attention and normalization layers). 50% of
the attention layers in HBERTv1 and 66.67% of the
attention layers in HBERTv2 are still randomly ini-
tialized. While starting from an already pretrained
model may defy the purpose of accelerating pre-
training with additive inference, we still believe
it is interesting to look at this configuration: If a
researcher wants to modify architectural compo-
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Massive Emotion
1 day 2 day 1 day 2 day

BERT-base (full) 88.59% 93.85%
BERT-base 84.59% 86.23% 86.11% 89.03%
AddBERT 82.49% 83.70% 80.53% 86.70%
HBERTv1 85.51% 85.74% 87.80% 88.15%
HBERTv2 85.15% 85.83% 88.65% 89.55%

Table 1: Performance of all models pretrained for 1 and 2 days on the downstream tasks. The top line presents the
performance of a fully pretrained BERT model.

Model Parameters Inference time
HBERTv1 119.8 M 742 ms
HBERTv2 118.7 M 701 ms
BERT-base 109.5 M 713 ms
AddBERT 116.4 M 606 ms

Table 2: Comparison of model size and inference time
of BERT-base with HBERT. Parameters in millions and
inference time in milliseconds.

nents of the existing model, they can exploit the
weights from unmodified layers in order to improve
performance rather than pretraining from scratch.

We find that continual pretraining boosts both
pretraining and downstream performance. After
just one day of pretraining, HBERT reaches a pre-
training accuracy of 40.7% (v1) and 48.95% (v2),
outperforming all other models, including vanilla
BERT. The trend continues after 2 days of training,
where 52.81% (v1) and 51.70% (v2) are reached.
For the downstream tasks, we see a similar trend,
as can be seen in table 3. Both our hybrid models
outperform all other models.

Massive Emotion
1 day 2 day 1 day 2 day

BERT-base 84.59 86.23 86.11 89.03
HBERTv1init 87.46 87.36 89.75 90.85
HBERTv2init 87.01 86.87 93.05 93.10

Table 3: Performance of HBERT with weight initializa-
tion from a pretrained BERT model.

5 Conclusion

In this work, we altered the BERT architecture by
combining self-attention and additive attention and
employing sub-layer normalization. Our experi-
ments show that on a limited compute budget, our
architecture outperforms vanilla BERT both dur-
ing pretraining and fine-tuning. In the future, we

would like to study the effect of knowledge distilla-
tion from larger teacher models during fine-tuning.
Also, we want to study the effect of hybrid archi-
tecture on decoder-based models. Compressing
our hybrid models using other model compression
approaches is another research direction.

Limitations

All our experiments focus on Natural Language
Understanding (NLU) tasks. The effectiveness of
our models on generative tasks is a big question.
For those models, the pretraining procedure is even
more expensive and it is essential to produce coher-
ent, error-free text. So, pretraining for a day or two
might have some negative impacts on the model
performance. At the moment, our model size is still
very huge to be deployed on low-resourced devices.
In this work, we did not thoroughly explore model
compression. There is a greater scope to use model
compression approaches in our hybrid models and
we will incorporate them in future work.

Ethics Statement

With this work, we try to improve the access pos-
sibilities of people with inferior computing hard-
ware to pretrain large language models. As such,
we work towards making the training of large lan-
guage models more inclusive, allowing researchers
with a smaller budget to pretrain their own models.
Also, model pretraining is very energy-hungry and
hence produces lots of CO2. We hope to contribute
towards making pretraining more green and more
environmentally friendly by showing that a limited
pretraining budget is often sufficient to arrive at
high-performing models.
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A Appendix

A.1 HBERT architecture

Figure 4: The overall architecture of our HybridBERT model. HybridBERTv1 uses additive attention in the
odd-numbered layers and self-attention in even-numbered layers. HybridBERTv2 uses self-attention in the early
and later layers and additive attention in all the intermediate layers.
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