
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 4: Student Research Workshop), pages 36–41

June 18, 2024 ©2024 Association for Computational Linguistics

SMARTR: A Framework for Early Detection using Survival Analysis of
Longitudinal Texts

Jean-Thomas Baillargeon and Luc Lamontagne
{jean-thomas.baillargeon, luc.lamontagne}@ift.ulaval.ca

University Laval, Québec, Canada

Abstract

This paper presents an innovative approach
to the early detection of expensive insurance
claims by leveraging survival analysis concepts
within a deep learning framework exploiting
textual information from claims notes. Our pro-
posed SMARTR model addresses limitations
of state-of-the-art models, such as handling
data-label mismatches and non-uniform data
frequency, to enhance a posteriori classification
and early detection. Our results suggest that
incorporating temporal dynamics and empty
period representation improves model perfor-
mance, highlighting the importance of consid-
ering time in insurance claim analysis. The
approach appears promising for application to
other insurance datasets.

1 Introduction

Most claims from the car insurance industry are
straightforward to settle. The damage to the car’s
body generates benefits that are easy to predict.
These prevalent claims are part of the loss an in-
surer can foresee from year to year in the portfolio
of its policyholders. Catastrophic claims, on the
other hand, occur at unexpected moments, are of a
completely different magnitude, and pose a danger
to the company’s financial health.

These costly claims result from the bodily in-
juries a policyholder will suffer during a car acci-
dent. These injuries can, in the most extreme cases,
cause permanent damage to the policyholder, such
as disability or amputation. In addition to rang-
ing from $100,000 to several million dollars, their
handling can span over many years, during which
various experts try to agree on the settlement.

Early detection of such claims is desirable: al-
though the original injuries have occurred, taking
care of that policyholder can prevent risk deterio-
ration that causes more significant costs. Further-
more, since these payments span several financial
years, the actuaries need to adequately provision

for future benefits so the money is reserved for the
insured, not paid to shareholders as profits.

Our application attempts to detect expensive
claims early in a privately held longitudinal tex-
tual corpus from a Canadian insurer. This corpus
contains claim files comprising textual documents
monitoring a claim’s settlement process over time,
which we believe is helpful in detecting expensive
claims early.

The main contribution of this paper is the
SMARTR model, an early classification model that
uses a survival analysis model calibrated on text
data. In our proposed model, adding a temporal ag-
gregating layer and monthly padding improves the
early detection time by, on average, 4 % without
decreasing its classification performance.

This paper is divided as follows. We present
related work for survival analysis and fields in-
terested in early detection in Section 2. We then
present the groundwork to include our dataset and
survival analysis into a classification task in Sec-
tion 3. Finally, we present the evaluation scheme,
our models, and results analysis in Section 4.

2 Related work

Survival analysis aims to relate factors causing an
event to the waiting time until its occurrence. Clas-
sic examples of using this analysis include evalu-
ating the waiting time until a mechanical part fails
or until a person dies. In the present paper, we
model the waiting time between the occurrence
of an accident and the moment it is identified as
expensive.

Using a specialized neural encoder to generate
representations used to calibrate a survival model
is a familiar idea. A review of classical models
was conducted by Baesens et al. (2005) for credit
scoring. These models were set aside until the mid-
2010s, when neural networks benefited from signif-
icant advancements. A more recent review presents
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advances in machine learning survival models in
Wang et al. (2019).

The first neural implementation of a Cox Propor-
tional Hazard survival model (CPH) was presented
by Faraggi and Simon (1995). In their work, the
authors developed a network that offered automatic
encoding of attribute interactions (Xiang et al.,
2000). The next iteration of the neural CPH model,
DeepSurv (Katzman et al., 2018), combines sev-
eral architecture and methodology improvements.
The better performance of this model demonstrates
the ability of neural encoders to exploit complex
interactions to calibrate a survival function.

However, these approaches and models exploit-
ing survival functions are not designed to handle
textual data and have yet to be evaluated with lon-
gitudinal textual data in the application of a costly
claim identification problem.

The fraud detection field is interested in early de-
tection (Liu et al., 2020; Xiao et al., 2023), but our
problem differs from theirs as we have a gold label
to trust and leverage to train a classification model.
Medicine is also interested in early detection (Pan
et al., 2020; Sungheetha et al., 2021); but the clinic
uses cases that are seldom evaluated using time-
varying covariates from a longitudinal study as our
problem is.

Alternative approaches for early classification in-
clude adversarial training (Chapfuwa et al., 2020),
where a loss function is calibrated to optimize the
tradeoff between timeliness and performance. Al-
though attractive, we prefer an approach that pro-
vides a risk evaluation framework that actuaries
can leverage in insurance operations and processes.

Our model is inspired by the SAFE model pre-
sented by Zheng et al., which lacks the capacity
to handle text data and is bound to inputs and la-
bels produced at the same frequency (e.g. daily or
monthly), two limiting factors to address our use
case.

3 Methodology

This section describes the dataset used and the ap-
proach to classifying observations using a survival
probability.

3.1 Dataset Used

The dataset used in our study contains over 70,000
claim files from a Canadian car insurer. We la-
beled those claims as expensive whenever the to-
tal payout is above $ 50,000 or normal otherwise.

This threshold overlaps two business classification
thresholds (basic and expensive) that account for
7% of the dataset, making this task more complex
to solve than trivially using textual artifacts from
business processes.

We partitioned the dataset into three folds, which
respectively hold 80 %, 10 %, and 10% of the com-
plete corpus and are used for training, hyperpa-
rameter search, and results purposes. Furthermore,
we verified that each partition contained roughly
the same proportion of positively labeled exam-
ples. These examples contain a longitudinal ob-
servation that monitors the evolution of a claim
through textual conversations between actors in the
claims settlement process. These actors include,
among others, claims adjusters, lawyers, and doc-
tors. Each claim contains, on average, 75 notes
made of 128 words. These notes have different
information values: some concern critical elements
of the claim, such as the accident description or
the insured’s injuries, while others are merely ad-
ministrative artifacts, such as a mention of a clerk
transfer. Furthermore, the distribution of notes over
time is non-uniform, so there can be several months
without any notes or more than half the notes oc-
curring within a single month.

Another critical aspect of our dataset is the mis-
match between the severity label, assessed using
monthly aggregated benefit amounts, and claim
notes, which can occur at any time (non-periodic)
and are kept individually (not aggregated).

The particular characteristics of our dataset are
rare and make replication of our experiments im-
possible on open datasets.

3.2 Classification using Survival Probability
Classification with a survival probability requires
alterations to the classification model, so it gen-
erates risk factors that allow a survival rate to be
calculated. Instead of assigning a class, we use this
rate to rank each claim according to its inherent
risk, as per the calculated model.

By comparing their survival probability, we infer
whether a claim is more likely to become costly
than the others. We calibrate a decision threshold
using claims from the hyper-parameter partition.
For each of those claims, we evaluate their survival
probabilities ST (t), t ∈ 0, ..., ti at each time step
t and rank the claims according to their probabil-
ity of becoming costly. For each time step t, we
seek the threshold value that optimizes the separa-
tion between the two classes according to the F1
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Score, and we classify claims that have survival
probability below this threshold as expensive.

3.3 Calculating Survival Probability
We model the probability ST (t) of a claim to sur-
vive the event (i.e., not transitioned to state) of ex-
ceeding the costly threshold during at time t using
the function :

ST (t) = P (T > t), (1)

where T is the random variable of the waiting time
before the claim exceeds the costly threshold; the
smaller this quantity is, the more likely the claim is
to have exceeded the threshold at time t. We use a
non-parametric model to calculate the probability
P (T > t):

ST (t) = e−
∑t

x=0 λx (2)

Equation (2) uses the instantaneous failure rate
λt defined as:

λt = P (t < T ≤ t+ 1|T > t) (3)

These risk factors λt are produced by a neural
network trained on a special loss function presented
in this section.

3.3.1 Objective Function to Optimize
In a survival framework, we train the network to
maximize the likelihood of each observation to
survive (or not) at time T = ti, defined as:

L(xi, ti, ci) = P (T = ti)c
i · P (T ≥ ti)1−ci , (4)

where the variables xi ,ti, and ci are defined as
follows:

• xi: the accumulation of textual content of
notes for claim i at time t = ti used as input
to compute the probabilities.

• ti: the moment when the benefits of claim i
exceeded $50,000 (or when this claim was no
longer observed).

• ci: an indicator variable if the claim became
costly during the observation period.

The formulation of L from Equation (4) must be
adjusted to optimize early detection and integrate
our survival model hypothesis.

We assume the accident can be identified as ex-
pensive before the claim exceeds the expensive

threshold at time T = ti whenever enough indi-
cators are accumulated in the interval [0, ti]. This
assumption replaces a traditional one from the sur-
vival framework; the probability P (T = ti), that
the claim i becomes costly exactly at time ti, is
updated with P (T ≤ ti), the probability the claim
becomes costly before ti . This adjustment is re-
flected in the objective function L∗ we use.

L∗ = P (T ≤ ti)c
i · P (T ≥ ti)1−ci

= (1− ST (t
i))c

i · ST (t
i)1−ci (5)

As we assume a non-parametric model and use
(2) to define the survival probabilities ST (t

i), we
can derive the loss function backpropagated in the
network from Equation (5).

L∗ = (1− e−
∑ti

t=1 λt)c
i · (e−

∑ti

t=1 λt)(1−ci)

The likelihood function L∗ is converted into its
log-likelihood ℓi version.

ℓi =
( ti∑

t=1

λt

)
− ci · ln

(
e
∑ti

t=1 λt − 1
)

Finally, we backpropagate loss function L, which
combines losses ℓi for each of the N claim files in
the training dataset defined by :

L =
N∑

i=1

[
( ti∑

t=1

λti
)
− ci ln

(
e
∑ti

t=1 λti−1
)
]

Although many λt are calculated for this formu-
lation, only one loss value based on the ground
truth variables ti and ci is calculated and backprop-
agated for each training example.

3.3.2 Generating the λt

The values for λt are generated by a neural network
trained to minimize the loss function L. We train
a recurrent cell to produce hidden states ht from a
claim encoder layer and convert them into λt using
the function:

λt = softplus(wλht) = ln(1 + exp(wλht)),

where wλ is the weight vector of a fully con-
nected layer of the same dimension as the ht, also
learned during training.

4 Experiments

This section presents our evaluation scheme, mod-
els, baselines, and result analysis.
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4.1 Evaluation

We evaluate the models on two axes: classification
performance and detection speed. The basis of
our evaluation is an iterative prediction of claim
severity using an incrementing number of notes,
mimicking a claim adjuster’s work. We iteratively
infer every claim class from the test dataset using
the first 20 notes and then increment the number by
steps of 20 up to 160 and 175, 200, 250, 300, 400,
and 1000 (all notes) afterward.

We present two metrics for each model. The
first one is the F1 Macro score (F1 Macro) of the
a posteriori classification performance calculated
using 1000 notes. This metric presents the model’s
capacity to exploit the complete longitudinal se-
quence information while addressing the light im-
balance problem of our dataset. The second metric
is the average proportion of notes the model re-
quires to detect expensive claims correctly at the
earliest time (ED). We compute this statistic by
comparing the earliest time claims were correctly
classified and the number of notes in the claim file
when it reached the $50 000 threshold. We obtain
the earliest time by iterating through all generated
predictions (20,40,...,1000).

Both statistics are calculated by averaging results
from ten runs and are presented with their 95%
confidence interval when applicable.

4.2 Our Models

Our models leverage claims notes encoded by a
RoBERTa transformer model (Liu et al., 2019),
further pretrained on the Masked Language Mod-
elling and Same File Prediction tasks as described
in (Baillargeon and Lamontagne, 2024), and com-
bine the resulting [CLS] tokens with LSTM cells.
We propose and evaluate two models. The first is
an adapted version of SAFE, and the second imple-
ments the capacities to handle the timing mismatch
found in longitudinal data.

SMART The Survival with Maximum Aggre-
gated Risk from Texts (SMART) model is the clos-
est comparable to SAFE and is usable in our use
case. As the latter cannot be used in our use case
due to the time mismatch between notes and class
label discussed in Section 3.1, we minimize the
architectural impact to address this issue by using
λt equal to the maximal risk factors generated for
each note that belong to the same month.

SMARTR The Survival with Monthly Ag-
gregated Risks from Texts Representations
(SMARTR) model extends the SMART model with
an additional layer that allows the construction of
the time-varying covariate representation within
the neural network. We present this architecture in
Figure 1.

LSTM Monthly note
aggregation

Note
Encoder

Notes from
claim file

Claim hidden
states (ht)

 

LSTM Claim
encoder

...

...

RoBERTa RoBERTa RoBERTa

...

LSTM ...

Failure rate
calculation

... Failure rates

Figure 1: SMARTR model architecture

4.3 Baselines

To evaluate our model performance, we compare
them to two baselines.

Logistic regression is a classic classifier that
uses the Bag of Word representation of the claim to
infer its class. In the early detection use case, this
representation is generated using texts from up to
the defined (20, 40, ..., 1000) reduced number of
notes. This method is deterministic and does not
generate confidence intervals on its results.

M-LSTM (Multi-source LSTM) is a neural clas-
sification model that uses an LSTM trained with the
cross-entropy loss to capture time-varying covari-
ates of the claim, presented in Yuan et al. (2017).
In early detection use cases, hidden states at previ-
ously defined steps (20, 40, ..., 1000) are used for
classification purposes.

This section presents results from our evaluation
scheme for different cross-section analyses. The
first evaluates the relevance of addressing the input
and label mismatching issue found in our dataset by
adding an embedding that represents passing time
to months without any notes and of learning pa-
rameters to encode text inputs into a time-varying
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covariate of a claim. This embedding is a zero-
filled vector of 768 dimensions. The second one
compares the results from the best configuration of
SMART and SMARTR to the baseline models.

4.4 Results

4.4.1 Our Models Configuration Selection
We compare our model’s performances using Table
1 results. This table presents the performance met-
rics presented in Section 4.3 for our two models.

Model F1 Macro (%) ED (%)
SMART* 77.25 ± 0.79 48.28 ± 1.50
SMART 79.51 ± 1.20 49.55 ± 0.62

SMARTR* 79.24 ± 0.51 46.97 ± 0.98
SMARTR 81.16 ± 0.25 47.37 ± 0.86

Table 1: Classification Performances of Different Con-
figurations of our Models, * indicates model not trained
with the passing time embedding

By analyzing the confidence intervals overlap
pattern, we conclude that adding a vector that mod-
els time passing improves a posteriori detection.
However, ED results do not differ significantly
between pairwise comparisons of models. This
observation is reasonable since passing time has
business signification (e.g., waiting for approval
or feedback from lawyers) that supports classifica-
tion but does not add information to support early
detection. We also observe that using an explicit
layer to model the monthly aggregation of inputs
is valuable. In other words, learning to emphasize
notes for a given month is beneficial to generating
the associated risk factors.

4.4.2 Comparing Our Models
We present in Table 2 the two performance metrics
we used to compare models in our paper for every
early detection model evaluated.

Model F1 Macro (%) ED (%)
Logistic 78.0 ± 0.00 69.18 ± 0.00

LSTM-M 80.26 ± 0.69 74.19 ± 0.61
SMART 79.51 ± 1.20 49.55 ± 0.62

SMARTR 81.16 ± 0.25 47.37 ± 0.86

Table 2: Classification Performances for Models

As we can see, Our SMARTR model outper-
forms the SMART model (our SAFE adaptation)
and both baseline models for a posteriori and early
classification. We notice that for early detection

purposes, SMARTR requires, on average, 2.18 %
fewer documents than SAFE to obtain correct pre-
dictions, making it roughly 4 % faster to detect
expensive claims. These observations provide an
obvious but essential insight that exploiting the
time dimensions within a longitudinal context has
significant value. We present in Figure 2 the evolu-
tion of the F1 score average and 95 % confidence
interval as a function of the number of notes used
for classification for each model.

Figure 2: F1 score metric for models using a limited
amount of notes

The lines on this figure are coherent with the
values presented in Table 2; we can see that the
green curve associated with the SMARTR model
is above every other curve. Furthermore, as its
confidence interval does not overlap with another
curve, we can conclude that the performance of
SMARTR is significantly better than SAFE and
other baselines at every timestep during inference.

5 Conclusion

In this paper, we have proposed the SMARTR
model and evaluated its enhancement. Our results
show that our approach improves overall classifi-
cation performance compared to the SAFE model
and allows a 4% faster early detection. Our en-
hancements were tested on a longitudinal corpus
comprised of claim files, where the early detection
of expensive claims was the task to achieve.

Future work includes using an LLM to aggregate
texts from many notes and obtain key elements of a
claim or a multi-decrement approach to model the
probability that the claim settles without becoming
expensive. This approach would allow the model to
discern the common, less costly elements of both
types of claims and those associated with claims
that will be closed without becoming costly.
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Limitations

The main limitation of our work is that our ap-
proach could only be tested on the proprietary
dataset provided for this study. This proprietary
dataset contains unique characteristics but is com-
mon to datasets held by various insurance compa-
nies, so these results likely apply to them.
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