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Abstract

Exact nearest neighbor search is a computa-
tionally intensive process, and even its simpler
sibling — vector retrieval — can be compu-
tationally complex. This is exacerbated when
retrieving vectors which have high-dimension
d relative to the number of vectors, N , in the
database. Exact nearest neighbor retrieval has
been generally acknowledged to be a O(Nd)
problem with no sub-linear solutions. Atten-
tion has instead shifted towards Approximate
Nearest-Neighbor (ANN) retrieval techniques,
many of which have sub-linear or even logarith-
mic time complexities. However, if our intu-
ition from binary search problems (e.g. d = 1
vector retrieval) carries, there ought to be a way
to retrieve an organized representation of vec-
tors without brute-forcing our way to a solution.
For low dimension (e.g. d = 2 or d = 3 cases),
kd-trees provide a O(d logN) algorithm for
retrieval. Unfortunately the algorithm deteri-
orates rapidly to a O(dN) solution at high di-
mensions (e.g. k = 128), in practice. We
propose a novel algorithm for logarithmic Fast
Exact Retrieval for Nearest-neighbor lookup
(FERN), inspired by kd-trees. The algorithm
achieves O(d logN) look-up with 100% recall
on 10 million d = 128 uniformly randomly
generated vectors.1

1 Introduction

Vector retrieval is pervasive, underlying search en-
gines, transformers, and open-book language mod-
els. At heart, one of key attributes of computing
systems lie in their ability to retrieve knowledge.
Sometimes, when this knowledge is sufficiently
broad — and a powerful enough retrieval architec-
ture is built — these computing systems may even
be so good at retrieving relevant knowledge that
they appear to reason (Bubeck et al., 2023).

Given the power of knowledge retrieval for both
commercial and academic pursuits, significant en-

1Code available at https://github.com/RichardZhu123/ferns

ergy has been devoted towards effectively convert-
ing various types of data into vectors, from words
(Mikolov et al., 2013), images (Radford et al.,
2021), and audio (Radford et al., 2022) to docu-
ments, sentences, and paragraphs (Dai et al., 2015).

In this work, we differentiate between look-up
and search. Look-up involves the retrieval of vec-
tors guaranteed to be contained in the database,
while search involves the retrieval of queries not
necessarily contained in the database. Retrieving
queries without exact matches may involve instead
retrieving that vector’s nearest neighbors. The defi-
nition of nearest can be further disambiguated into
Euclidean or cosine similarity measures, among
others. Note that under the hood, a Euclidean
distance-based nearest neighbor algorithm can be
easily adapted to be cosine similarity-based simply
by dividing each vector in the database by its mag-
nitude during insertion. During look-up, the query
vector is then also divided by magnitude. The re-
sulting nearest neighbors we obtain are also such
by cosine similarity.

The scalable and effective look-up of large num-
bers of high dimensional vectors is thus desired.
While the vanilla hashmap algorithm provides O(1)
time complexity for scalars, extending to O(d) for
vectors in d-dimensional space, this holds only
when the cardinality of the hash function range is
large relative to the number of elements, N . When
the number of elements becomes large relative to
the number of bins, b, finding the key within each
bin becomes a linear search problem. Since we
expect each bin to have N

b collisions, the time com-
plexity for look-up is O(Nd

b ). While we can also
get fast look-up with a heap in low dimensions,
FERN can be thought of as an extension of the
heap to high dimensions while also presenting a
novel approach that could lead to sub-linear vector
search.
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2 Related work

Prior work has taken 3 major directions to attain
fast nearest neighbor search. The approaches in-
volve bucketing, divide and conquer, or graph-
based approaches. These techniques are specifi-
cally tuned to work well for vectors in high dimen-
sional space, which should be unsurprising since
each of these techniques is really just an exten-
sion of familiar 1-d concepts: hashmaps, binary
search, and breadth first search. I believe there are
key learnings that can be taken from both exact
and approximate retrieval and search settings, even
though we are interested in the exact variant. Some
new techniques such as Certified Cosine certifi-
cates (Francis-Landau and Van Durme, 2019) offer
structure-agnostic tweaks to speed up performance.

2.1 Bucketing

Locality Sensitive Hashing (Indyk and Motwani,
1998) and k-means (Lloyd, 1982; MacQueen,
1967), including more recent variants like k-
means++ (Arthur and Vassilvitskii, 2007), are two
techniques that use bucketing to group database
vectors with their nearby peers. Since it is hard
to deal with queries that fall on the boundaries
of adjacent clusters, these algorithms are approxi-
mate search algorithms. Both of these algorithms
in practice take linear time for sufficiently high
dimensions and large numbers of elements.

Divide and conquer kd-trees provide strong al-
gorithms for pruning, with new variants attempting
to decrease constant factors in the time complex-
ity. (Zhang et al., 2012) A recent work (Ram and
Sinha, 2019) attempts to create partitions based on
random rotations of the dataset achieve the same
search accuracy guarantees as RPTree (Dasgupta
and Sinha, 2013) but with O(d log d+ log n) time
complexity for approximate search.

Graph-based approaches Recent graph-based
approaches to search, such as Navigable Small
World (NSW) graphs (Malkov et al., 2014) and
a later variant involving layers of NSWs, provide
increasing granularity. NSWs are graphical repre-
sentations of databases where each pair of nodes
is connected by a small number of hops. Further
optimizations have been presented (Fu et al., 2019;
Jayaram Subramanya et al., 2019).

3 FERN

Goal We aim to build an algorithm that satis-
fies two primary goals: we must be able to per-
form quick look-up on vectors guaranteed to be
contained in the database and we must be able to
quickly insert vectors. When designing the algo-
rithm, we initially assume our database contains N
vectors, each spanning d dimensional space. The
i-th vector vi is defined as follows

vi = [vi,1, vi,2, . . . , vi,d]
⊤

where vi ∼ R(−1, 1)

This process effectively generates vectors lying
within a d dimensional "ball"-like shape of radius 1
in each direction. The directions in which the vec-
tors point are also evenly distributed direction-wise.
We discover later however, that the algorithm we
design with this simplifying assumption maintains
logarithmic time lookup for vi of any arbitrary di-
rection and length.

In terms of time complexity, we define quick
as anything taking logarithmic time — this means
that lookup in a database of ten billion vectors
should only take seven times longer than lookup
in a database of a thousand vectors. That is re-
markable, because a naive linear search would take
ten million times longer, a nearly intractable time
difference at scale. Since a logarithmic lookup
time and linear space complexity is state of the art
(SoTA), we believe a key contribution of our work
is an alternative data structure and algorithm that
achieves SoTA while simultaneously providing the
capacity to be extended to logarithmic-time nearest
neighbor search, given its unique approach to divid-
ing the vectors by hyperplanes defined based on the
vectors in the database rather than measuring along
a specific direction like the traditional kd-trees pro-
cess. Each node is an object that stores a vector,
pointers to the left and right children, and a pointer
to that node’s parent node. This results in a binary
tree with undirected edges. While we ultimately im-
plement retrieval using a queue structure, this bidi-
rectional edge only adds marginal complexity to
the algorithm and underlying data structure while
enabling a backtracking-based traversal method.
The queue-based method emulates a level-order
traversal of candidate nodes while a stack-based
backtracking-based traversal method (that fully ex-
plores a specific path before backtracking; explor-
ing each sibling node that could not be pruned

2
43



without potentially missing the nearest neighbor)
emulates a depth-first search.

Methodology We design a novel algorithm that
is a variant of kd-trees, but has the capacity to
perform better at higher dimensions. Broadly, the
structure is a binary tree. Each node that has both
left and right children defines a hyperplane using
the vectors of its left and right children as support
vectors.

The tree is constructed so that all vectors in each
child’s subtree are on the same side of the hyper-
plane as that child. This allows us to perform vector
look-up in logarithmic time, provided that vectors
are added to the database in a sufficiently random
manner. It is feasible, however, for an adversarial
insertion process to result in a heavily imbalanced
tree and consequently worst-case linear look-up
time. While we don’t observe this as an issue in
practice, we can resolve the issue by implement-
ing a slightly more complicated variant of FERN
- using a variant of the Red-Black Tree technique
(Guibas and Sedgewick, 1978) to guarantee bal-
anced trees, logarithmic depth, and thus logarith-
mic retrieval time complexity.

There are two key components to our algorithm:
one method for insertion (Algorithm 1) and another
for lookup (Algorithm 2).

The insertion algorithm (Algorithm 1) is fairly
concise. When inserting a vector into the tree, it is
placed at the root if the tree has not been initialized
yet. Otherwise, if the current node is missing a
left or right child, we insert the vector as a child
node. If the node is a leaf node — that is, missing
both left and right children — then the left child is
always inserted first, before the right child.

During insertion, if a node has both left and right
children, then we set the current node instead to
the child node that is closest to the vector we are
inserting. That is, if we form a hyperplane from
the set of points equidistant to both left and right
children, then we set the current node to the left
child if the vector to be inserted lies on the same
side of the hyperplane as the left child, otherwise
we set the current node to the right child.

The result of this insertion algorithm is that —
for a balanced binary tree — we get a maximum
tree depth of O(logN) where N is the number of
elements in the database. Insertion time per vector
is thus O(logN) since we only visit one node per
depth level.

When looking up vectors from the data structure,

Algorithm 1 FERN Insertion
1: Function Insert(vector)
2: if root not initialized then
3: root← VectorNode(null)
4: end if
5: node← root
6: while True do
7: if no left child then
8: set left node to vector
9: break

10: else if no right child then
11: set right node to vector
12: break
13: else if vector closer to left child then
14: node← node.left
15: else
16: node← node.right
17: end if
18: end while

we demonstrate a method (Algorithm 2) that has a
per-vector retrieval time proportional to the maxi-
mum depth of the tree, since we only look at one
node per depth level. However, when extended to
search settings where the query is not known to be
contained in the database, retrieval time becomes
proportional to the number of elements in the tree.
We can no longer automatically prune any queries
that lie close to the hyperplane boundary since there
is a possibility that the nearest neighbor and query
may lie on different sides of the hyperplane.

Ostensibly, we would expect a non-negligible
proportion of vectors to be sufficiently far from the
hyperplane to be pruned. However, we notice that
in practice, as the dimensionality of the vectors in-
crease, so too does the proportion of vectors lying
close to the boundary. This makes sense intuitively
since we are trying to project increasingly higher
dimensions of vectors onto a 1-d line (the line nor-
mal to the hyperplane and passing through both
support vectors). During retrieval, we effectively
perform the depth-first or level-order search, as de-
scribed previously. For a balanced tree with strong
boundaries (that is, most queries lie far away from
the hyperplane), per-vector time should be logarith-
mic with respect to the number of elements already
present in the database (another word for our pro-
posed data structure) at insertion-time. However,
it becomes linear otherwise. We first define mip
and mip_vec, the distance to the nearest neighbor
found thus far and the vector representing the near-
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est vector retrieved thus far. We then create a queue
and insert the root node.

Algorithm 2 FERN Lookup

Require: query
Ensure: mip_vec

1: mip,mip_vec←∞,None
2: curr← None
3: queue← [self.root]
4: while queue not empty do
5: curr← oldest element in queue
6: update mip, mip_vec if curr closer to query

7: if curr has both left and right children then
8: if query is closer to left child then
9: queue.append(curr.left)

10: if query close to boundary then
11: queue.append(curr.right)
12: end if
13: else
14: queue.append(curr.right)
15: if query close to boundary then
16: queue.append(curr.left)
17: end if
18: end if
19: else if curr has left child only then
20: queue.append(curr.left)
21: else if curr has right child only then
22: queue.append(curr.right)
23: end if
24: end while
25: return mip_vec

We then continuously pop a node from the head
of the queue until the queue is empty. Each time we
pop a node, we check whether its vector is closer to
the query vector than the current best candidate for
nearest neighbor, mip_vec, which is a Euclidean
distance mip away from the query. For lookup, we
are looking for an exact match, so we are seeking
an mip of 0. If the node has a left child only or a
right child only (the latter should never happen, but
we have it as a redundancy against exceptions) then
we add that node to the queue. Otherwise, if both
children exist then we add to the queue the node
that shares the same side of the hyperplane as the
query. For lookup cases, we consider any query to
be sufficiently far from the boundary that only one
child node needs to be added to the queue per node.
After all, whether a query is close to the boundary
is somewhat arbitrary and the exact function defini-
tion depends on whether we are performing lookup

or search.
For mapping applications, we can add an addi-

tional variable, data (a byte array), to the Node
class.

In Algorithms 1 and 2, “closeness" is quanti-
fied by Euler distance, and the “boundary" is the
midpoint between left and right child nodes.

4 Experimental results

During experiments, we typically utilize d = 128
with the same uniform distribution previously as-
sumed. While this may not be characteristic of all
data distributions, we note that our architecture is
actually agnostic to the distribution of the vectors
being inserted. What matters (in terms of potential
effects on performance) is the order in which vec-
tors are inserted based on their relative positions.

To run our experiments, we use the Intel Xeon
Platinum 8380 CPU (2.30 GHz), the same proces-
sor used for running the popular ann-benchmark
(Bernhardsson, 2024). For values of N we use
104, 5 ∗ 104, 105, 5 ∗ 105, and 106, 5 ∗ 106, 107.
The last setting, equivalent to look-up on 10 mil-
lion vectors, has comparable values of N and d to
many of the Euclidean distance based benchmarks
in ann-benchmark. We notice a nearly perfect log-
arithmic time complexity, and at N = 107 we run
approximately 3000 retrievals/second without ad-
ditional optimizations.

5 Discussion

During our experiments, we noticed that in the
search modality, system dynamics can change dras-
tically based on the dimensionality of the vectors.
We experiment with different ways of defining the
hyperplanes and various algorithms that would bal-
ance or repair the tree to try to guarantee logarith-
mic retrieval for large d and N . Unfortunately,
while these algorithms almost universally gave log-
arithmic time complexity for 100% recall, the per-
formance broke down drastically beyond d = 2 or
d = 3. In particular, we note the importance of
having well-defined hyperplane boundaries.

Boundary sharpness We want to be able to max-
imize pruning since we achieve O(log2N) time
complexity when we prune 50% of the nodes in
the database each time we measure the distance be-
tween a node and the query). Indeed, note that since
a k-means based nearest neighbors search allows
us to prune up to N/k nodes per comparison, we
might wonder why 2-means search doesn’t achieve
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Figure 1: FERN lookup with vectors where d = 128 and
look-up time is averaged over 1000 vectors randomly
sampled from the database

O(logN) complexity. It’s because k-means has
an O(N/k + k) time complexity, the N/k term
means that we would need to do a linear number of
searches regardless of the number of clusters.

We observe empirically that the proportion of
nodes in the database that are visited increases
sharply when there are more nodes that are closer
to the hyperplane than the support vectors that de-
fine the plane. That is to say, during the insertion
process, there will be vectors that lie between a sup-
port vector and the hyperplane. Now when we’re
retrieving, the query may lie on one side of the
hyperplane but its nearest neighbor may be one of
these "in-between" nodes on the other side of the
hyperplane. This means we now must be much
more prudent when pruning which decreases the
proportion of vectors that are pruned and thus in-
creases the time complexity.

However in the look-up modality, we achieve
logarithmic time complexity on both a vector
database of dimension d = 128 and size 107 that
are randomly and uniformly generated (Figure 1)
and three Euclidean benchmarks (Table 1) from
ann-benchmark (Figure 2), using the larger train
splits (N = 60, 000 to N = 1, 000, 000). We ob-
serve logarithmic time complexity over a diverse
dimensions and vector distributions.

Dataset Dim. Train Size Test Size

Fashion-MNIST 784 60,000 10,000
MNIST 784 60,000 10,000
SIFT 128 1,000,000 10,000

Table 1: Properties of ANN Benchmark datasets used
for evaluation

Figure 2: FERN lookup using the train portion (60k-
100k vectors) of popular Euclidean-distance-based vec-
tor retrieval benchmarks and look-up time is aver-
aged over 1000 vectors randomly sampled from the
database. We evaluate 4 decades on each dataset, which
is why SIFT-128-Euclidean evaluation starts with vector
databases of size 103 rather than 600

6 Conclusion

We are able to achieve our goal of creating a novel
vector database structure that achieves state of the
art look-up time complexity that is logarithmic in
the number of vectors. The algorithm presented
here, FERN, maintains 100% recall while perform-
ing lookup on vectors in high-dimensional space
(e.g. d = 128 to d = 784) with N varying from
102 to 107, and presents a potential path towards
a data structure and algorithm that will allow for
the first sub-linear exact nearest neighbor retrieval
process.

We believe that the exact process for attempt-
ing to perform binary search on a vector database
requires carefully defined hyperplanes, which
presents an area for further work. We find the
"fixing" step of the Red-Black tree algorithm to
be particularly inspirational as a direction of fu-
ture work. Evaluation on additional datasets and
further investigations of recall-retrieval-time trade-
offs could help in the pursuit of sub-linear search.

We further also believe that an alternative for
hyperplanes is to use a graph based approach, sim-
ilar to the approach taken in many recent works
(Malkov et al., 2014; Fu et al., 2019; Jayaram Sub-
ramanya et al., 2019), since this could allow us to
more easily divide the database in a well-defined
and easy to update way. Overall we are excited
by the potential and hope to further develop this
algorithm in pursuit of sub-linear exact search.
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