@inproceedings{ganesan-etal-2024-text,
title = "From Text to Context: Contextualizing Language with Humans, Groups, and Communities for Socially Aware {NLP}",
author = "Ganesan, Adithya V and
Mangalik, Siddharth and
Varadarajan, Vasudha and
Soni, Nikita and
Juhng, Swanie and
Sedoc, Jo{\~a}o and
Schwartz, H. Andrew and
Giorgi, Salvatore and
Boyd, Ryan L",
editor = "Zhang, Rui and
Schneider, Nathan and
Chaturvedi, Snigdha",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-tutorials.4",
doi = "10.18653/v1/2024.naacl-tutorials.4",
pages = "26--33",
abstract = "Aimed at the NLP researchers or practitioners who would like to integrate human - individual, group, or societal level factors into their analyses, this tutorial will cover recent techniques and libraries for doing so at each level of analysis. Starting with human-centered techniques that provide benefit to traditional document- or word-level NLP tasks (Garten et al., 2019; Lynn et al., 2017), we undertake a thorough exploration of critical human-level aspects as they pertain to NLP, gradually moving up to higher levels of analysis: individual persons, individual with agent (chat/dialogue), groups of people, and finally communities or societies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ganesan-etal-2024-text">
<titleInfo>
<title>From Text to Context: Contextualizing Language with Humans, Groups, and Communities for Socially Aware NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adithya</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Ganesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Mangalik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasudha</namePart>
<namePart type="family">Varadarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Soni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swanie</namePart>
<namePart type="family">Juhng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Andrew</namePart>
<namePart type="family">Schwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salvatore</namePart>
<namePart type="family">Giorgi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Boyd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aimed at the NLP researchers or practitioners who would like to integrate human - individual, group, or societal level factors into their analyses, this tutorial will cover recent techniques and libraries for doing so at each level of analysis. Starting with human-centered techniques that provide benefit to traditional document- or word-level NLP tasks (Garten et al., 2019; Lynn et al., 2017), we undertake a thorough exploration of critical human-level aspects as they pertain to NLP, gradually moving up to higher levels of analysis: individual persons, individual with agent (chat/dialogue), groups of people, and finally communities or societies.</abstract>
<identifier type="citekey">ganesan-etal-2024-text</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-tutorials.4</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-tutorials.4</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>26</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Text to Context: Contextualizing Language with Humans, Groups, and Communities for Socially Aware NLP
%A Ganesan, Adithya V.
%A Mangalik, Siddharth
%A Varadarajan, Vasudha
%A Soni, Nikita
%A Juhng, Swanie
%A Sedoc, João
%A Schwartz, H. Andrew
%A Giorgi, Salvatore
%A Boyd, Ryan L.
%Y Zhang, Rui
%Y Schneider, Nathan
%Y Chaturvedi, Snigdha
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F ganesan-etal-2024-text
%X Aimed at the NLP researchers or practitioners who would like to integrate human - individual, group, or societal level factors into their analyses, this tutorial will cover recent techniques and libraries for doing so at each level of analysis. Starting with human-centered techniques that provide benefit to traditional document- or word-level NLP tasks (Garten et al., 2019; Lynn et al., 2017), we undertake a thorough exploration of critical human-level aspects as they pertain to NLP, gradually moving up to higher levels of analysis: individual persons, individual with agent (chat/dialogue), groups of people, and finally communities or societies.
%R 10.18653/v1/2024.naacl-tutorials.4
%U https://aclanthology.org/2024.naacl-tutorials.4
%U https://doi.org/10.18653/v1/2024.naacl-tutorials.4
%P 26-33
Markdown (Informal)
[From Text to Context: Contextualizing Language with Humans, Groups, and Communities for Socially Aware NLP](https://aclanthology.org/2024.naacl-tutorials.4) (Ganesan et al., NAACL 2024)
ACL
- Adithya V Ganesan, Siddharth Mangalik, Vasudha Varadarajan, Nikita Soni, Swanie Juhng, João Sedoc, H. Andrew Schwartz, Salvatore Giorgi, and Ryan L Boyd. 2024. From Text to Context: Contextualizing Language with Humans, Groups, and Communities for Socially Aware NLP. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 5: Tutorial Abstracts), pages 26–33, Mexico City, Mexico. Association for Computational Linguistics.