
Licensed under CC BY 4.0, pages 1–13, DOI 10.3384/nejlt.2000-1533.2024.4932

Efficient Structured Prediction with Transformer Encoders

Ali Basirat, Centre for Language Technology, University of Copenhagen alib@hum.ku.dk

Abstract Finetuning is a useful method for adapting Transformer-based text encoders to new tasks but can be computationally
expensive for structured prediction tasks that require tuning at the token level. Furthermore, finetuning is inherently inefficient
in updating all base model parameters, which prevents parameter sharing across tasks. To address these issues, we propose a
method for efficient task adaptation of frozen Transformer encoders based on the local contribution of their intermediate layers
to token representations. Our adapter uses a novel attention mechanism to aggregate intermediate layers and tailor the resulting
representations to a target task. Experiments on several structured prediction tasks demonstrate that our method outperforms
previous approaches, retaining over 99% of the finetuning performance at a fraction of the training cost. Our proposed method
offers an efficient solution for adapting frozen Transformer encoders to new tasks, improving performance and enabling parameter
sharing across different tasks.

1 Introduction

The text encoder models evolved from the Transformer
architecture (Vaswani et al., 2017) have extensively in-
fluenced natural language processing. The standard
workflow of these models is based on transfer learning
from a model pre-trained on vast amounts of text to a
target task. Finetuning is a commonly used technique
adjusting the parameters of a pre-trained encoder to
a target task using the standard backpropagation algo-
rithm. Despite its simplicity and tremendous success,
finetuning can be computationally expensive, particu-
larly for structured prediction tasks in which the pa-
rameters are updated at the token level, as opposed to
document classification tasks in which the parameters
are updated for each document.1

In addition, due to in-place parameter updates, fine-
tuning limits the reusability of Transformer encoders,
particularly in cloud environments where resources are
shared between users. Additionally, finetuning a Trans-
former encoder for a specific task or a limited num-
ber of tasks does not necessarily perform well on other
tasks that are not similar to the target task. This is
because of catastrophic forgetting, which reduces the
generalizability of neural network performance on out-
of-domain data (McCloskey and Cohen, 1989). Conse-
quently, a finetuned Transformer encoder becomes a
massive computational block specified for a target task,
which limits the scalability, modularity, and composi-

1For example, finetuning a BERT model can take 25 days for pars-
ing (Kondratyuk and Straka, 2019) and 2 days for relation extraction
(Huguet Cabot and Navigli, 2021).

tionality of the base encoder (Pfeiffer et al., 2020).
Recent attempts to resolve the shortcomings of fine-

tuning are based on the adapter mechanism (Houlsby
et al., 2019) that injects learning blocks into a frozen en-
coder to facilitate knowledge transfer from pre-training
to target tasks (Pfeiffer et al., 2021; Stickland and Mur-
ray, 2019; Guo et al., 2021; Hu et al., 2022). While this
approach can effectively replicate the finetuning per-
formance (Hu et al., 2022), it still requires careful con-
siderations to balance the encoder’s sharability and in-
ference efficiency in a cloud environment, as it tends
to sacrifice inference efficiency for sharability, and vice
versa, as we will empirically show in this study.

We adopt a different strategy based on the early
studies of Peters et al. (2018); Kondratyuk and Straka
(2019); Hao et al. (2020) for Transformer encoder adapta-
tion. In contrast to the adapter approach (Houlsby et al.,
2019), which adds trainable parameters to the encoder,
this method pipes the encoder into an aggregation
block that adapts the representations obtained from the
encoder’s intermediate layers to a target task through
linear interpolation. Accordingly, this approach does
not necessitate changing the base encoder architecture,
making it easier to be shared when compared to the
adapter solution.

Although the layer aggregation approach is easy to
implement, it requires further consideration when ap-
plied to structured prediction. The primary reason for
this is that the method assumes that the layers’ linear
weights are a function of the target task solely and in-
dependent of input tokens. This means that a layer
weight remains constant for all tokens during inference.

Northern European Journal of Language TechnologyVol. 10, 2024 1

https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3384/nejlt.2000-1533.2024.4932

While this assumption might be acceptable for an en-
coder that is finetuned for document classification, as
(1) finetuning allows for training the substantial para-
metric capacity of the original encoder, and (2) classi-
fication often relies on a single token vector that rep-
resents the entire document, it may not hold true for
a frozen model employed for structured prediction. In
such cases, it is necessary to model the word dynamics
based on the available intermediate representations be-
cause the model parameters remain fixed throughout
training. Furthermore, Peters et al. (2019) suggest that
the linear combination of intermediate representations
in a frozen model can match the performance of a fine-
tuned model only if the pre-training and target tasks
are sufficiently similar. This implies the need for addi-
tional customization of the aggregated representations
to account for any disparities between the pre-training
and target tasks.

Our paper presents an encoder adaptation model
that effectively combines the efficiency of a frozen
model with the effectiveness of a finetuned model by
addressing the weaknesses of the linear aggregation
method. Our approach includes two key mechanisms:
an aggregation block and a tailoring block. The aggre-
gation block models the dynamics of words by utilizing
the intermediate representations of the encoder and in-
troduces an attention mechanism that trains token rep-
resentations based on both the target task and the lo-
cal contribution of intermediate layers to tokens. The
tailoring block reduces the impact of dissimilarity be-
tween the pretraining and target tasks by refining the
aggregated representation, thus allowing for more ef-
fective knowledge transfer from pre-training to the tar-
get task.

We are not the first to propose the intermediate
layer aggregation at the token level. Cao et al. (2022)
have also explored a similar approach. They train the
token-layer attention weights based on a task-specific
query vector used to measure the similarity between
intermediate representations locally. Nonetheless, our
experiments demonstrate the practical benefits of our
approach in downstream tasks in structured prediction
and document classification.

We evaluated the effectiveness of our adaptation
mechanism on two major classes of Transformer en-
coders: BERT-based (Devlin et al., 2019) and GPT-based
(Radford et al., 2019) models. Our evaluation of the pro-
posed adaptation mechanism builds upon the promis-
ing results of ablation studies of the two key blocks. Our
experimental results confirm that the adaptation mech-
anism can perform as well as finetuning while being ap-
proximately 13 timesmore efficient in training time and
consuming only 0.3% of the memory required for fine-
tuning, with almost no harm to the inference efficiency.
Compared to other approaches, our technique performs

significantly better on themajority of structured predic-
tion tasks and remains on par with the best-performing
models for document classification.

2 Related Work
The initial investigation of BERT showed that it cap-
tures a rich hierarchy of linguistic knowledge in its in-
termediate layers (Tenney et al., 2019b,a; Jawahar et al.,
2019; Lin et al., 2019; de Vries et al., 2020); This leads to
the effective use of BERT by linearly aggregating the
middle layers based on a target task (e.g. sentiment
analysis (Horne et al., 2020; Xiao et al., 2021), morpho-
syntactic parsing (Kondratyuk and Straka, 2019), gen-
der debiasing and coreference resolution (Abzaliev,
2019), and cross-lingual transfer learning (Chen et al.,
2022)). Building on this approach, Cao et al. (2022) ex-
pand the task-oriented layer aggregation to encompass
both token and task aspects. This extension is achieved
through the introduction of an attention fusion model
that leverages the local features of a token. We extend
Cao et al. (2022)’s method by introducing an attention
mechanism that incorporate global views of intermedi-
ate representations.

Other techniques that combine intermediate repre-
sentations include Su and Cheng (2019), who apply the
squeeze and excitation technique (Hu et al., 2018), and
Yang and Zhao (2019), who use a bidirectional GRU
layer to calculate the linear weights of the intermediate
representations. From an architectural point of view,
our adapter mechanism is based on a dynamic aggrega-
tion of the intermediate representations and preserves
the parallel encoding functionality of the original en-
coder. This is in contrast to the linear method of Kon-
dratyuk and Straka (2019), which is based on a static
weighting of the intermediate representations, as well
as the methods of Yang and Zhao (2019), Horne et al.
(2020) and Xiao et al. (2021), which add overhead se-
quential units to the encoder, hampering parallel com-
puting.

When it comes to improving efficiency, the litera-
ture has proposed strategies such as knowledge distil-
lation (Hinton et al., 2015), attention pruning (Michel
et al., 2019), model quantization (Zafrir et al., 2019),
low-rank adaptation (Hu et al., 2022), shallow finetun-
ing (Ben Zaken et al., 2022) and prompt tuning (Li and
Liang, 2021). Our method aligns with the adaptation
techniques category, augmenting a frozenmodel with a
few learning blocks to facilitate knowledge transfer to a
target task. A related approach by Houlsby et al. (2019)
injects adapter layers into a frozen BERT model to en-
able model sharing in a cloud environment, specifically
for efficient sequential multitask learning. Pfeiffer et al.
(2021) address the catastrophic forgetting issue and bal-
ancing of different tasks in Houlsby et al. (2019)’s ap-

Northern European Journal of Language TechnologyVol. 10, 2024 2

proach. Additionally, Stickland and Murray (2019) en-
hance the efficiency of the adaptation technique by in-
corporating a low-rank approximation of the model’s
key operations. In connection to this work, Hu et al.
(2022) introduce an efficient method centered around
the low-rank factorization of the expected changes in
attention matrices in a transformer encoder.

Our approach diverges from that of Houlsby et al.
(2019), Pfeiffer et al. (2021), and Hu et al. (2022) in sev-
eral ways. In terms of model integration, we envelop
the adapter around a pre-trained encoder model, unlike
the strategies employed by Houlsby et al. (2019), Pfeif-
fer et al. (2021), and Hu et al. (2022), who embed the
adapter blocks within the original encoder architecture.
This distinction allows us to exclude the encoder dur-
ing training, resulting in a substantial enhancement of
training efficiency and facilitating model sharing. In ad-
dition, the number of trainable parameters in the mod-
els of Houlsby et al. (2019) and Hu et al. (2022) scales
with the number of intermediate layers of the original
encoder, as opposed to our model in which the num-
ber of trainable parameters is almost independent of
the number of middle layers. Moreover, our encoder
adaptation mechanism uses a dedicated tailoring block
to explicitly address the differences between the pre-
training and target tasks.

3 Encoder Adaptation
An encoder B consisting of 𝑙 − 1 intermediate Trans-
former layers plus one input embedding layer trans-
forms an input document 𝑠 = (𝑡1, . . . , 𝑡𝑛) into a three-
dimensional tensor:

B : 𝑉 𝑛 → R𝑙×𝑛×𝑑

where 𝑉 is a vocabulary, 𝑑 is the number of encoder
dimensions, and 𝑙 is the number of intermediate layers.
The output tensor 𝐵 = B(𝑠) has three views correspond-
ing to its dimensions: A layer view 𝐵𝑖,:,: is an𝑛×𝑑 matrix
sliced along the layer dimension of 𝐵 at index 𝑖 repre-
senting a state matrix for the 𝑖th layer. A token view
𝐵:, 𝑗,: is an 𝑙 ×𝑑 matrix sliced along the token dimension
of 𝐵 at index 𝑗 representing the token at position 𝑗 . Fi-
nally, a feature view 𝐵:,:,𝑘 is an 𝑙 × 𝑛 matrix sliced along
the third dimension of 𝐵 at index 𝑘 representing the 𝑘th
embedding sub-space of encoder feature space.

An adapter function takes an encoding tensor 𝐵 and
merges its layer views (i.e.,) into a matrix:

A : R𝑙×𝑛×𝑑 → R𝑛×𝑑

The resulting matrix includes distilled information of
the intermediate representations adapted to a target
task. We propose a parametric adaptation function con-
sisting of two blocks: an aggregation block that merges

𝐵 ∈ R𝑙×𝑛×𝑑

E

Multi-Head Attention

𝚽

Layer Norm

Feed Forward

+

Self-Attention

+

𝐸 ∈ R𝑛×𝑑

𝑄 𝐾

𝑉

𝐴 ∈ R𝑙×𝑛

𝐺 ∈ R𝑛×𝑑

𝑅 ∈ R𝑛×𝑑

𝑇 ∈ R𝑛×𝑑

A
gg
re
ga
to
r

Ta
ilo

r

Figure 1: The proposed adapter architecture. The in-
put tensor 𝐵 contains the intermediate representations
taken from a Transformer-based encoder for a sequence
of tokens, and the output is a token embedding matrix.

the layer views and a tailoring block that adjusts the
aggregated representations to a target task. The final
adapted output is constructed by a residual connection,
enabling the model to control the tailoring influence on
the aggregation. The architecture is shown in Figure 1.

3.1 Aggregation
The aggregation block takes the input tensor and
merges the layer views. It uses a multi-head attention
layer (Vaswani et al., 2017) to calculate the attention
weights between pairs of layers and tokens based on
the global views of 𝐵 along with the layer and token
dimensions. It then pools the feature vectors that the
layers produce for every token based on the attention
weights of the token and layers.

Breaking it down step by step, the input tensor 𝐵
is first passed through the block E that calculates the
attention’s query, key, and value matrices. The query
matrix 𝑄 is a linear projection of the mean matrix E𝑙 =
1
𝑙

∑
𝐵𝑖,:,::2 More formally,

𝑄 = E𝑙𝑊𝑄 + 𝑏𝑄 ,
2Our preliminary results with uniform and weighted averaging

shows that both models perform equally on our development set.
Therefore, we select uniform averaging because of its simplicity.

Northern European Journal of Language TechnologyVol. 10, 2024 3

where 𝑊𝑄 is a 𝑑 × 𝑘 trainable matrix, and 𝑏𝑄 is a 𝑘-
dimensional bias vector with 𝑘 ≪ 𝑑 . Similarly, the key
and value matrices are based on a linear projection of
E𝑡 = 1

𝑛

∑
𝐵:, 𝑗,::

𝐾 = E𝑡𝑊𝐾 + 𝑏𝐾 and 𝑉 = 𝐾 ,

where the 𝑑 × 𝑘 matrix𝑊𝐾 and the 𝑘-dimensional bias
vector 𝑏𝐾 (𝑘 ≪ 𝑑) are learnable parameters.3 We refer
to the parameter𝑘 as the attention dimensionality of the
adapter.

Next, the Multi-Head Attention layer constructs an
𝑙 × 𝑛 matrix 𝐴 whose columns define weight distribu-
tions over the layer views for each token. Intuitively, the
attention value 𝐴𝑖, 𝑗 indicates the importance of layer
view 𝐵𝑖,:,: in the representation of the token 𝑡 𝑗 . Finally,
the aggregated representation for a token at position 𝑗
is calculated in the computational block𝚽 based on the
weighted sum of the corresponding intermediate repre-
sentations:

𝐺 𝑗,: =
𝑙∑︁
𝑖=1

𝐴𝑖, 𝑗𝐵𝑖, 𝑗,:

This sum pooling is equivalent to diag(𝐴𝑇𝐵) where the
diag operator is applied on the first and second dimen-
sions of the product 𝐴𝑇𝐵.

3.2 Tailoring
The tailor block further specifies the aggregated to-
ken vectors to the target task. Inspired by the Trans-
former architecture (Vaswani et al., 2017), the tailor
block adopts residual learning (He et al., 2016) with
a residual mapping consisting of a layer normaliza-
tion (Ba et al., 2016) followed by a position-wise feed-
forward network:

𝑅 = 𝐺 + ReLU(Dropout(𝐿(Norm(𝐺)))) ,

where 𝐿 is a linear layer that adjusts the aggregated
token vectors to the target task. Following Xiong et al.
(2020), we use pre-layer normalization in which the nor-
malization layer is placed before the feed-forward net-
work.4

Finally, the self-attention layer compensates for
the lack of trainable parameters to model task-specific
dependencies between tokens. We calculate a self-
attentionmatrix based on a linear transformation of the
input vectors:

𝑉 = Dropout(𝑅)𝑊𝑇 + 𝑏𝑇 𝑄 = 𝐾 = 𝑉

3We set𝑉 equal to𝐾 based on our preliminary experiments show-
ing no significant difference in the results with and without a dedi-
cated transformation of the values.

4This is in contrast to post-layer normalization, which is used in
the original Transformer architecture (Vaswani et al., 2017) and the
BERT implementation of Devlin et al. (2019).

where 𝑊𝑇 is a 𝑑 × 𝑘 trainable matrix, and 𝑏𝑇 is a 𝑘-
dimensional bias vector. We then utilize a Multihea-
dAttention layer (Vaswani et al., 2017) to construct an
𝑛 × 𝑛 attention matrix 𝑀 based on the query (𝑄), key
(𝐾), and value (𝑉) matrices. The reason for performing
the linear transformation on 𝑅 is to reduce the dimen-
sionality of the token vectors, which determine the size
of the learning parameters in the MultiheadAttention
block. To calculate the tailored matrix T of size 𝑛 × 𝑑 ,
we multiply the attention matrix by the input matrix 𝑅:

𝑇 = 𝑀 × 𝑅

The rows of𝑇 are the sum of the token representations
in R weighted by their attention scores.

4 Experiments
We study the adapter performance on downstream
tasks and investigate the contribution of the aggrega-
tion and tailoring blocks to the performance gain. The
experiments are based on the cased versions of BERT-
Large (Devlin et al., 2019) and ROBERTA-Large (Liu
et al., 2020) models as representatives of encoder-only
models, and different variants of the GPT2, including
GPT2-Small, Medium, and Large, as representatives of
decoder-only models. All models are provided by Hug-
gingface.

The test benchmark includes the twomajor types of
classification tasks in NLP, including structured predic-
tion and document classification. The evaluation bench-
mark for structured prediction includes tasks defined
on the following datasets:

• CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003): part-of-speech tagging (POS), chunking
(CHK) and named-entity recognition (NER)

• Universal Dependencies (Nivre et al., 2017) (En-
glish EWT, v2.3): part-of-speech tagging (UPOS
and XPOS), dependency label prediction (DE-
PREL), and dependency parsing (LAS)

• English Penn Treebank (Marcus et al., 1993) con-
verted to Stanford Dependencies: dependency
parsing (LAS)

• WEBNLG (Gardent et al., 2017): named-entity
recognition (NER) and relation extraction (RE)

We use the standard data splits for training, validation,
and testing the models. The reason for incorporating
multiple datasets is to demonstrate the method’s ro-
bustness not only across tasks but also in varied data
and domains. The document classification benchmark
is based on the GLUE tasks (Wang et al., 2018) includ-
ing grammaticality (CoLA), sentiment textual similarity

Northern European Journal of Language TechnologyVol. 10, 2024 4

(STS-B), semantic equivalence (MRPC), textual entail-
ment recognition (RTE), and sentiment analysis (SST-
2). For these tasks, we train and validate models on
their training data, and keep the benchmark’s valida-
tion data for final model testing.

We set the attention dimension 𝑘 to 16 and the num-
ber of attention heads to 2 in both attention layers in the
aggregator and adapter blocks. This decision is based
on our preliminary results on the CoNLL development
data. For each task, we train five classifiers with dif-
ferent random seeds and report the average results on
the test sets. As our optimizer, we use Adam with a
1cycle learning rate scheduler with cosine annealing.
Our implementations are based on PyTorch (Paszke
et al., 2019) and the experiments are carried out on an
NVIDIA A100 40GB Tensor Core GPU. An implemen-
tation of the encoder model is available here https:
//github.com/abasirat/llm-adapter.

5 Performance
This section summarizes the results collected from
the structured prediction and document classification
tasks. We compare our adapter performance, named
Adapted, with other techniques, namely:

• Frozen: returns the output of the last layer of a frozen
encoder (i.e., A(𝐵) = 𝐵𝑙,:,:).

• Linear: returns a scaled linear aggregation of interme-
diate representations of a frozen model, i.e., A(𝐵) =
𝑐
∑𝑙
𝑖=1𝑤𝑖𝐵𝑖,:,: where 𝑤0, . . . ,𝑤𝑙 = Softmax(𝛼0, . . . , 𝛼𝑙)

(Kondratyuk and Straka, 2019). We train the parame-
ters𝛼𝑖 and 𝑐 together with other trainable parameters
of each task’s classifier.

• Fusion: returns a linear aggregation of the intermedi-
ate representations of a frozen model for each token
and task, i.e., A(𝐵) =

∑𝑙
𝑖=1 (𝐴 ⊙ 𝐵)𝑖,:,: where 𝐴 is an

𝑙 × 𝑛 attention matrix and 𝐴 ⊙ 𝐵 is the Hadamard
product between 𝐴 and every feature view of 𝐵. The
attention matrix 𝐴 is based on a 𝑑-dimensional task-
specific attention vector 𝑄 learned during training,
i.e., 𝐴𝑖, 𝑗 =

exp(𝑄×𝐵𝑖,𝑗,:)∑𝑙
𝑘=1 exp(𝑄×𝐵𝑘,𝑗,:)

(Cao et al., 2022).

• Lora: returns the output of the last layer of an en-
coder adapted to a target task based on the Lora fac-
torization technique of Hu et al. (2022). Lora is an
efficient technique that improves state-of-the-art on
most downstream tasks. It extends the adaptation
technique of Houlsby et al. (2019) using a simplified
version of the method of Aghajanyan et al. (2020). We
train Lora with its recommended setting.

• Finetune: returns the output of the last layer of a fine-
tuned encoder model (Devlin et al., 2019).

We freeze the encoder parameters in all of the above
techniques except for the Finetune, in which all encoder
parameters are updated during training. The outputs
taken from these encoders are subsequently employed
for the target tasks outlined in Section 4. The follow-
ing sections provide detailed insights into the modules
employed for each task.

5.1 Structured Prediction
In this section, we study the adapter performance on
BERT and GPT encoder families. The token classifiers
for POS tagging, chunking (CHK), and DEPREL predic-
tion consist of an encoder (e.g., BERT) with a light head
block mapping a token vector to a probability distri-
bution over target tags. The head block consists of a
dropout layer followed by a dense layer of size 𝑑 × 𝑑
(𝑑 is the encoder’s dimensionality) with 𝑡𝑎𝑛ℎ activation
connected to another dropout and a dense layer of size
𝑑 × |tag set| with a softmax activation. Following Ács
et al. (2021), we classify tokens based on their first sub-
word for semantic tasks such as NER in CoNLL2003
and their last subword for syntactic tasks such as POS
and CHK in CoNLL2003 and UPOS, XPOS, and DE-
PREL in UD. We integrate the encoder adapters into
the parser of Dozat and Manning (2017) for the parsing
experiments and the joint named entity and relation ex-
traction system of Yan et al. (2021) for NER and RE in
WEBNLG.5

We set the batch size to 32 sentences for the tasks
in CoNLL, UD (excluding dependency parsing), and
WEBNLG and 5000 samples for dependency parsing on
UD and WSJ. We train the CoNLL and UD taggers for
10 epochs, and the parsers and relation extractors for
100 epochs. We schedule the learning rate using the
1cycle policy (Smith and Topin, 2017) with a cosine an-
nealing strategy. The maximum learning rate for pars-
ing is set to 2𝑒−3, and for other tasks is selected among
{1𝑒−5, 1𝑒−4, 1𝑒−3} based on the models’ performance
on the development sets. We disable the parser’s char-
acter embedding module to better study the adaptation
effect. The other parameters in the parser and relation
extractor are set to their default values.

5.1.1 BERT Family

Table 1 summarizes the results obtained from each
adaptation technique on the structured prediction
tasks. The Adapted models based on our proposed ap-
proach perform better than Frozen, Linear, and Fusion
models in all tasks,6 and on par with Lora and Finetune

5Our parsing experiments are based on the parser imple-
mentation available at https://github.com/Unipisa/
biaffine-parser

6One exception is dependency parsing, in which the linear models
perform slightly better than the Adapted models.

Northern European Journal of Language TechnologyVol. 10, 2024 5

https://github.com/abasirat/llm-adapter
https://github.com/abasirat/llm-adapter
https://github.com/Unipisa/biaffine-parser
https://github.com/Unipisa/biaffine-parser

models. On average, the Adapted models result in ex-
tensive improvements over the baseline frozen models
by 3.7%, which is significantly larger than the improve-
ment made by the Linear (2.6%) and Fusion (1.4%) mod-
els , and is on a par with Lora (3.8%) and Finetune (3.8%)
models (see Figure 2 for detailed information).

A deeper look into the results shows that the ab-
solute improvement made by the Adapted models over
the baseline Frozen models, as shown in Figure 2, is
higher than that of the other techniques on the syn-
tactic tasks, such as POS tagging and chunking, but
slightly lower than Lora on the more semantic tasks
NER and RE. This suggests that the Adapted models
are more effective than other techniques in encoding
the syntactic information. A further detailed study on
the contribution of the aggregation and tailoring blocks
to syntactic and semantic encoding is presented in Sec-
tion 6.

Also, we see that Adapted models outperform other
models in retaining 99.5% of the BERT’s finetuning per-
formance (excluding dependency parsing in which the
finetuned models perform significantly lower than the
frozen baseline) and level with Lora on the ROBERTA’s
finetuning performance (i.e., the Adapted and Lora
models retain 99.2% and 99.4% of finetuned ROBERTA
models, respectively.7

5.1.2 GPT Family

GPT models are generative language models known for
their strong performance in text generation tasks. How-
ever, they are less commonly used for discriminative
tasks, included in our test benchmarks. The purpose
of our experiments with GPT models is to present em-
pirical evidence on the utility of different adapting tech-
niques for the GPT family. We leverage a GPT model as
a feature extractor, bypassing its final generator layer.
After tokenizing an input string, we perform a forward
pass through the GPT model with the tokenized input
and extract the hidden states from all layers. These
hidden states serve as the encoder output, denoted as
𝐵 in our adapter formulation in Section 3, which is
subsequently adapted for downstream tasks. To man-
age computational costs, the experiments focus on a
smaller number of tasks and exclude Finetune experi-
ments.

Table 2 summarizes the results collected from GPT
models. First, compared to the BERT-based models,
the results show that the adapted GPT models perform
weaker. This performance drop is expected due to the

7We exclude dependency parsing from the finetuning analysis be-
cause it does not perform as expected. We considered different fine-
tuning strategies (finetuning top 𝑛 = 1, . . . , 4 layers, finetuning mid-
dle layers (9−17), followed by linear aggregation, and finetuning only
during the first and second epochs. In all experiments, we could get
maximum LAS of 94.4 for BERT and 93.8 for ROBERTA onWSJ, which
is still significantly below the frozen baseline.

discriminative nature of the tasks that are not gener-
ally considered for GPT models. However, within the
adapted GPT models, our adapter performs better than
other techniques in all tasks.8 This contrast with the
relative model performance on the BERT family, where
the Adapted model performs on par with Lora on most
tasks. We are uncertain about the cause of this discrep-
ancy in the better relative performance of the Adapted
model on the GPT family compared to the BERT fam-
ily, and we leave it for further investigation in future
research.

5.2 Document Classification
While our adaptation technique primarily emphasizes
individual token representations rather than document
representation, we still find it important to examine the
adapter performance on standard document classifica-
tion tasks, even though it may not be the optimal use
case for our technique. We apply the adaptation tech-
nique on a subset of GLUE tasks (Wang et al., 2018)
and compare its performance with other methods. The
experiments are based on the CoLA, STS-B, RTE, SST-
2, MRPC, and RTE tasks. We train five models with
different random seeds and report the average classi-
fication score on the development sets. We select the
learning rate from {1𝑒 − 4, 3𝑒 − 4, 7𝑒 − 4} for Frozen,
Linear, Fusion, Adapted, and Lora techniques and from
{1𝑒 − 5, 2𝑒 − 5, 3𝑒 − 5} for Finetune models.

We follow the standard approach for document clas-
sification that encodes an input document (e.g., a sen-
tence or a pair of sentences) into a vector representa-
tion and then passes it into a header block that maps
the vector to a class distribution. The document vec-
tor is often a dedicated vector (e.g., [CLS] in BERT) or
themean of the token vectors comprising the input doc-
ument. In this study, we use the mean vector, which
relies on the token representations, to represent a doc-
ument. The classification head is similar to the header
block we use for structured prediction networks. Except
for SST-2 classification models, we train other models
up to 100 epochs with a learning patience of 20. The
SST-2 models are trained for 20 iterations and the learn-
ing patience of 10. The batch size in all training setups
is 32.

Figure 3 summarizes the results of document classi-
fication. On average, the Adapted models (79.6) outper-
form the Frozen (69.7), Linear (71.3), and Fusion (74.3)
models but perform slightly weaker than Lora (81.4)
and Finetune (81.7) models on the document classifi-
cation. The higher performance of the Adapted to the
Fusion models indicates that our token-layer attention
mechanism based on the global contextual information
is moremeaningful to the document classification tasks

8One exception is Lora used for DEPREL prediction.

Northern European Journal of Language TechnologyVol. 10, 2024 6

BERT-Large (345M)

CoNLL-2003 (English) UD (English-EWT) WSJ WEBNLG
POS CHK NER UPOS XPOS DEPREL LAS LAS NER RE

Frozen 89.4 ±0.06 83.9 ±0.05 79.9 ±0.23 92.7 ±0.06 92.8 ±0.06 80.4 ±0.04 95.04 ±0.53 94.83 ±0.05 96.2 ±0.19 89.8 ±0.25

Linear 93.2 ±0.07 89.6 ±0.04 85.6 ±0.09 96.2 ±0.02 96.1 ±0.04 87.8 ±0.02 96.37 ±0.43 95.24 ±0.09 96.6 ±0.21 91.4 ±0.47

Fusion 92.5 ±0.30 87.9 ±1.32 87.2 ±0.15 95.9 ±0.07 95.8 ±0.14 87.9 ±0.04 95.76 ±0.51 95.07 ±0.07 96.4 ±0.43 90.2 ±1.02

Adapted 93.6 ±0.04 90.4 ±0.17 89.5 ±0.27 96.4 ±0.07 96.3 ±0.06 91.7 ±0.05 96.63 ±0.36 95.17 ±0.05 97.3 ±0.08 92.2 ±0.35

Lora 92.8 ±0.17 89.4 ±0.22 89.8 ±0.22 96.0 ±0.07 96.0 ±0.07 91.6 ±0.42 95.09 ±0.50 94.90 ±0.07 97.4 ±0.07 92.0 ±0.21

Finetune 93.9 ±0.07 91.1 ±0.07 91.3 ±0.13 96.8 ±0.04 96.8 ±0.04 93.6 ±0.07 – 94.30 ±0.21 97.8 ±0.07 91.4 ±0.10

ROBERTA-Large (345M)

CoNLL-2003 (English) UD (English-EWT) WSJ WEBNLG
POS CHK NER UPOS XPOS DEPREL LAS LAS NER RE

Frozen 91.3 ±0.05 87.8 ±0.05 82.8 ±0.12 94.0 ±0.04 93.8 ±0.03 83.8 ±0.08 96.29 ±0.46 95.40 ±0.13 95.6 ±0.11 89.8 ±0.21

Linear 93.2 ±0.03 89.6 ±0.04 86.1 ±0.10 96.3 ±0.02 96.3 ±0.05 87.5 ±0.06 96.68 ±0.41 95.53 ±0.04 96.5 ±0.11 91.4 ±0.34

Fusion 91.2 ±0.93 86.2 ±3.50 85.1 ±2.58 95.2 ±0.31 94.8 ±0.43 85.6 ±1.15 96.14 ±0.43 95.31 ±0.15 94.8 ±1.52 88.1 ±2.02

Adapted 93.6 ±0.03 90.5 ±0.12 89.7 ±0.23 96.6 ±0.09 96.4 ±0.04 91.8 ±0.07 96.25 ±0.32 95.45 ±0.12 96.8 ±0.17 91.9 ±0.48

Lora 93.0 ±0.04 89.7 ±0.10 91.6 ±0.13 97.0 ±0.10 97.0 ±0.07 93.1 ±0.07 96.29 ±0.43 95.39 ±0.09 97.4 ±0.16 92.1 ±0.26

Finetune 93.7 ±0.10 91.1 ±0.17 92.6 ±0.11 97.6 ±0.04 97.5 ±0.04 94.5 ±0.10 – 93.66 ±0.42 97.8 ±0.06 91.4 ±0.34

Table 1: Encoder adaptation performance on downstream tasks averaged over five trials with different random seeds.
All results are based on the 𝐹1 score on the test sets. Bold: the results of best-performing models. Gray highlights: the
best-performing model among the non-finetuned models, i.e., the models that preserve the base encoder frozen during
training. The comparisons are based on a two-tailed t-test with 𝑝-value<0.05

0

5

10

15
Linear Fusion Adapted Lora Finetune

PO
S–

C
H
K
–

N
ER

–

U
PO

S

X
PO

S

D
EP

R
EL

LA
S—

LA
S—

N
ER

–

R
E—

–

AV
G

0

5

10

15

CoNLL UD WSJ WNLG

Figure 2: Absolute performance improvement (or degradation) over the frozen baseline. Top: BERT, bottom: ROBERTA.

Northern European Journal of Language TechnologyVol. 10, 2024 7

CoNLL-2003 (English) UD (English-EWT)
POS CHK NER UPOS XPOS DEPREL

GPT2-small (124M)

Frozen 90.7 ±0.06 86.5 ±0.07 68.8 ±0.27 92.6 ±0.05 92.8 ±0.04 78.6 ±0.06

Linear 91.4 ±0.29 88.7 ±0.60 63.1 ±0.09 92.9 ±0.22 93.6 ±0.44 80.4 ±0.19

Fusion 89.1 ±0.11 86.1 ±0.30 62.1 ±0.55 89.6 ±1.10 89.4 ±0.84 76.4 ±0.87

Adapted 93.4 ±0.07 89.7 ±0.18 81.0 ±1.50 94.3 ±0.06 95.0 ±0.09 82.8 ±0.11

Lora 92.0 ±0.06 87.6 ±0.07 70.1 ±0.19 92.8 ±0.08 93.4 ±0.05 80.7 ±0.07

GPT2-medium (355M)

Frozen 90.3 ±0.07 86.6 ±0.09 71.8 ±0.22 92.7 ±0.05 92.8 ±0.15 78.8 ±0.13

Linear 91.8 ±0.26 88.9 ±0.21 64.2 ±0.13 94.2 ±0.04 94.5 ±0.29 81.4 ±0.56

Fusion 90.0 ±0.32 85.0 ±2.64 70.3 ±4.60 92.7 ±0.20 92.8 ±0.22 78.4 ±0.37

Adapted 93.5 ±0.07 89.3 ±0.66 80.0 ±0.74 94.3 ±0.22 95.2 ±0.18 82.8 ±0.72

Lora 92.7 ±0.06 88.6 ±0.06 73.2 ±0.10 93.5 ±0.03 94.4 ±0.04 83.3 ±0.04

GPT2-large (774M)

Frozen 90.8 ±0.05 86.7 ±0.08 72.5 ±0.16 93.2 ±0.06 93.2 ±0.05 79.5 ±0.10

Linear 93.2 ±0.04 89.4 ±0.15 68.5 ±0.47 94.5 ±0.07 95.2 ±0.02 83.0 ±0.06

Fusion 92.1 ±0.15 87.5 ±0.32 72.8 ±0.48 93.7 ±0.15 94.1 ±0.09 80.8 ±0.10

Adapted 93.4 ±0.09 89.6 ±0.10 83.3 ±0.37 94.7 ±0.08 95.4 ±0.12 83.9 ±0.12

Lora 93.0 ±0.03 89.1 ±0.09 75.7 ±0.40 93.7 ±0.04 94.7 ±0.03 84.0 ±0.07

Table 2: The performance of the adapter techniques on GPT models. Bold numbers are significantly higher than other
results in a column (two-tailed t-test with 𝑝-value<0.05).

C
oL

A

ST
S-
B

M
R
PC R
TE

SS
T-
2

AV
G

0

20

40

60

80

100

Frozen Linear Fusion Adapted Lora Finetune

Figure 3: Document classification results based on the
BERT-Large model.

than the locally trained attention weights trained of the
Fusion models. The Adapted models perform compara-
bly to Lora on the sentiment tasks (STS-B and SST-2)
and the grammaticality task CoLA but weaker on other
tasks. This observation indicates that tuning the inter-
nal attention weights of the encoder, as done by Lora,
is more beneficial to the document classification tasks
than adapting the intermediate representations, as our
Adapted model considers.

5.3 Model Efficiency

The adapting techniques we consider in this study can
be classified into two categories regarding their integra-
tion into the base model. The first are those techniques
that chain a learning block on top of the encoder, and
the second are those that are infused into the encoder.
The piped models treat the base encoder as a black box
and rely only on the intermediate representations pro-
duced by the encoder. However, the infused techniques
must carefully modify the base architecture and insert
their parameters in the encoder. In our test benchmark,
the learning blocks of the Linear, Fusion, and Adapted
techniques are chained onto the base encoder while the
parameters of Lora are infused.

When it comes to the standard model training with
backpropagation, the piped techniques are more advan-
tageous since they allow us to perform the forward pass

Northern European Journal of Language TechnologyVol. 10, 2024 8

only once, store the intermediate representation (i.e.,
the layer activations), and reuse them during training.
This trick significantly improves training time at the
cost of storage, which is much cheaper than the GPU
cost required. However, both piped and infused tech-
niques perform the backward pass similarly on all train-
able parameters. Therefore, in order to improve train-
ing efficiency, we adopt the activation storing trick for
Frozen, Linear, Fusion, and Adapted models.

Table 3 summarized the training and inference ef-
ficiency of the adapter techniques. The results are av-
eraged over the efficiency statistics of CoNLL tagging
models. Training the piped model is significantly more
efficient than training the infused models. The Frozen,
Linear, and Fusion models are the most efficient tech-
niques in both computational time and trainable param-
eters. The Adapted models are more than 10× faster
than Finetune and Lora models but 2× slower than
Frozen, Linear, and Fusion models, which is due to the
large number of trainable parameters it uses. The train-
ing efficiency gain of the piped models comes from the
activation storing trick.

The activation storing trick is also responsible for
the shorter training time in piped models compared to
their inference time. As mentioned earlier, we forward
every training example only once through the base en-
coder of these models during their first training epoch.
Later, we only pass it through the adapter parameters,
which are relatively smaller than the encoder. Assum-
ing 𝑡𝑒 as the time required for a forward pass through
the encoder, 𝑡𝑓 , and 𝑡𝑏 as the time required for a for-
ward and backward pass through the adapter parame-
ters, then the average training time for a batch of sen-
tences is 𝑡tr =

𝑡𝑒+𝑒 (𝑡𝑓 +𝑡𝑏)
𝑒 for 𝑒 training epochs. This

fraction becomes smaller as 𝑒 increases. However, the
inference time for a test example is 𝑡inf = 𝑡𝑒 + 𝑡𝑓 , which
is larger than the average training time if the number
of training epochs (𝑒) is larger than 1. This is because
𝑡𝑒 + 𝑒𝑡𝑏 < 𝑒𝑡𝑒 for 𝑒 > 1 given that 𝑡𝑏 ≪ 𝑡𝑒 , which im-
plies 𝑡tr < 𝑡inf. It is important to note that the training
times reported in Table 3 are averaged over the training
epochs, and the total training time is longer than the
inference time.

The Adapted models perform as efficiently as the
other piped models at the inference time while still be-
ing more efficient than Lora. Lora’s lower inference ef-
ficiency is because of the infused attention weights dis-
tributed across all encoder layers. Although the added
parameters are relatively small, they still cause a com-
putational delay because they are coupled to the en-
coder’s attention weights in each layer andmust be pro-
cessed sequentially in the same order as the encoder’s
layer. This latency can be improved by merging the in-
fused weights into the encoder’s attention parameters.
In this case, Lora will be as efficient as the other mod-

els but at the cost of losing its reusability because it
will become a large model specified for a target task. In
contrast, our adaptation mechanism includes a small
number of relatively large computational blocks to the
encoder, enablingmore efficient use of the GPU parallel
processing capability.

Train Inference #Params

Frozen 0.004 0.024 0.0
Linear 0.004 0.024 0.0
Fusion 0.004 0.024 0.0
Adapted 0.008 0.025 1.1
Lora 0.095 0.062 0.8
Finetune 0.106 0.024 333.6

Table 3: The model efficiency. Train/Inference: average
training/inference time (seconds) for a batch of 32 sen-
tences. The time does not include the tokenization and
data loading time, which is independent of the actual
training. The training time is averaged over training
epochs. #Params: number of trainable parameters in
each adaptation mechanism (×106).

6 Ablation Study
This section studies the importance of the aggregation
and tailoring blocks to our adapter architecture. Fig-
ure 4 represents the improvements made by each block
over the baseline Frozen models. A significant part
of the improvement in the structured prediction tasks
comes from the aggregation that accounts for 85% of
the average improvements over frozen BERT models.
However, both blocks contribute almost equally to the
average improvement in document classification. This
indicates the importance of the token-wised layer ag-
gregation for structured prediction tasks that search
for the interconnections between tokens. On the other
hand, the tailoring block contributes significantly to the
document classification tasks whose objectives differ
from the encoder’s pretraining objective (i.e., masked
token prediction).

We also see that the necessity for tailoring in the
structured prediction becomes more evident as the task
complexity increases. The results suggest that the re-
quired information for syntactic tasks such as POS tag-
ging, chunking, and parsing is already available in the
intermediate representations and we only need to ag-
gregate the information properly. However, more com-
plex tasks that rely on both syntactic and semantic in-
ference (e.g., DEPREL, NER, and RE) can benefit from
both aggregation and tailoring blocks.

Next, we study the importance of the residual con-
nection between the aggregation and tailoring blocks.

Northern European Journal of Language TechnologyVol. 10, 2024 9

PO
S–

C
H
K
–

N
ER

–

U
PO

S

X
PO

S

D
EP

R
EL

LA
S—

LA
S—

N
ER

–

R
E—

–

AV
G

75

80

85

90

95

100

0.1

0.1
1.9

0.1 0.1

3

0.43 0.4

0.6
0.67

4.1

6.4

7.7

3.6 3.4

8.3

1.160.36
0.7

1.8 3.75

Frozen +Aggregation +Tailor

CoNLL UD WSJ WNLG

C
oL

A

ST
S-
B

M
R
PC R
TE

SS
T-
2

AV
G

40

60

80

100

9.91

1.73 4.16

8.66

2.06

5.31

5.3

11.83
1.03

2.89

2.29

4.67

Figure 4: The accumulative contribution of the aggre-
gation and tailoring blocks to the frozen BERT model.
The adapted output is taken from the residual connec-
tor, adding the aggregator and tailor outputs.

Table 4 summarizes the base results on a subset of the
structured prediction tasks. The base results in the
Agg column are from the aggregator block. The other
columns summarize the improvement or degradation
caused by the tailoring block and the residual connec-
tion between the two blocks. First, compared with
the results reported in Table 1, the aggregator block
(see Column Agg) surpasses the Linear and Fusion ag-
gregation by an average score of 0.6 and 1.9, respec-
tively. This empirically supports our assumption about
the local contribution of the intermediate representa-
tions to tokens within a task, as opposed to the token-
independent aggregations of the Linear model. It also
shows that our globalmodeling of the token-layer atten-
tion mechanism performs better than the local model-
ing of the Attention Fusion mechanism. Second, the tai-

loring block hurts the model performance when piped
to the aggregation block without the residual link (see
Column +Tailor). The residual information cancels out
the tailor negative effect and significantly improves per-
formance. We speculate that this is due to the control-
ling effect of the residual connection that lets the tai-
loring block affect the aggregated information only in
specific contexts if needed.

Agg +Tailor +Residual Adapted

POS 93.6 0.0 0.1 0.1
CHK 90.3 −1.0 1.1 0.1
NER 87.4 0.0 1.6 1.6
DEP 95.2 −0.2 0.2 0.0
RE 91.6 −0.3 0.9 0.6
AVG 91.6 −0.3 0.8 0.5

Table 4: The performance improvement (or degrada-
tion) after adding the tailoring block and the residual
link to the aggregation block. The results are based on
the BERT model.

7 Conclusion

We have introduced a task adaptation mechanism for
Transformer encoders to address the reusability and ef-
ficiency issues of finetuning in structured prediction.
The proposed model aggregates the intermediate rep-
resentations of a frozen encoder based on the input
tokens and tailors them to a target task. Empirical
results confirmed that the adaptation mechanism im-
proves the training efficiency significantly while being
on par with the finetuning performance. Further abla-
tion studies confirmed the importance of both the ag-
gregation and tailoring blocks. In future work, we want
to study the adapter performance within different lan-
guages and analyze attention weights in more detail
across different tasks in multilingual benchmarks.

Acknowledgements

We are grateful to the unknown reviewers who pro-
vided invaluable feedback on this work and to Marco
Kuhlmann for his interest, contributions, and support
for this research. We would also like to express our
thanks to the Danish National Life Science Supercom-
puting Center for granting access to Computerome 2.0
through Project ku-00223 and to the National Super-
computer Centre in Sweden (NSC) for allowing access
to Berzelius through Project Berzelius-2021-51. This
project was supported by the Excellence Center at

Northern European Journal of Language TechnologyVol. 10, 2024 10

Linköping-Lund in Information Technology (ELLIIT),
Project A15.

References
Abzaliev, Artem. 2019. On GAP coreference resolution

shared task: Insights from the 3rd place solution.
In Proceedings of the First Workshop on Gender Bias
in Natural Language Processing, pages 107–112, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ács, Judit, Ákos Kádár, and Andras Kornai. 2021. Sub-
word pooling makes a difference. In Proceedings of
the 16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Volume,
pages 2284–2295, Online. Association for Computa-
tional Linguistics.

Aghajanyan, Armen, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning.

Ba, Lei Jimmy, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Ben Zaken, Elad, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short
Papers), pages 1–9, Dublin, Ireland. Association for
Computational Linguistics.

Cao, Jin, Chandana Satya Prakash, and Wael Hamza.
2022. Attention fusion: a light yet efficient late fu-
sion mechanism for task adaptation in NLU. In Find-
ings of the Association for Computational Linguistics:
NAACL 2022, pages 857–866, Seattle, United States.
Association for Computational Linguistics.

Chen, Beiduo, Wu Guo, Quan Liu, and Kun Tao. 2022.
Feature aggregation in zero-shot cross-lingual trans-
fer using multilingual bert.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Dozat, Timothy and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Gardent, Claire, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
179–188, Vancouver, Canada. Association for Compu-
tational Linguistics.

Guo, Demi, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4884–4896,
Online. Association for Computational Linguistics.

Hao, Yaru, Li Dong, Furu Wei, and Ke Xu. 2020. Inves-
tigating learning dynamics of BERT fine-tuning. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Linguis-
tics and the 10th International Joint Conference on
Natural Language Processing, pages 87–92, Suzhou,
China. Association for Computational Linguistics.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778. IEEE Computer
Society.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Horne, Leo, Matthias Matti, Pouya Pourjafar, and
Zuowen Wang. 2020. GRUBERT: A GRU-based
method to fuse BERT hidden layers for Twitter sen-
timent analysis. In Proceedings of the 1st Conference
of the Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the 10th International Joint
Conference on Natural Language Processing: Student
Research Workshop, pages 130–138, Suzhou, China.
Association for Computational Linguistics.

Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2790–2799. PMLR.

Hu, Edward J, yelong shen, PhillipWallis, Zeyuan Allen-
Zhu, Yuanzhi Li, SheanWang, LuWang, andWeizhu

Northern European Journal of Language TechnologyVol. 10, 2024 11

Chen. 2022. LoRA: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Hu, Jie, Li Shen, and Gang Sun. 2018. Squeeze-and-
excitation networks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7132–
7141.

Huguet Cabot, Pere-Lluís and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–2381,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jawahar, Ganesh, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Kondratyuk, Dan andMilan Straka. 2019. 75 languages,
1 model: Parsing Universal Dependencies universally.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2779–2795, Hong
Kong, China. Association for Computational Linguis-
tics.

Li, Xiang Lisa and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4582–4597, On-
line. Association for Computational Linguistics.

Lin, Yongjie, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic knowl-
edge. In Proceedings of the 2019 ACLWorkshop Black-
boxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 241–253, Florence, Italy. Association
for Computational Linguistics.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2020. RoBERTa:
a robustly optimized BERT pretraining approach.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

McCloskey, Michael and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The

sequential learning problem. volume 24 of Psychol-
ogy of Learning and Motivation, pages 109–165. Aca-
demic Press.

Michel, Paul, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Nivre, Joakim, Daniel Zeman, Filip Ginter, and Francis
Tyers. 2017. Universal Dependencies. In Proceed-
ings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Tutorial
Abstracts, Valencia, Spain. Association for Computa-
tional Linguistics.

Paszke, Adam, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Peters, Matthew E., Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019), pages 7–14, Florence, Italy.
Association for Computational Linguistics.

Pfeiffer, Jonas, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021. Adapter-
Fusion: Non-destructive task composition for trans-
fer learning. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 487–503,
Online. Association for Computational Linguistics.

Pfeiffer, Jonas, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. AdapterHub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations,

Northern European Journal of Language TechnologyVol. 10, 2024 12

pages 46–54, Online. Association for Computational
Linguistics.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1.

Smith, Leslie N. and Nicholay Topin. 2017. Super-
convergence: Very fast training of residual networks
using large learning rates. CoRR, abs/1708.07120.

Stickland, Asa Cooper and IainMurray. 2019. BERT and
PALs: Projected attention layers for efficient adapta-
tion in multi-task learning. In Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pages 5986–5995. PMLR.

Su, Ta-Chun and Hsiang-Chih Cheng. 2019. Sesame-
bert: Attention for anywhere.

Tenney, Ian, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In Pro-
ceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4593–4601, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tenney, Ian, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Sam Bowman, Dipanjan Das, and
Ellie Pavlick. 2019b. What do you learn from con-
text? probing for sentence structure in contextual-
ized word representations. In International Confer-
ence on Learning Representations (ICLR 2019).

Tjong Kim Sang, Erik F. and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural Lan-
guage Learning at HLT-NAACL 2003, pages 142–147.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

de Vries, Wietse, Andreas van Cranenburgh, and Malv-
ina Nissim. 2020. What’s so special about BERT’s
layers? a closer look at the NLP pipeline in monolin-
gual and multilingual models. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2020,
pages 4339–4350, Online. Association for Computa-
tional Linguistics.

Wang, Alex, Amanpreet Singh, JulianMichael, Felix Hill,
Omer Levy, and Samuel Bowman. 2018. GLUE: A

multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium. Association for Computational
Linguistics.

Xiao, Zeguan, Jiarun Wu, Qingliang Chen, and Con-
gjian Deng. 2021. BERT4GCN: Using BERT interme-
diate layers to augment GCN for aspect-based senti-
ment classification. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 9193–9200, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Xiong, Ruibin, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer nor-
malization in the transformer architecture. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 10524–10533. PMLR.

Yan, Zhiheng, Chong Zhang, Jinlan Fu, Qi Zhang, and
Zhongyu Wei. 2021. A partition filter network for
joint entity and relation extraction. In Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 185–197, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yang, Junjie and Hai Zhao. 2019. Deepening hidden
representations from pre-trained language models.

Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing - NeurIPS Edition (EMC2-
NIPS), volume 5, pages 36–39.

Northern European Journal of Language TechnologyVol. 10, 2024 13

