
Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ LREC-Coling 2024, pages 8–21
21 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

8

The semantic relations in LLMs: an information-theoretic
compression approach

Yu-Hsiang Tseng †, Pin-Er Chen‡, Da-Chen Lian‡, Shu-Kai Hsieh‡
†Department of Linguistics, University of Tübingen
‡Institute of Linguistics, National Taiwan University

yu-hsiang.tseng@uni-tuebingen.de, cckk2913@gmail.com
{d08944019,shukaihsieh}@ntu.edu.tw

Abstract
Compressibility is closely related to the predictability of the texts from the information theory viewpoint. As large
language models (LLMs) are trained to maximize the conditional probabilities of upcoming words, they may capture
the subtlety and nuances of the semantic constraints underlying the texts, and texts aligning with the encoded
semantic constraints are more compressible than those that do not. This paper systematically tests whether and
how LLMs can act as compressors of semantic pairs. Using semantic relations from English and Chinese Wordnet,
we empirically demonstrate that texts with correct semantic pairings are more compressible than incorrect ones,
measured by the proposed compression advantages index. We also show that, with the Pythia model suite and a
fine-tuned model on Chinese Wordnet, compression capacities are modulated by the model’s seen data. These
findings are consistent with the view that LLMs encode the semantic knowledge as underlying constraints learned
from texts and can act as compressors of semantic information or potentially other structured knowledge.
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1. Introduction

The recent achievement of large language mod-
els (LLM) has driven explorations of interactions
between symbolic, knowledge-driven approaches
and subsymbolic, data-driven models (Tiddi and
Schlobach, 2022; Colon-Hernandez et al., 2021).
The motivation not only stems from the appar-
ent practical values: improving performance on
knowledge-intensive tasks and reducing model hal-
lucinations, but also from exploring how such knowl-
edge is learned from the unstructured textual inputs.
Indeed, studies have shown such models not only
rapidly saturate benchmarks and reach, if not ex-
ceed, human baselines (Kiela et al., 2021; Zhong
et al., 2022; OpenAI, 2023), but they also learn
from the texts substantial structured world or lin-
guistic knowledge, for example, sentential structure
(Linzen and Baroni, 2021), factual and common-
sense knowledge (Petroni et al., 2019; Luo et al.,
2023), and lexical categories (Tenney et al., 2019).
This leads to an interesting question: how does the
model encode the structured knowledge learned
from the unannotated syntagmatic raw texts?

In this paper, we offer an angle and empirical
findings of information-theoretic compression as a
high-level functional view of how a deep learning
model encodes structured knowledge during train-
ing. The role of compression is best seen in the writ-
ten form of linguistic communication. For effective
communication between a writer and a reader, they
must share common backgrounds. One of the back-
grounds can be English morphological agreement,

which makes some text parts more predictable. For
example, seeing an "I am" in the sentence, one will
be less surprised when seeing a verb with the suffix
"-ing" afterward (Juola, 1998).

Morphology, along with syntactical structures,
help the writers to build a structured text stream.
Texts having structures are more predictable from
the previous context, which, in information theory,
takes less effort to convey. According to Shan-
non(1948)’s source code theorem, the more pre-
dictable a message is, the less information content
it carries, and the more compressible it is. One
can study linguistic properties based on their com-
pressibility. For example, researchers study the
relationship between linguistic complexity and com-
pressibility of different languages. They manipu-
lated the texts on morphological, syntactical, and
pragmatical levels of a given language and studied
their impact on the size of the compressed text by a
text-based compressor (Juola, 2008; Ehret, 2018).

Structures in texts are not limited to ones sig-
naled with linguistic forms, the world and semantic
knowledge is also a shared background among lan-
guage users. This knowledge acts as a semantic
constraint underlying the text, which should also
affect the compressibility but might be far more
subtle than linguistic forms and may not be fully
captured by a text-based compressor. Yet, the cur-
rent LLMs have achieved remarkable performance
in various languages tasks, it is likely they can act
as a compressor which is sensitive to the subtlety
of semantic knowledge.

The exploration of LLMs acting as a compressor
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Figure 1: (A) This study explores the compression advantage of different semantic pairs with different
LLMs. The compression advantage is measured with semantic pairs, each of which comprises sequences
of correct pairing (empirical) and incorrect ones (permuted). We use arithmetic encoding with the LLM-
predicted probability distributions for each token to compress the sequence. The differences in bit length
between the compressed empirical and permuted sequences are defined as compression advantage. (B)
Different types of semantic pairs. PWN are pairs of semantic relations from Princeton WordNet; CWN
SemRel are semantic relations from CWN; CWN CharSD are novel character sense disambiguation
sequences not seen by the tested LLMs.

is motivated by both the machine learning and psy-
cholinguistics literature. On the machine learning
side, the LLMs are trained to maximize the log prob-
abilities of the following token, which are equivalent
to minimizing the bits required for encoding the mes-
sage (Deletang et al., 2024). That is, the probability
distribution produced by LLM may optimally encode
the message. (2) From psycholinguistics, implicit
from the next-token prediction assumes there is an
internal state from which the prediction is derived
(Ryskin and Nieuwland, 2023). For autoregres-
sive transformer-based LLMs, these internal states
are contextualized and always updated up to the
current token, thereby capturing the semantic in-
terdependencies among the texts. Therefore, the
LLMs are well-posed as a strong compressor for
semantic constraints.

To systematically analyze whether and to what
extent the LLMs compress semantic knowledge,
we use semantic relations found in English and
Chinese Wordnet. We conduct experiments and
compute the corresponding compression advan-
tage. These experiments use semantic pairs de-
rived from the Princeton WordNet and the Chinese
Wordnet (CWN). Each pair includes an empirical
sequence, which has a correct semantic pairing,
and a permuted one. The underlying rationale is
that if the LLMs encode semantic constraints, the
empirical sequence should be more compressible,
thus increasing the compression advantage. We
ask two questions in this paper: (1) whether the
LLMs indeed better compress the empirical seman-
tic pairs. (2) how the fine-tuning process affects
the model’s compression capacities (See Figure 1
for a general overview.)

The rest of the paper is organized as follows. We
briefly review the literature on incorporating linguis-
tic knowledge into large language models and how
compression offers insights into the model-learned
constraints. Next, we describe the proposed com-
pression advantage and the experiments. In Sec-
tion 4, we introduce LopeLlama1, which is fine-
tuned with the Chinese Wordnet, and compare the
compression capacities to the base model on three
different datasets.

2. Related Work

In addition to examining the LLMs as a compres-
sor of the semantic pairs, we study how the ad-
ditional data of semantic relations, either through
fine-tuning or retrieval-augmented generation af-
fect the compression advantage. Thus, we briefly
review the fine-tuning literature followed by the lit-
erature seeing LLMs as compressors.

2.1. Fine-tuning LLMs
Various approaches have been proposed to incor-
porate linguistic resources or structured knowledge
into large language models (Tom Brown et al., 2020;
Raffel et al., 2020; Ouyang et al., 2022; Hu et al.,
2023). These strategies include the input, archi-
tecture, or output injection to a pretrained model or
their combinations (Colon-Hernandez et al., 2021;
Wang et al., 2021a,b). For instance, the input
injection strategy involves converting knowledge

1LopeLlama’s Huggingface repo will be available af-
ter the anonymized review. The code repo: https:
//github.com/seantyh/llmcomp/

https://github.com/seantyh/llmcomp/
https://github.com/seantyh/llmcomp/
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Figure 2: The schematic illustration of arithmetic encoding. Each panel shows the encoder following
different probability distributions of a three-word sequence, “in this case”. The encoder compresses one
word in each step, assigning a unique interval to the word based on its probability, and the precision
needed to represent the interval determines the length of the compressed message. (A) In the uniform
distribution, the compressed message length is 7 bits. (B) When guided by a suitable conditional probability
distribution (such as provided by an LLM), the resulting compressed message is shorter. However, (C)
when the conditional probability is misspecified, the message becomes longer.

triples into masked sequences with input templates
(Bosselut et al., 2019). Along the same lines, one
can recast the task into instruction-tuning and write
the structured knowledge as an explicit task instruc-
tion (Ouyang et al., 2022; Chung et al., 2022; Sanh
et al., 2022). To efficiently fine-tune a pre-trained
large model, methods such as (low-rank) adaption
and quantization can reduce the computation re-
source requirements for tuning such a model (Hu
et al., 2022; Pfeiffer et al., 2020; Dettmers et al.,
2022, 2023).

Fine-tuning a model requires access to its base
weights. Prompting techniques come into play to
improve the model behavior of proprietary, closed-
source models. Lately, there has been a surge in
studies focused on prompting (Arora et al., 2022;
Singh et al., 2023; Wei et al., 2022; Yao et al.,
2023a; Fernando et al., 2023); one of the more
noticeable methods involves integrating reason-
ing and actions through external tools (Yao et al.,
2023b), such as lexical resources, allowing the
model to access external databases. The retrieved
data will be added to the prompt and augment the
model’s generation (retrieval-augmented genera-
tion, Lewis et al., 2020). Even without updating
model parameters, this in-context learning during
prompting resembles implicit gradient descent on
the model’s parameters (Dai et al., 2023; Von Os-
wald et al., 2023).

2.2. LLM as a compressor

The strong prediction capability of LLMs positions
them to be strong compressors. The relation-
ship between predictors and compressors has long
been established, and the underlying mechanisms
are described as “two sides of the same coin” (Dele-

tang et al., 2024; MacKay, 2003). The intrinsic con-
nection is best characterized by Shannon (1948)’s
source coding theorem, in which the optimal code
length of a compressed message is closely related
to the entropy of the input data. In this vein, the lan-
guage model’s compression capability stems from
the model’s ability to identify regularities among
input tokens, which allows the model to maximize
the predicted likelihood of the next token thereby
reducing the entropy of the input sequence.

Viewing an LLM as a compressor goes be-
yond producing optimal code. Following Ryskin
and Nieuwland (2023), underlying this prediction
or compression process reflects the internal con-
straints learned by the model during training, which
guide the prediction of the next token. Further-
more, the predicted likelihoods are directly linked
to notions of surprisal or cloze probability in psy-
cholinguistics literature (Kutas and Hillyard, 1984;
Levy, 2008). The compressed code length thus
offers a theoretically driven method to summarise
the predicted likelihoods of each token of the input
sequence into a simple measure.

3. Compression Advantage

In this section, we show that LLMs indeed act as
a compressor for semantic pairs. We first intro-
duce the arithmetic encoder, with which the pre-
dicted probabilities from LLMs are encoded into
compressed messages. Next, we demonstrate
that these compressed messages, after control-
ling for the sequence length, are always shorter for
the correct semantic pairs than the incorrect ones.
This pattern remains stable across different sizes
of LLMs and is modulated by the model’s training
iterations over time.
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3.1. Arithmetic encoding
The arithmetic encoding is depicted in Figure 2. An
arithmetic encoder is composed of two parts: (1)
a statistical coder that assigns a bit sequence (a
codeword) for individual tokens and (2) a proba-
bilistic model that estimates the token probability
at each point of coding (Howard and Vitter, 1994).
Arithmetic coding, as a statistical coder, is known
to produce code with almost optimal code length
given the token distribution N · H(xt), where N
is the sequence length, and H(xt) is the entropy
of the token distribution. Therefore, the encoder
assumes a model supplying the token’s probabil-
ity distribution. Figure 2a and 2b show the effects
of using different distributions to encode the same
word sequence. A uniform distribution has higher
entropy and results in a longer code, while the prob-
ability estimates from a language model result in
a shorter one. However, the probability estimates
can be misspecified (Figure 2c), which results in a
longer code.

The model used by the arithmetic encoder only
needs to provide a correct conditional probability
estimate rather than reflect the true generation
process. In other words, the model may com-
press the semantic pairs better without having
any semantic-related constraints that guide the
probability-generating process. Therefore, rather
than only inspecting the model’s compression ca-
pacity based on the produced distributions, eval-
uating the model’s capacity for semantic tasks
is also crucial. Ideally, establishing the correla-
tion between the compression advantages and the
model’s semantic task performance will strengthen
the argument that the model’s internal constraints
guiding the probability distribution are indeed linked
to semantic knowledge.

3.2. Semantic relations and compression
In what follows, we first evaluate the models’ com-
pletion task performance with semantic relation
pairs from Princeton WordNet. Next, we use these
models and an arithmetic encoder to compress the
semantic pairs and compare their compression ad-
vantages.

3.2.1. Semantic pair completion

The completion task of semantic relation pairs re-
quires the model, given the gloss, to complete ei-
ther the hypernym or the holonym of a word in
Princeton WordNet. We select the headwords of
synsets occurring more than five times in Sem-
Cor3.0 as materials. The model is prompted to
complete the question, and the textual completions
are automatically parsed to extract the predicted
words.

Figure 3: The compression advantage by model
size and throughout training. The compression
advantages consistently increase as the model in-
creases in size and over the course of training.

Holonym Hypernym

Models Noun
(N=164)

Noun
(N=702)

Verb
(N=583)

Pythia-12b .12 (.02) .51 (.01) .28 (.01)
Pythia-6.9b .19 (.02) .46 (.01) .32 (.01)
Pythia-2.8b .15 (.02) .42 (.01) .25 (.01)
Pythia-1.4b .08 (.01) .31 (.01) .12 (.01)
Pythia-410m .10 (.01) .14 (.01) .12 (.01)
GPT-3.5 .50 (.03) .66 (.01) .50 (.01)
GPT-3.5-inst .54 (.03) .51 (.01) .47 (.01)

Table 1: Model performances on the English se-
mantic relation task. Scores indicate the path sim-
ilarity score (the higher, the better). Numbers in
parentheses are standard errors. The API version
of GPT-3.5 is gpt-3.5-turbo-0613, GPT-3.5-
inst is gpt-3.5-turbo-instruct-0914.

Open models, along with the proprietary ones,
are selected for the current experiments. We select
the Pythia model suite (Biderman et al., 2023) as
they provide multiple model size and their check-
points during the training. The proprietary mod-
els, GPT-3.5 and GPT-3.5-instruct are included for
comparative purposes. We select these models as
they provide both chat-based and text-completion
interfaces and allow better comparisons. Never-
theless, we expect other closed-source commer-
cial models will have consistent patterns of results.
These closed models do not provide complete logits
required for arithmetic encoders but nevertheless
provide an idea of how well competitive LLMs can
perform in the task.

Table 1 presents the results. Numbers in the ta-
bles are path similarity of the predicted and target
words in Princeton WordNet. The scores range
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from 0, indicating no connecting path in WordNet,
to 1 (exact match). Instances where the model
merely repeats the test words are assigned a zero
score. Three observations are noteworthy. First,
the model performance generally correlates with
the model size, i.e., the larger model is better. Sec-
ond, the models perform better in hypernym com-
pletions than holonyms, and nominal hypernyms
are better than verbal ones. The pattern is con-
sistent across model sizes, and it is reasonable
because it may reflect the task difficulties between
lexical categories but is also consistent with the
hierarchical structure differences among different
relation types. Thirdly, the proprietary models have
consistent patterns, although they do have higher
scores across categories.

These findings pave the way to a more detailed
analysis of the modes’ compression capacities. Al-
though open models are not as competitive as the
GPTs, the consistent trend of model sizes shows
the extent to which these models capture semantic
relations is different. The interesting question is
whether the task performances are indeed corre-
lated with the compression advantages of these
models. The following experiment explores this
hypothesis.

3.2.2. Compression advantages of semantic
relations

Having established that the models of different
sizes have different performances on semantic
completion tasks, we now turn to whether the mod-
els’ performances consistently reflect on their com-
pression advantages.

We first define the compression ratio (CR) of a
given sequence X of length N as follows,

CR =
∥ArithEnc(pLLM(X))∥

N ·Hunif(x)

where ArithEnc stands for arithmetic encoder
used to generate a compressed message, and ∥·∥
is the message length (in bits). pLLM(X) indicates
the conditional probability distribution of each to-
ken, Hunif(x) is the entropy for each token given a
uniform distribution. The compression advantage
is in turn defined as the difference in CRs between
empirical and permuted sequences:

CompAdv = CRperm − CRemp

The empirical sequences have the correct se-
mantic pairing, which includes a question part,
the definition of synset and its headword, and
a response part, the definition of the hyper-
nym/holonym synset and its headword. The per-
muted sequence has the same format, only the
question part is replaced by another random ques-

tion part in the dataset (see Figure 1 for an exam-
ple).

We compare the compression advantage of the
response part of each sequence pair. Crucially,
the response text in the empirical/permuted pair is
the same, only the preceding context is different.
This way, any resulting compression advantage
of the response text must come from the pairing
itself. Therefore, if the model could discriminate
the empirical and permuted sequences of seman-
tic pairs, the compression ratio should be different.
Specifically, as the empirical one follows the seman-
tic constraints potentially learned from the training
text, the model should find it more compressible,
resulting in a shorter compressed message. When
compared to the permuted sequences, the com-
pression advantage should be larger. Furthermore,
this trend of advantage should correspond to the
models’ semantic task performance: the larger the
model, the higher the compression advantages.

Figure 3 shows the results. Consistent with the
hypothesis, the compression advantages generally
correlate with the model size. The advantage ap-
pears to plateau for models larger than 6.9b, which
is also observed from Table 1. These results sug-
gest that the model encodes the structured knowl-
edge as a form of internal constraints of what would
follow in the text. The larger the model, the learned
constraints are more robust, reflecting better se-
mantic task performances and higher compression
advantage.

What’s more interesting in Figure 3 is compres-
sion advantages improve not only with model sizes
but also with the training steps. It hints that the
data volume the model has seen matters: either
mere exposure to a large enough amount of data
enables the model to learn the constraints, or, in the
training materials, there are structured text patterns
that explicitly describe the semantic relations.

In the next section, we explore the factor of the
model’s seen data. We use another language, i.e.,
Traditional Chinese, to examine whether the com-
pression advantage would be larger when we ex-
plicitly introduce semantic relations to the model.
The objectives are twofold: firstly, to replicate the
findings of English WordNet in Chinese Wordnet,
and secondly, to assess whether direct fine-tuning
of a model with texts that explicitly describe seman-
tic relations leads to higher compression advan-
tages for semantic pairs.

4. Lexical Resource and
Compression

This section examines whether the introduction of
structured knowledge affects the compression ad-
vantages. In the previous section, we showed that
the more data the model has seen (further into the
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CWN MOE Dictionary
BertScore F1 SBERT BertScore F1 SBERT

Model Emp Perm Emp Perm Emp Perm Emp Perm
LopeLlama .910 .848 .737 .415 .888 .866 .586 .275
Taiwan-LLaMa .792 .770 .361 .170 .851 .832 .536 .229
Difference .118 .078 .376 .245 .037 .034 .050 .046

Table 2: The evaluation of LopeLlama and Taiwan-LLaMa’s task performance. We use BERTScore and
SBERT to evaluate the output of LopeLlama and Taiwan-LLaMa on 500 CWN and 100 MoeDict unseen
instances. Crucially, the differences between LopeLlama and Taiwan-LLaMa in empirical conditions are
always higher than the permuted ones.

training process), the larger the compression ad-
vantages. The question remains whether explicit
introduction of structured knowledge, in a relatively
small-amount, also improves the compression, and
how the improvement could generalize to different
tasks. To investigate this, we fine-tune a new model,
LopeLlama based on TaiwanLlama by explicitly
introducing the lexical knowledge from the Chinese
Wordnet. We first build and evaluate the fine-tuned
model in Section 4.1 and compare the compression
advantages of the fine-tuned and based model on
three different tasks in Section 4.2.2.

4.1. Fine-tuned model: LopeLlama

4.1.1. Training

We fine-tune LopeLlama on top of Taiwan-LLaMa
(Lin and Chen, 2023), which was pre-trained on
over 5 billion tokens of Traditional Chinese. The
model was further fine-tuned on over 490K multi-
turn conversational data to enable instruction-
following and context-aware responses.

We train LopeLlama with Chinese Wordnet
(CWN), a lexical resource of traditional Chinese.
CWN has 29,619 senses, of which 26,657 are
used for training, and 2,962 are left for testing.
Each sense has a definition or semantic relations.
We use these attributes to generate an instruction
dataset with the following generation tasks: se-
mantic relation, definition, example sentences, syn-
onyms, hypernyms, and hyponyms (the details of
each task are shown in supplementary). For se-
quences that are too long for the model’s context
size, we split them into sets of ten. Therefore, a
task involving a given sense may be spread across
several training examples. After preprocessing, we
have 101,483 training examples.

LopeLlama is trained from the base model Tai-
wanLlama 2 with LLaMa Factory (hiyouga, 2023).
The fine-tuning is configured to use QLoRA (Hu
et al., 2021; Dettmers et al., 2023) of 4-bit quantiza-

2https://huggingface.co/yentinglin/
Taiwan-LLaMa-v1.0

tion and FlashAttention-2(Dao, 2023). The model
is trained with 3 epochs, learning rate 4e-4 with
cosine scheduling, and the LoRA rank is 16. Com-
plete training parameters can be found in the sup-
plementary materials. The training was completed
in about four days on a single RTX A5000.

4.1.2. Performance evaluation

We use automatic evaluation and qualitative case
studies to verify that the fine-tuned model has a
better performance on the semantic tasks.

To automatically evaluate the output of the fine-
tuned LopeLlama, we use BERTScore (Zhang
et al., 2020) and SBERT (Reimers and Gurevych,
2020)3, along with the baseline performance of the
base model. BERTScore compares the sequence
pairs based on token similarity; it calculates the
cosine similarities of the most similar token pairs
among the reference and candidate sentences. By
contrast, SBERT works on the sentence level; it
is fine-tuned such that produced sentence embed-
dings are semantically meaningful and can be com-
pared using cosine-similarity.

Table 2 shows the scores of both fine-tuned
LopeLlama and the base model Taiwan-LLaMa.
The evaluation results are based on the evalua-
tion split which contains 500 instances. Consid-
ering the instruction dataset always follows a pre-
defined template, the differences in BertScore or
SBERT may result from the model learning superfi-
cial sentential structures. Therefore, we provide a
permutation baseline, which permuted the pairing
between the instruction prompts and the responses’
ground truths in each instance. That is, in permu-
tation sequences, the model’s generation will be
compared to an incorrect ground truth which never-
theless follows the same response template. This
way, the scores in permutation sequences serve
as the baseline resulting from superficial sentential
structures.

3The BERTScore model used is distilbert-base-
multilingual-cased, and SBERT is paraphrase-
multilingual-MiniLM-L12-v2

https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0
https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0
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Word Generation Samples

弦
xián

CWN 繫在弓上下兩端的線 ‘String tied to the upper and lower ends of the bow.’
LopeLlama弓的兩端繫上的線 ‘String tied to both ends of the bow.’
TwLlama 弦是一種由絲、絹或其他材料製成的細長而敏感的樂器 ‘A stringed instrument made from silk,

satin, or other materials, which is slender and sensitive.’
雙向

shuāng
xiàng

CWN 形容事件進行的方向有兩個 ‘Describing an event with two directions.’
LopeLlama形容兩方同時進行 ‘Describing two sides happening simultaneously.’
TwLlama 雙向：以兩種語言或方向進行溝通 ‘Bilingual: Communicating in two languages or directions.’

獸
shòu

MOE 總稱有四足而全身有毛的脊椎動物 ‘General term for vertebrate animals with four legs and fur.’
LopeLlama四隻腳、全身有毛的脊椎動物的總稱 ‘Vertebrate animals with four legs and fur, general term’
TwLlama 與動物有關的事物 ‘Things related to animals.’

岌
jí

MOE 山勢高峻 ‘High and steep mountain terrain.’
LopeLlama形容山形陡峭，高低落差大的 ‘Describes steep mountain shapes with large elevation

changes.’
TwLlama 岌（yǎn）：形容詞。指小山丘。例句：1.《爾雅．釋山》：「小山岌，大山峘。」2.

如：「岌峨」、「岌嶪」 ‘(yǎn): Adjective. Refers to small hills. Example sentences: 1.
"Erya．Explaining Mountains": Small hills are岌, and big mountains are峘. 2. Such as "岌
峨" and "岌嶪"’

Table 3: LopeLlama and Taiwan-LLaMa sample outputs in definition generation task, given the headword,
POS, and example sentences of words from CWN or MOE.

Furthermore, it can be argued that the fine-tuned
model only learn the writing style (e.g. lexical
choice or collocation patterns) instead of under-
lying semantics. To address the concerns, we add
an additional 100 instances from the MOE dictio-
nary, which have different writing styles in defini-
tions and example sentences, are included. Com-
paring two models on these instances ensure any
sentence similarity cannot be attributed to the sur-
face features. The results show that in all com-
parisons, LopeLlama always perform better than
Taiwan-LLaMA, as seen the empirical differences
are always larger than the permuted ones. The
differences in MOE Dictionary is indeed smaller,
suggesting the fine-tuned model is strongly influ-
enced by the response format. Nevertheless, the
findings suggest that the fine-tuned model performs
better in the semantic tasks.

In addition to quantitative evaluations, we further
manually examine 500 text generation in the test
splits, with greedy decoding. Generation samples
are shown in Table 3. For instance, in case #1. 弦,
LopeLlama accurately describes it with “tied at both
ends,” while Taiwan-LLaMa’s response is mixed
with definitions of instruments and silk materials.
Also, in #2. 雙向, where LopeLlama’s generation
is similar to the CWN ground truth, while Taiwan-
LLaMa’s generation is more related to ‘bilingual’.
Similar cases are observed in MOE dictionary in-
stances, such as #3. 獸. LopeLlama provides rel-
evant features such as “vertebrate animals,” “four
legs,” and “fur,” while Taiwan-LLaMa’s only provides
a general description.

The automatic and manual evaluations both indi-

cate the fine-tuned model, LopeLlama, has better
task performance compared to the base model. We
now proceed to examine how the compression ca-
pacities of the fine-tuned model, having been fine-
tuned on the explicit semantic instruction dataset,
differ from those of the original base model.

4.2. Compression advantage in the
fine-tuned model

To further study the compression capacities of the
fine-tuned LopeLlama model, we compare their
compression advantages with three datasets.

The first dataset is the evaluation split of the
LopeLlama fine-tuning dataset, which is the ex-
act same dataset used in Table 2. The compres-
sion advantages (CAs), as computed in Section
3.2.2, are the difference in the response part’s com-
pression ratio between empirical and permuted se-
quences. The CA of the fine-tuned LopeLlama is
0.115 (SE = .0072), and the one of the base model,
TaiwanLlama, is 0.080 (SE = .0076). Therefore,
consistent with the previous findings, models that
perform better in semantic tasks also have larger
CAs.

4.2.1. CWN semantic relations

The observed difference in CA might not be sur-
prising for the following reasons. First, these se-
quences follow the same surface structure as the
dataset used to train LopeLlama. A higher CA may
result from the model learning to expect surface
structures rather than the underlying semantics.
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Secondly, different from the English semantic re-
lation dataset used in 3.2.2, the empirical and per-
muted sequences have the same instruction part
but differ in response parts. Although CA automat-
ically controls for different sequence lengths, the
sequence difference is nevertheless a confounding
variable in the comparison.

To address these concerns, we introduce a sec-
ond dataset, semantic relation pairs from CWN.
The dataset is aimed to serve as the counterpart of
the English semantic pair dataset in 3.2.2. There
are 626 instances in this dataset, which are 549
hypernymys and 77 holonymys. Each sequence
starts with a prompt consisting of a word, its defini-
tion, and the intended semantic relation, followed
by the response part, which is the target word and
its definition. As in the English dataset, the empiri-
cal and permuted sequences in a given pair shared
the same response (see CWN SemRel. in 1(B)).

The CAs are computed the same way for both
models, which is for 0.060 (SE = 0.004) LopeL-
lama and 0.044 (SE = 0.004) for the TaiwanLlama
model. The pattern is the same as observed in the
first dataset. The consistent findings suggest that
the fine-tuned model captures the superficial sen-
tential structure and learns to encode the semantic
relations within the pairs better. More interestingly,
the Taiwan-LLaMa is trained on 35B tokens, yet
the LopeLlama is fine-tuned with less than 30M
tokens. This implies that even a small amount of
training data can significantly change compression
capacities.

4.2.2. Character sense-disambiguation

The last question about the fine-tuned model’s
compression capacity is how well it generalizes
the learned semantic constraints to unseen tasks.
Here, we use the third dataset, which includes task
sequences entirely novel for the model: a character
sense-disambiguation task. This task exploits the
morphological structure in Chinese bisyllabic words.
These words have two characters (syllables), most
of which could be used as a single-character words
and have their own meanings. Thus, these bisyl-
labic words can also be considered compounds
where each constituting single-character words
contribute their own meanings, among their multiple
senses, to the whole two-character compound. In
this character sense-disambiguation dataset, each
sequence’s question part is to find the meaning
of a given character in a bisyllabic word, and the
response part is the character’s meaning in that
word.

There are 469 bisyllabic words in this character
sense-disambiguation dataset. These words are
selected from CWN, and their constituting charac-
ters must also have 5 to 10 senses when used as
single-character words. The dataset is automat-

Figure 4: Compression advantages of LopeLlama
and Taiwan-LLaMa on three different tasks. LopeL-
lama shows consistent compression advantages
over the base model Taiwan-LLaMa across different
datasets. Error bars indicate one standard error.

ically generated by an independently developed
system that leverages the LangChain framework
(Chase) and the GPT-3.5 model (Tom Brown et al.,
2020) that has access to CWN database through
retrieval-augmented generation (further details of
this system, LopeGPT, can be found in Supple-
mentary). It should be noted that identifying the
character’s meaning in a bisyllabic word is a contro-
versial linguistic topic (Packard, 2000). Therefore,
this dataset only serves as a medium to study the
compression capacities of the model rather than a
normative linguistic analysis of Chinese morphol-
ogy. The dataset includes empirical and permuted
sequence pairs, where the question parts are dif-
ferent, and the response parts are the same in a
given sequence pair.

Interestingly, the same CAs patterns are ob-
served, which are .071 (SE = .002) for LopeLlama
and .057 (SE = .002) for TaiwanLLaMa, which
indicates the fine-tuned model’s compression ca-
pacities generalize to the unseen task (CAs results
of all three datasets are shown in Figure 4). Cru-
cially, the sequences in this dataset are generated
by another model that only has access to CWN
through retrieval augmentation. Better CAs in the
fine-tuned model than in the base model imply that
the fine-tuned model learns abstract semantic con-
straints underlying CWN. In summary, the findings
from the three datasets all indicate that the model’s
fine-tuning process modulates its semantic com-
pression capacities.

5. Conclusion

This paper offers an angle of seeing LLMs as strong
compressors from the information-theoretic com-
pression viewpoint, which is motivated both by the
machine learning study on information theory and
psycholinguistics theory on prediction mechanism
(Juola, 2008; Deletang et al., 2024; Ryskin and
Nieuwland, 2023). Along this line, we conduct a se-
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ries of experiments on the semantic relations from
English and Chinese Wordnet, empirically demon-
strating that LLMs can indeed compress semantic
relations better measured by the proposed com-
pression advantages index, and the compression
capacities are consistent with the model’s perfor-
mance on semantic tasks. Moreover, by fine-tuning
a new model with a small semantic relation dataset,
the compression advantages improve, even in the
unseen task. Performance-wise, these results are
not surprising given LLMs are competent in natural
language processing tasks(Qin et al., 2023); yet,
the compression angle shed light on the model per-
formance in a more functional way: as the source
coding theorem suggests, predicting and compres-
sion are the two sides of the same coin. This paper
empirically provides evidence that an LLM can be
viewed as a compressor of semantic information or
potentially other structured knowledge, where the
model learns the text input’s underlying constraints,
helping it maximize the predictive probabilities.

The compression angle offers a high-level com-
putational viewpoint to LLMs and the semantic re-
lations, yet it does not deal with the algorithmic and
representational problem (Marr, 1982): how the
model represents the constraints guiding the com-
pression. This question will require further work in-
specting the model’s states such as contextualized
embeddings, circuits, and specific nodes(Prakash
et al., 2024; Ghandeharioun et al., 2024; Wang
et al., 2023), and how they interact with compres-
sion. These studies will help us better understand
how LLMs learn and encode structured knowledge.
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A. LopeLlama: Training
Hyperparameters

Table A1 are the hyperparameters of low-rank adap-
tation when training LopeLlama on the base model.

Hyperparameter Value
batch_size 4
gradient_accumulation_steps 8
lr_scheduler_type cosine
learning_rate 4e-4
num_train_epochs 3
fp16 True
quantization_bit 4
lora_rank 16
lora_alpha 16
lora_dropout 0.05
flash_attn True

Table A1: Training arguments for LopeLlama. All
other parameters were set to the default value.

B. Training data for LopeLlama

See Table A2 for the training data and their formats
of LopeLlama instruction fine-tuning.

C. Individual scores of LopeLlama on
CWN tasks

Table A3 shows the performances of LopeLlama
on the individual tasks based on Chinese Wordnet.

D. LopeGPT

LopeGPT is built as a chatbot service leveraging
the LangChain framework (Chase) and the GPT-
3.5 model (Tom Brown et al., 2020) and integrating
language resources to enhance its language un-
derstanding and providing more effective, contextu-
ally relevant responses. In addition to the charac-
ter disambiguation tasks used in the current study,
LopeGPT offers more functions and helps users
accomplish tasks regarding lexical semantics and
corpus linguistics. The integrated resources are
listed as follows:

CWN. It serves as a language knowledge re-
source focusing on word senses and semantic re-
lations in Taiwan Mandarin. This wordnet includes
over 29,000 senses derived from over 29,000 lem-
mas, as well as over 12,000 synsets and over
59,000 semantic relations.4 As we manage to in-
tegrate lexical knowledge into LopeGPT, the word
sense tagger is also added as an external resource.

4Each sense includes its definition, example sen-
tences, part-of-speech, and semantic relations.

Corpus data in Taiwan. The data derives from
two resources: (1) Academia Sinica Balanced Cor-
pus of Modern Chinese (ASBC), which includes
19,247 texts, 11M word tokens and 239K word
types. (2) Social Media Corpus in Taiwan (SoMe),
which collects articles and comments from PTT5, a
BBS (Bulletin Board System) with more than 15 mil-
lion users in Taiwan. There are 70K posts, along
with 3M comments, ranging from 2020 to 2023,
extracted from SoMe. The posts have been prepro-
cessed and embedded via the text-embedding-
ada-002 model (OpenAI).

These resources are built into external tools and
made available to LopeGPT. Therefore, LopeGPT
can capitalize on the aforementioned language re-
sources for lexical semantic tasks. We conducted
a series of experiments to assess LopeGPT’s ca-
pacity for sense identification (for a single charac-
ter in a bi-syllabic word), semantic relation identi-
fication (for a neologism), lemmatizing and POS-
tagging sentences, and sense disambiguation (see
supplementary for details). The preliminary re-
sults demonstrate LopeGPT’s proficiency in com-
prehending word and character meanings in terms
of the evaluation tasks. In other words, language
resources such as corpora and WordNet signifi-
cantly enhance LLMs’ language comprehension
and performance across various natural language
processing tasks.

LopeGPT access to the external linguistic re-
sources by the use of tools (as formulated by
langchain, Chase). These tools are defined as
follows:

• SenseTagTool(text): Tokenizes and tags text
using DistilTagger from the CWN to provide
rich contextual information for further process-
ing.

• QuerySenseFromDefinitionTool(text): Returns
all senses that contain the given text in their
definitions. The text can be specified using
regular expressions for flexibility.

• QuerySenseFromLemmaTool(text): Returns
all senses that contain the given text in their
lemmas (i.e., the basic form of a word). Like
other tools, it also supports regular expression-
based text input.

• QuerySenseFromExampleTool(text): Returns
all senses that contain the given text in their
examples. This tool allows for context-based
sense querying.

• QueryAsbcSenseFrequencyTool(sense_id):
Provides the frequency of a particular
sense_id in the ASBC, offering insights into
the usage and prominence of specific senses.

5http://www.ptt.cc/bbs/index.html
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Task Given Want # %
Relations HW, POS, DEF REL 28,042 27.6
Definition HW, POS, SENT DEF 26,657 26.3
Representative Sentence HW, POS, DEF SENT 25,173 24.8
Synonyms HW, POS, DEF, SENT SYN 9,863 9.7
PWN Synset HW, POS, DEF PWN 7,568 7.5
Hypernyms HW, POS, DEF HYPER 3,071 3.0
Hyponyms HW, POS, DEF HYPO 1,023 1.0
Supplementary HW, POS, DEF, SENT SUPP 86 0.1
Total 101,483 100

Table A2: Training data for LopeLlama. Several tasks are generated for each sense that represents a
specific aspect of that sense. “Given” indicates what information is provided to the model. “Requested” is
what the model should generate. HW: headword, POS: part of speech, DEF: definition, REL: relation,
SENT: example sentence, HYPER: hypernym, HYPO: hyponym, PWN: Princeton WordNet Synset, SUPP:
supplementary

.

Model Task # BS F1 (Perm.) BS P (Perm.) BS R (Perm.) SBERT (Perm.)
LopeLlama REL 141 0.9456 (0.8624) 0.9551 (0.8711) 0.9368 (0.8553) 0.8858 (0.6203)
Taiwan-LLaMa 0.7718 (0.7339) 0.8232 (0.7695) 0.7287 (0.7038) 0.3967 (0.2326)
LopeLlama DEF 137 0.9243 (0.8572) 0.9263 (0.8588) 0.9228 (0.8566) 0.7460 (0.2660)
Taiwan-LLaMa 0.8393 (0.8200) 0.8347 (0.8176) 0.8444 (0.8231) 0.4484 (0.1835)
LopeLlama SENT 119 0.8157 (0.7810) 0.8303 (0.7888) 0.8024 (0.7743) 0.4358 (0.2320)
Taiwan-LLaMa 0.7975 (0.7843) 0.8306 (0.8157) 0.7673 (0.7557) 0.2645 (0.1019)
LopeLlama SYN 47 0.9506 (0.8536) 0.9520 (0.8574) 0.9493 (0.8507) 0.9071 (0.3950)
Taiwan-LLaMa 0.7594 (0.7335) 0.7899 (0.7542) 0.7329 (0.7164) 0.3689 (0.1552)
LopeLlama PWN 41 0.9642 (0.9473) 0.9687 (0.9512) 0.9600 (0.9436) 0.8757 (0.7451)
Taiwan-LLaMa 0.7244 (0.7242) 0.7256 (0.7250) 0.7247 (0.7250) 0.2227 (0.1416)
LopeLlama HYPER 9 0.9516 (0.8993) 0.9455 (0.8957) 0.9579 (0.9035) 0.7996 (0.4902)
Taiwan-LLaMa 0.7935 (0.7840) 0.8243 (0.8097) 0.7657 (0.7609) 0.3251 (0.1463)
LopeLlama HYPO 6 0.8493 (0.8171) 0.8667 (0.8316) 0.8329 (0.8037) 0.6025 (0.3916)
Taiwan-LLaMa 0.7726 (0.7613) 0.8278 (0.8143) 0.7250 (0.7154) 0.3664 (0.1129)

Table A3: Individual scores for each task on Chinese WordNet. We use BERTScore (BS) and SBERT to
evaluate the output of LopeLlama and Taiwan-LLaMa across Chinese WordNet and MoeDict. Permuted
(Perm.) means that the reference answer in each prediction is compared against is randomly shuffled within
each task (e.g., tasks that generate a definition have references shuffled within that group). BERTScore
calculates precision, recall and F1 while SBERT calculates cosine similarity. # = Number of samples
for task, P = Precision, R = Recall. HW: headword, POS: part of speech, DEF: definition, REL: relation,
SENT: example sentence, HYPER: hypernym, HYPO: hyponym, PWN: Princeton WordNet Synset, SUPP:
supplementary

• QueryRelationsFromSenseIdTool(sense_id):
Returns all relations associated with a given
sense_id, enabling exploration of semantic
connections and relations.

• QueryAsbcFullTextTool(text): Enables search-
ing the ASBC and returns the first 50 lines con-
taining the specified text, facilitating access to
relevant textual contexts.

• QueryPTTSearchTool(text): Converts the in-
put text into vectors and performs similarity-
based retrieval to find the top 10 articles most

closely related to the query. This tool aids in re-
trieving contextually relevant information from
online sources.
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