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Abstract
Word Sense Disambiguation (WSD) is one of the hardest tasks in natural language understanding and knowledge
engineering. The glass ceiling of the 80% F1 score is recently achieved through supervised learning, enriched
by knowledge graphs. Here, we propose a novel neurosymbolic methodology that may push the F1 score above
90%. The core of our methodology is a neurosymbolic sense embedding, in terms of a configuration of nested
n-dimensional balls. The central point of a ball well preserves pre-trained word embeddings learned from data, which
partially fixes the locations of balls. Inclusion relations among balls precisely encode symbolic hypernym relations
among senses, and enable simple logic deduction among sense embeddings. We trained a Transformer to learn the
mapping from a contextualized word embedding to its sense ball embedding, just like playing the game of darts (a
game of shooting darts into a dartboard). A series of experiments are carried out using pretraining n ball embeddings,
which cover around 70% training data and 75% testing data in the benchmark WSD corpus. Euclidean distance
and cosine similarity functions are used as objective functions, separately, and each reaches > 95.0% F1 score
in the ALL-nball dataset. This substantially breaks the glass ceiling of deep learning methods. Future work is dis-
cussed to develop a full-fledged neurosymbolic WSD system that substantially outperforms deep learning approaches.
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1. Introduction

Word Sense Disambiguation (WSD) is the task of
acquiring the intended meaning of a word within
the context where it appears (Navigli, 2009). It is
one of the fundamental topics of natural language
understanding in Artificial Intelligence (AI) (Weaver,
1949/1955), in part because WSD is hard, and
has wide applications, such as information extrac-
tion, machine translation, opinion mining, question-
answering, sentiment analysis, text understanding.
Deep learning approaches have attained estimated
human performance, and reached a glass ceiling
over 80% (Bevilacqua et al., 2021), yet, they still
make simple mistakes that humans would not do
(Maru et al., 2022). Technically, classifying a word
and its context into a word-sense class is limited
to the knowledge that can be acquired from the
training data (Bevilacqua et al., 2021), because
word-senses are represented as opaque classes,
and symbolic hypernym relations among senses
cannot be used for deduction in the vector space.
However, recent researches show ways to repre-
sent sense class in probabilistic box lattice (Vilnis
et al., 2018) or fuzzy boxes (Dasgupta et al., 2022),
or approximated in the hyperbolic space (Nickel and
Kiela, 2017). However, it is possible to embed with-
out loss a large symbolic tree-structured taxonomy
of word senses as nested spheres with crisp bound-
aries, while well-preserving pre-trained vector em-
bedding in the sphere centres (Dong et al., 2019a,b;
Dong, 2021). In such a neurosymbolic paradigm,
a word-sense is no more an opaque class; rather,

Figure 1: A neurosymbolic approach to Word-
Sense Disambiguation works like playing the game
of Dart. A deep neural network learns to shoot a
contextualized word embedding vector to its sense
regions in the Dart board.

it is explicitly embedded as an n-dimensional re-
gion with a crisp boundary. This provides a new
way to tackle the tough WSD problem. Here, we
vividly describe the new approach as a game of
darts as follows: A neurosymbolic WSD is a neural
dart player that shoots a contextualized word vector
to the place of a configuration of regions, where
its sense is located. This configuration of regions
precisely encodes the sense inventory and latent
features of words, as illustrated in Figure 1.
For example, apple.n.01, orange.n.01, and water-
melon.n.01 are members of fruit.n.01. In classic
deep-learning approaches, they are embedded as
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four vectors. Here, we extend them into regions,
so that their membership relations are explicitly
represented by inclusion relations among these
balls: the ball of fruit.n.01 contains the balls of ap-
ple.n.01, orange.n.01, and watermelon.n.01. The
advantage for WSD is not only that shooting to
a region is much easier than shooting to a point,
but also that explicit region representation enables
logical deduction among senses: shooting a con-
textualized vector of the word apple to the region
of fruit.n.01 is sufficient to determine apple.n.01 as
the intended sense; while shooting to the region
of abstraction.n.06 is reasonable to hypothesize
that it may refer to a company, even apple does
not have the sense of company (company.n.01) in
the sense inventory, as shown by the blue shooting
path in Figure 1. The contribution in this paper are
listed as follows.

1. We propose a novel neurosymbolic method-
ology for WSD, which seamlessly unifies su-
pervised learning approaches and simple sym-
bolic reasoning among hypernym relations;

2. We implement a simple Transformer to realise
the first neurosymbolic WSD system, whose in-
put is pre-trained word embeddings and whose
output is a vectorial location in the pre-trained
n-ball sense embeddings. The performance
of this WSD breaks the ceiling of traditional
deep-learning approaches in all 6 benchmark
datasets where hypernym structures are avail-
able, and outperforms ChatGPT;

3. Our experiments show that using Direct Up-
per Hypernym (DUH) in testing achieved the
best F1 score, while using DUH in training re-
duces the amount of training senses without
weakening the performance;

4. Supported by our preliminary experiments, we
envisage a novel neurosymbolic WSD system
that may greatly outperform current SOTA sys-
tems and list a number of future works.

The rest of the article is structured as follows: we
first review the recent WSD methods, and motivate
our approach; then, we describe the details of the
novel neurosymbolic approach. In experiments,
we first set the targets, and report the statistics of
training and testing dataset, then report and anal-
yse experiments results, by comparing with perfor-
mances of SOTA WSD systems and ChatGPT. In
the end, we list a number of future work to realise
full-fledged neurosymbolic WSD systems.

2. Related Works
2.1. Word Sense Disambiguation
The research on Word Sense Disambiguation
(WSD) has a long history, with contributions from

many researchers worldwide. A recent survey can
be found in (Bevilacqua et al., 2021). The task of
WSD is to automatically decide the intended sense
in a given context, where senses of words are se-
lected from the fixed word-sense inventory. A WSD
system has three components, as follows: (1) a
word in a given context, (2) a word sense inven-
tory, e.g., WordNet (Miller et al., 1990; Miller, 1995),
BabelNet (Navigli et al., 2021), and (3) an anno-
tated corpus, e.g. SemCor (Miller et al., 1993),
where some words have been manually or auto-
matically annotated with intended word senses.
The knowledge graph approaches and supervised
deep-learning approaches are the main WSD ap-
proaches. Their performances are determined by
the quality and the size of the knowledge bases
(Pilehvar and Navigli, 2014).
Knowledge-based approaches for WSD
Knowledge-based approaches leverage part of
the graph structure of word-sense inventories,
e.g. WordNet, BabelNet, where words connect
with all their senses. By injecting the context of a
word into the graph will slightly change the graph
structure, and affect the probability distribution of
senses of the word in the graph, which can be
computed by the Personized PageRank algorithm
(Agirre et al., 2014). The sense with the highest
probability will be selected. This approach can
be improved by connecting word-sense inventory
with large web texts, e.g., BabelNet (Navigli et al.,
2021), a knowledge base that integrates WordNet
with Wikipedia (Moro et al., 2014).
From the game theoretical perspective (von Neu-
mann and Morgenstern, 1947), a word can be
viewed as a player, and its possible senses as
strategies that the player can choose, to maximize
a utility function (Tripodi and Navigli, 2019). Pre-
cisely, let W = {w1, . . . , wn} be the set of the con-
tent words in text T , Si = {s1, . . . , smi} be the set of
senses of wi, S =

⋃
Si is the set of all the strategies

of the games. The strategy space of a player wi is
represented as a probabilistic distribution xi. The
way how the context determines senses of words
is simulated by interactions between two words wi

and wj through a utility matrix Z. The cell zr,t rep-
resents the utility value when wi chooses the rth

strategy and wj chooses the tth strategy. The value
of one sense’s strategy is related to its partners, in
the following three aspects: word similarity, word-
sense similarity, and their sense distributions, and
computed in the manner similar to the attention
mechanism.
Supervised deep learning for WSD Supervised
deep learning approaches frame WSD as a multi-
classification task – classifying a word w plus its
context C into one of its word-senses s, using an
annotated corpus D, in the form of a list of triples
< w, c, s >, and realized by supervised deep learn-
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ing (Kågebäck and Salomonsson, 2016; Raganato
et al., 2017b; Uslu et al., 2018).
The straightforward way of the supervised deep-
learning approach is to compare the similarity be-
tween the contextualized embedding of a word w in
the testing context c and senses s in the annotated
corpus, and choose the most similar one, mea-
sured by a loss function L(w, c, s), either by feed-
forward networks (Hadiwinoto et al., 2019), or trans-
formers (Bevilacqua and Navigli, 2019). In these
approaches, word senses are treated as discrete
class labels. This may cause poor performance on
low-frequency senses. To overcome this limitation,
(Kumar et al., 2019) explicitly computed word sense
embeddings by applying embedding methods for
the hypernym structure of the WordNet, then trained
an attentive BiLSTM to learn the context embedding
of a word to its sense embedding. (Scarlini et al.,
2020) computed contextualized sense embeddings
by utilizing a variety of resources, such as SemCor,
gloss in WordNet, SyntagNet (Maru et al., 2019),
UKB (Agirre et al., 2014), and BERT (Devlin et al.,
2018). (Loureiro and Jorge, 2019) computed sense
embeddings by fully utilizing relations in WordNet,
and achieved very competitive performance. Using
explicit sense embeddings, (Bevilacqua and Nav-
igli, 2020) successfully reached over 80% F1 score
for WSD. (Barba et al., 2021) is able to choose
the most important context definition for the target
word. Their method inherits the idea of the game-
theoretic WSD approach by using a feedback loop
to consider the explicit senses of nearby words.

2.2. Neuosymbolic Unification
Both knowledge-based and supervised deep-
learning WSD approaches have two assumptions
as follows: (1) word senses are opaque classes, (2)
a sense inventory has a fixed taxonomy (Bevilacqua
et al., 2021). Consequently, in knowledge-based
WSD approaches, word senses are represented
by probabilistic distributions; in supervised WSD
approaches, word senses are represented by latent
vector embeddings. However, the two assumptions
are somehow incompatible with the existence of a
symbolic sense inventory – if a sense inventory has
a well-structured and fixed taxonomy, why senses
are opaque classes in both approaches? Such in-
compatibility lies in the discrepancy between the
continuous numeric sense representation and the
discrete symbolic sense representation – The con-
tinuous numeric representation, either as a prob-
abilistic distribution or as a latent vector, cannot
explicitly represent the well-defined symbolic tax-
onomy structure. This incompatibility could be re-
solved, if word sense embedding can precisely en-
code the discrete symbolic fixed taxonomy.
A vector sense embedding can be enlarged into an
n-dimensional ball, whose radius is geometrically

computed to strictly satisfy two conditions as fol-
lows: (1) balls of sibling senses are disconnected
from each other; (2) balls of child and parent senses
are precisely nested – the ball of a child sense is
inside the ball of its parent sense. By utilising geo-
metric methods, (Dong et al., 2019a) precisely in-
jected a large tree-structured taxonomy of senses in
WordNet-3.0 into pre-trained word embeddings, re-
sulting in a configuration of nested low-dimensional
balls. Thus, these nested balls unify numerical vec-
tor embeddings and symbolic structures into one
representation without loss. Hyperbolic geometric
embedding also has the power of neuro-symbolic
unification (Tifrea et al., 2019; Chami et al., 2020),
so that computational models can inherit good fea-
tures from both neural computing and symbolic
reasoning (Besold et al., 2017; Dong, 2021; Dong
et al., 2022; Garcez and Lamb, 2023).

3. Dart4WSD: A neurosymbolic
Darter

Dart4WSD is a novel supervised neurosymbolic
learning methodology for Word Sense Disambigua-
tion, with the novelty that senses are embedded
as regions in vector space and that these region
embeddings explicitly represent a fixed taxonomy
in a sense inventory and well-preserve pre-train
vector embeddings. Dart4WSD utilises a Trans-
former to learn the intended sense of a word in
a given context, whose general architecture con-
sists of five components; word embedding, a fixed
sense inventory, a network that learns contextual-
ized word embedding, a network that transforms
the contextualized word embedding to a location in
the neurosymbolic region, as illustrated in Figure 2.

3.1. Notations used in Dart4WSD
Let w and −→w be a word and its vector word-
embedding, respectively, C represent a context;
−→wC be a vector embedding of word w in the con-
text C. Let −→VwC

be the output of our neural net-
work, with the input −→wC , that is, −→VwC

= NN(−→wC).
Let w have k different senses in the inventory
Sw = {Sw

1 , . . . , S
w
k }, and O[Sw

i ] be the ball embed-
ding of Sw

i , with the central point −→O [Sw
i ] and the

radius r[Sw
i ].

3.2. The task formulation for Dart4WSD
Given an annotated corpus D, we train a neural net-
work NN , with a loss function L(NN(−→wC),O[Sw

i ])
that improves the shooting technique of NN so
that most of its output vectors are located inside
balls of the target senses. In this preliminary
work, we compare two objective functions: (1)
the Euclidean distance, −→

VwC
= NN(−→wC) is in-

side O[Sw
i ], that is, the distance between −→

VwC

and −→
O [Sw

i ] is less than or equal to r[Sw
i ]. That

is, Ldis(
−→
VwC

,O[Sw
i ]) = max{0, ‖−→VwC

− ~O[Sw
i ]‖ −
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Figure 2: The supervised learning architecture of Dart4WSD: (A) word embeddings; (B) the fixed word
sense taxonomy extracted from a sense inventory; (C) a neural network that learned contextualized word
embeddings; (D) a neural network that learns to map a word in a context to its word sense ball embedding;
(E) the neurosymbolic nested ball embeddings of word senses.

r[Sw
i ]}; (2) the well-known cosine similarity, that

is, Lcos(
−→
VwC

,O[Sw
i ]) ≈ cos(−→wC ,

−→
O [Sw

i ]). The
cosine approximation works well, when balls of
sibling senses in the inventory are of the similar
size. For example, in Figure 3, the apple.n.01,
orange.n.01, and watermelon.n.01, three child
senses of fruit.n.01, are embedded as balls with
similar sizes; fruit.n.01 and tree.n.01 are siblings at
the upper level in the inventory, and also embedded
in the similar size. To correctly determine that the
word apple in the phrase eating a juicy apple, the
neural network shall map the contextualized word
embedding (−−−→appleeating a juicy) to a vector inside
the ball of the sense fruit.n.01 (O[Sfruit

1 ]). Then,
the sense apple.n.01 inside the fruit.n.01 will be
chosen as the target sense.
Using upper category information for WSD in the
embedding space has been proposed in (Beviá
et al., 2006; Vial et al., 2019), we show that using
explicit region embedding can fully utilise the upper
category information, for at least two reasons as
follows: (1) explicit and precise boundaries of re-
gions endow our method the ability to reason with
the symbolic hypernym relations in the embedding
space; (2) It is reasonable to argue that the con-
text information eating a juicy… shall not provide
information to direct the word embedding of apple
exactly to the ball embedding of apple.n.01, as eat-
ing a juicy orange and eating a juicy watermelon are
as meaningful as eating a juicy apple. We argue
that this context information shall direct the word

Figure 3: A novel method to choose senses by car-
rying out reasoning with hypernym relations in the
embedding space: as long as the contextualised
word embedding −−−→

appleeating a juicy is shot within
the fruit.n.01 ball, our system will choose apple.n.01
as the target sense.

embedding of apple towards the sense embedding
of its direct upper hypernym, here, fruit.n.01, and
deviate from direct upper hypernym balls of its other
senses, here, tree.n.01.
Let H1(S

w
i ) be the direct upper hypernym of Sw

i in
the inventory. We assume that there are no two Sw

i

and Sw
j have the same direct upper hypernym, that

is, H1(S
w
i ) 6= H1(S

w
j ), if Sw

i 6= Sw
j . In the case of

using Euclidean distance as the objective function,
the sense of w, whose O[H1(S

w
i )] (the boundary

of the ball of the direct upper hypernym of w) is
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Figure 4: A transformer architecture for Dart4WSD.

nearest to −→
VwC

, will be selected as the sense of w
in the current context.

Sw = arg min
Sw
i
∈Sw

max{0, ‖−→VwC
− ~O[Sw

i ]‖ − r[Sw
i ]}

In the case of using cosine similarity as the objec-
tive function, the sense of w, whose −→

O [H1(S
w
i )]

(the centre vector of the ball of the direct upper hy-
pernym of w) has the largest cosine value with −→

VwC
,

will be selected as the sense of w in the current
context.

Sw = arg max
Sw
i
∈Sw

cos(−→VwC
,
−→
O [H1(S

w
i )])

3.3. The neurosymbolic Dartboard for
senses

Considering the normal WSD situation that each
contextualised word has one target sense, we re-
strict here the taxonomy of word senses as a tree
structure. Accordingly, child-parent senses are pre-
cisely encoded as the child ball is inside the parent
ball; sibling relation senses are precisely encoded
as the disconnectedness relations among sibling
sense balls, as illustrated in Figure 3. These fea-
tures are fulfilled by n-ball embeddings (Dong et al.,
2019a,b; Dong, 2021), in which (1) the symbolic
taxonomy of word senses is explicitly and precisely
encoded by boundary relations among regions, and
(2) existing vector sense embedding is preserved
by the centre vector of a region, as illustrated in
Figure 2. Thus, we use n-balls as the neurosym-
bolic Dartboard of Dart4WSD, for quick prototyping
and the proof of concept, and also for the ease of
re-production and extension.

3.4. A supervised learning process
The Transformer architecture was originally de-
signed for sequence-to-sequence tasks (Vaswani
et al., 2017), and has been applied in a variety of
fields (Lin et al., 2021). It can be used as a universal
approximation of sequence-to-sequence functions
(Yun et al., 2020). We use a Transformer architec-
ture to learn the mapping from the contextualized
words to balls of their target senses, as illustrated
in Figure 4. Given a sentence s, we transform it
into a list of tokens (t1, t2, t3...tm), then, replace
each token with contextualised word embedding,

#training #exclude #n-ball #no ball
SC 224415 56207 156483 11725
SC+O 1135547 259375 837147 39025

Table 1: The statistics of the numbers of training
records. SC represents SemCor; SC+O repre-
sents SemCor+OMSTI.

senses #s-class #s-nball #s-L1
SC 18953 15025 5799
SC+O 19253 15298 5852

Table 2: The statistics of senses in our experiments.
#s-class: the total number of senses whose hyper-
nym path is longer than 1; #s-nball: the total num-
ber of senses that have ball embedding; #s-L1: the
total number of senses that are the direct hypernym
of senses in #s-nball.

−→
t 1,C1

,
−→
t 2,C2

,
−→
t 3,C3

. . .
−→
t m,Cm

(Yap et al., 2020).
We feed −→

t Ci
into a Transformer (TF ), whose out-

puts are fed into a two-layered perceptron as fol-
lows. Ideally, the output of the perceptron −→

V shall
be inside the n-ball of the target word sense.

−→
VwC

= Linear(Relu(Linear(TF (
−→
t i,Ci

))))

4. Experiments
The target of the experiments is to examine the
WSD performance, when the symbolic structure
of the sense classes is explicitly and precisely
represented in the vector space. We developed
Dart4WSD as the first such a WSD system, and
compared its performance with the SOTA perfor-
mance, and with the WSD performance of Chat-
GPT. Our four experiments are designed to answer
the questions as follows.

1. How is the WSD performance of LLMs, e.g.,
ChatGPT?

2. How good is Dart4WSD in the task of mapping
contextualized word vector to sense vectors,
using Euclidean distance and cosine similarity
objective functions, respectively? Which ob-
jective function leads to better performance?

3. How is the performance of Dart4WSD, if it uses
the direct upper hypernym of the target sense
(here, n-dimensional balls)? Which objective
function leads to better performance?

4. Will the performance be improved in the test-
ing phase, if in the learning phase Dart4WSD
maps to n-balls of direct upper hypernym
senses?
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#test #exclude #nball #no nball
S-2 2275 722 1459 94
S-3 1832 396 1341 95
S-07 449 8 420 21
S-13 1621 0 1435 186
S-15 1013 248 712 53
ALL 7181 1374 5358 449

Table 3: The statistics of testing records. S-2
represents Senseval-2, S-3 represents Senseval-
3, S-07 represents SemEval-07, S-13 represents
SemEval-13, S-15 represents SemEval-15.

#S-2/L1 #S-3/L1 #S-07/L1
#nball 711/522 780//605 327/281

#S-13/L1 #S-15/L1 #A/L1
#nball 669/408 350/256 2251/1424

Table 4: The statistics of senses in test records. #S-
2/L1 represents the numbers of different n-balls in
Senseval-2 and the direct upper level hypernyms.
Others are interpreted in the same way.

4.1. Datasets
We exclude, from benchmark datasets SemCor
(SC) and SemCor+OMSTI (SC+O), senses that do
not have class structures, as our target focuses on
the WSD performances, subject to opaque or clear
embedding of sense classes.
SemCor has 224415 training records, among which
there are 25845 different senses; senses in 156483
records have n-ball embedding, among which
there are 15025 different senses; senses in 11725
records do not yet have n-ball embedding, totalling
3928 different senses. Senses in 56207 records
do not have a taxonomy, totalling 6892 different
senses.
SemCor+OMSTI has 1135547 training records,
among which there are 26265 different senses;
senses in 837147 records have n-ball embedding,
among which there are 15298 different senses.
Senses in 39025 records do not yet have n-ball
embedding, totaling 3955 different senses. Senses
in 259375 records do not have a taxonomy, totaling
7012 different senses, as listed in Table 1 and Ta-
ble 2. The n-ball embedding contains 47,634 word
senses, covering around 80% senses in the WSD
benchmark datasets.

4.1.1. Training data
We create four training datasets, as follows: (1)
SemCor-nball, (2) SemCor+OMSTI-nball, (3)
SemCor-nball-L1, and (4) SemCor+OMSTI-nball-
L1 in the following way: Firstly, we transform
training data into the form as follows: “(sense,
a list of word, the index for the word(s) of the
sense)”. For example, (‘aim.n.02’, [‘have’, ‘you’,
‘set’, ‘specific’, ‘objectives’], [4]), which means

that the word pointed by the index 4, that is
the word ‘objectives’, should have the sense
‘aim.n.02’. The first two datasets SemCor-nball
and SemCor+OMSTI-nball are extracted from
SemCor and SemCor+OMSTI with the criteria that
target senses have n-ball embeddings. That is,
if ‘aim.n.02’ has an n-ball embedding, this piece
of training record will be selected. The other two
datasets are created, by setting each target sense
in the first two datasets with its direct hypernym. If
this hypernym has n-ball embedding, the training
record will be selected. For example, ‘aim.n.02’
has an hypernym path in WordNet-3.0, as fol-
lows: [‘aim.n.02’, ‘goal.n.01’, ‘content.n.05’, ‘cog-
nition.n.01’, …]. Its direct hypernym is ‘goal.n.01’.
If it has an n-ball embedding, the following train-
ing record will be added into the corresponding -L1
dataset, for example, (‘goal.n.01’, ‘aim.n.02’, [‘have’,
‘you’, ..., ‘objectives’], [4]).

4.1.2. Testing data
We create 6 × 2 = 12 datasets from the
six benchmark datasets, namely, Senseval-2,
Senseval-3, SemEval-07, SemEval-13, SemEval-
15, ALL (Raganato et al., 2017a). From each
dataset E∈{Senseval-2, Senseval-3, SemEval-
07, SemEval-13, SemEval-15, ALL}, we derive 2
testing datasets as follws: E-nball and E-nball-L1.
E-nball and E-nball-L1 are created in the same
way as we create training data, as listed in Table 3.

4.1.3. Evaluation
We use the F1 calculation software in the stan-
dard WSD corpus, downloaded from http://lcl.
uniroma1.it/wsdeval/home.

4.2. Setting and running of experiments
Dart4WSD is implemented in PyTorch. We set
learning rate to 0.001, 20 epochs, with 4-fold cross
validation. Experiments were conducted on Mac-
Book Pro Apple M1 Max (10C CPU/24C GPU),
32 GB memory. Using 50-d Glove word embed-
ding, Dart4WSD took less than 10 seconds for one
epoch for SemCor-nball training data. Dart4WSD
converges very fast: the loss of the second epoch
is only one tenth of the loss of the first epoch.

4.3. Experiments and Results
4.3.1. Experiment 1
Recent research shows that LLMs, e.g., Chat-
GPT, can do almost perfect human-like question-
answering, and their ability to reason can be im-
proved by using prompt engineering. We created
four kinds of prompts to evaluate performances
of ChatGPT (gpt-3.5-turbo) on the six benchmark
WSD test datasets, as follows: (1) Zero-shot
prompt, which gives ChatGPT all senses of a word
w, and a sentence containing w, and let ChatGPT
choose the right one from the list; (2) few-shot

http://lcl.uniroma1.it/wsdeval/home
http://lcl.uniroma1.it/wsdeval/home
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Obj. func.: Senseval-2 Senseval-3 Senseval-07 Senseval-13 Senseval-15
Ldis L0 L1 L0 L1 L0 L1 L0 L1 L0 L1
SC 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%

SC L1 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%
SC+O 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%

SC+O L1 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%

Table 5: F1 scores of 5×2 datasets by using Euclidean distance as the objective function. The F1
is computed by the standard tool for WSD, which is available in the dataset download from http:
//lcl.uniroma1.it/wsdeval/home.

Obj. func.: Senseval-2 Senseval-3 Senseval-07 Senseval-13 Senseval-15
Lcos L0 L1 L0 L1 L0 L1 L0 L1 L0 L1
SC 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%

SC L1 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%
SC+O 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%

SC+O L1 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%

Table 6: F1 scores of 5×2 datasets by using cosine similarity as the objective function.

prompt, which adds one example to the zero-shot
prompt; (3) CoT prompt, which uses the gloss as a
mid-step to connect a sense and the word in a con-
text; (4) few-shot CoT, which adds an example to
the Cot prompt. The zero-shot prompt produces the
lowest performance, ranging from 30.7% to 37.6%,
the few-shot CoT delivers the best performance,
ranging from 55.4% to 68.4%, which is below 80%
the glass ceiling of the SOTA performance. Other
experiments found that LLMs may make correct an-
swers with incorrect explanations (Creswell et al.,
2022; Zelikman et al., 2022). Similarly, the case of
WSD may provide chances to explore how Chat-
GPT may correctly understand the meaning of sen-
tences, while misunderstanding the meanings of
single words in the sentence.

4.3.2. Experiment2

To answer the second question, we used the
SemCor-nball dataset to train our Dart4WSD
neural-network. It learns to map from contextual-
ized word embeddings to centre vectors of sense n-
balls. The performances using Euclidean distance
range from 32.8% to 37.5% (F1 score); while the
performances using cosine similarity range from
33.2% to 39.5%, in all the testing datasets, as illus-
trated in column L0 of Table 5, Table 6. Compared
with the current best result 80% (Bevilacqua and
Navigli, 2020), this performance is not good, in part
because our inputs are pre-trained glove vectors
and the context vector is approximated by aver-
aging the vectors of neighbourhood words with a
fixed window size, which limits the Transformer to
dynamically select the right contexts, and results in
a similar performance as ChatGPT using zero-shot
prompt.

ALL (Ldis) ALL (Lcos)
L0 L1 L0 L1

SC 34.4% 95.2% 37.8% 95.3%
SC L1 34.4% 95.2% 37.8% 95.3%
SC+O 34.4% 95.2% 37.8% 95.3%

SC+O L1 34.4% 95.2% 37.8% 95.3%

Table 7: F1 scores of the ALL-L0 and ALL-L1
datasets. Using direct hypernyms of target senses
(ALL-L1), the performances (with both objective
functions) of Dart4WSD break the glass ceiling of
deep learning methods.

4.3.3. Experiment3
For the third question, we used the trained model
in Experiment 2, and evaluated whether it success-
fully hit the ball of the direct upper hypernym senses.
The F1 scores range from 88.2% to 100% using Eu-
clidean distance, and range from 89.5% to 100%
using cosine similarity, as listed in Table 5, Table 6.
The F1 score for the ALL-L1 data set reaches 95.0%
(Table 7) with each objective function (Euclidean
distance and cosine similarity), which greatly out-
performs the SOTA performance (80%) (Bevilac-
qua et al., 2021), and break the performance ceiling
(a bit above 90%) of traditional deep-learning ap-
proaches (Raganato et al., 2017a).

4.3.4. Experiment4
To answer the third question, we trained
Dart4WSD by utilising the SemCor-nball-L1
and SemCor+OMSTI-nball L1 datasets. The
target senses in the two training data sets are
replaced by their direct hypernyms, so they have
less number of senses for learning. There are no
drops in the performance, as illustrated in the rows
SC L1 and SC+O L1 of Table 5 – 7. This shows
that Dart4WSD is less data-hungry, compared with

http://lcl.uniroma1.it/wsdeval/home
http://lcl.uniroma1.it/wsdeval/home
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Figure 5: (a) the sphere boundary of human.n.01
includes the dani.n.01 sphere; (b-c) Sample images
of Greek people and Dani people.

traditional deep learning systems.

4.3.5. Analysis and Discussions
By using the direct upper-level senses in the test-
ing datasets, Dart4WSD outperforms ChatGPT and
the SOTA systems, and even breaks the glass ceil-
ing of deep learning approaches, in the setting of
current experiments. We also performed experi-
ments by utilising other pre-trained embeddings,
e.g., BERT, and had very similar results. This con-
vergently suggests that the high performance shall
be ascribed to the neurosymbolic n-ball embedding
that precisely imposes a symbolic sense inventory
into the embedding space, while preserving pre-
trained word embeddings in the centre points of
these n-balls. In this way, the configuration of all
n-balls endows Dart4WSD with the capability to
better represent out-of-distribution data by utilising
boundary relations among n-balls. For example,
Dani people may have different cultures and histo-
ries from many other human races, e.g., Greeks.
Their sample images as illustrated in Figure 5(b-c).
Descriptions about them may appear in different
types of corpus, which may result in different vector
embeddings whose cosine similarity is less than 0,
as illustrated in Figure 5(a). By utilising n-ball rep-
resentation, they are represented within the human
ball. This may bring the advantage to Dart4WSD,
easier to make correct decisions, compared with
traditional deep learning systems.

5. Conclusions and Outlooks
We prototyped Dart4WSD, a novel supervised neu-
rosymbolic method for Word-Sense Disambigua-
tion that dramatically outperforms the traditional
deep learning approaches. The core of our method
is a configuration of n-dimensional sphere embed-
dings whose boundary relations explicitly and pre-
cisely embed a symbolic sense inventory in the vec-
tor space and whose centre hosts latent features
learned from data. This neurosymbolic approach
is independent of languages and could be espe-
cially useful for low-resource languages. To this
end, a number of problems shall be solved, listed
as follows.

New Datasets for Neuro-symbolic WSD A
benchmark dataset for neuro-symbolic WSD shall
consist of not only labelled data for traditional su-
pervised learning, but also a symbolic taxonomy of
sense inventory. This symbolic part can be a part
of a large sense inventory that only describes the
taxonomy of senses in the labelled data.
Using a traditional deep-learning system as the
backbone Our neurosymbolic method demon-
strates its performance only when a well-designed
sense inventory is available, which can be unreal-
istic. It would be promising to build up a neurosym-
bolic component above a traditional deep-learning
WSD system.
More powerful geometric objective functions
We used Euclidean distances and cosine similarity
as two objective functions. Intuitively, Euclidean
distance is more precise to measure relations be-
tween spheres, however, its performance in current
experiments is a bit less than that of using cosine
similarity, which cannot take the boundary informa-
tion of balls into consideration. There should be
powerful geometric objective functions to outper-
form the cosine similarity measurement.
N -ball for DAG structures The sense inventory
in Word-Net 3.0 (Miller, 1995) is not a tree struc-
ture, but a Directed Acyclic Graph (DAG). We shall
extend the current geometric approach for DAG
structures. Creating a new n-ball configuration is
not trivial, as the sense taxonomy needs to be pre-
cisely embedded (reaching the global loss of zero).
This is a very challenging machine-learning task
that is worth further research.
Heterogenous structure One assumption of our
approach is that senses of word shall have different
direct upper hypernyms, so, we can use balls of
direct upper hypernyms. This assumption holds for
nouns in most of the cases, but, might not hold for
verbs. For example, fly.v.01 (travel through the air;
be airborne) and fly.v.06 (be dispersed or dissemi-
nated) are both senses the word fly, they share the
same direct upper hypernym travel.n.01 (change
location; move, travel, or proceed, also metaphor-
ically). In this case, using direct upper hypernym
is not sufficient to disambiguate between fly.v.01
and fly.v.06. We may need to integrate other knowl-
edge into the sense inventory. We may need to
consider Descartes’s product of n-balls. For ex-
ample, one encodes hypernym relations, another
encodes part-whole relations.
Towards a new methodology for classification
Dart4WSD can be generalised for solving any clas-
sification problem. In contrast to traditional super-
vised deep-learning methods, our method will cre-
ate the dart board before shooting, instead of the
other way around (shooting first, then drawing the
best-fit target, as described in (Gigerenzer, 2022)).
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