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Abstract
Event Causality Extraction (ECE) aims to extract explicit causal relations between event pairs from the text. However,
the event boundary deviation and the causal event pair mismatching are two crucial challenges that remain
unaddressed. To address the above issues, we propose a paradigm to utilize LLM to optimize the task definition,
evolve the datasets, and strengthen our proposed customized Contextual Highlighting Event Causality Extraction
framework (CHECE). Specifically in CHECE, we propose an Event Highlighter and an Event Concretization Module,
guiding the model to represent the event by a higher-level cluster and consider its causal counterpart in event
boundary prediction to deal with event boundary deviation. And we propose a Contextual Event Causality Matching
mechanism, meanwhile, applying LLM to diversify the content templates to force the model to learn causality from
context to targeting on causal event pair mismatching. Experimental results on two ECE datasets demonstrate the
effectiveness of our method.
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1. Introduction

Event Causality Extraction (ECE) aims to extract
causal relations between event pairs, in which each
event is presented as a continuous span within the
sentences or documents. Abundant downstream
application tasks can be facilitated after extracting
event causality from text, including event detection
(Weng and Lee, 2011), event prediction (Granroth-
Wilding and Clark, 2016) Xu et al. (2020), logical
reasoning (Tappin et al., 2020), question answering
(Karpukhin et al., 2020), and constructing an event
logic graph (Ding et al., 2019) Gao et al. (2022).

Given plain text, an ECE system is responsible
for extracting event spans and matching them by
causality. Previous works (Yang et al., 2022) (Lyu
et al., 2022) (Zhang et al., 2022) Yang et al. (2022)
Heindorf et al. (2020) in event causality extraction
predominantly employ a two-stage method: event
tagging and span-based event causality match-
ing. Much progress (Yang et al., 2022) has been
made in this paradigm with the development of
pre-trained language models (Devlin et al., 2018).
However, two challenges have not caught much
attention: Event Boundary Deviation and Event
Causality Mismatching.

Event Boundary Deviation: Previous methods
struggle to predict causal event boundaries, result-
ing in redundant or missing words. As shown in
Fig 1 Case 1, a typical ECE model makes different
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Figure 1: Case study in ECE.

predictions P1 to P3 in spans of the effect, but all
predictions describe the same event as labeled in
GOLD. We explore the origin of the event bound-
ary deviation phenomenon from two perspectives:
concluding practical experimental experience and
digging deep into the principle of the ECE task.

In the process of the case study in preliminary
experiments, we observe frequent inconsistent an-
notations of ECE datasets. As shown in Table
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Figure 2: Prompts and responses for task definition generation.

1, there exists a large proportion of labeling in-
consistencies in both typical Chinese and English
ECE datasets. These inconsistencies confused
the model in event boundary predictions trained in
these datasets. However, we argue that labeling
mistakes are ineluctable. As the model prediction
case shown in Fig 1 Case 1, a causal event ex-
pressed in span form with consecutive words exists
in multiple reasonable variants. In addition, previ-
ous research overlooked the explicit definition and
annotation guidelines in event causality extraction,
hindering the restoration process in these datasets.
To this end, clarifying the ECE task definition and
fixing inconsistencies in datasets are the primary
goals.

On the other hand, we dig into the reasonable
span variants of the event. First, each event com-
posed of a continuous span within the input text
exhibits multiple literal forms that depict the event
with different emphases. Therefore, modeling the
event with a specific span fails to capture its overall
perspective. However, previous works employ a
particular span on behalf of the event, having an
inherent shortage of capturing the entirety. Further-
more, building an association between cause and
effect events when predicting event span bound-
aries is essential. As illustrated in Fig 1 Case 3,
for the first prediction, "category 15 Typhoon Pearl"
cause "rain" constitutes a reasonable but rough
causal event pair when independently predicting
event span boundaries. But when considering the

interdependence between the causal event pair,
for the second prediction given the level and name
of the typhoon in the cause event, the effect event
should include specific rainfall locations and inten-
sity. However, previous works restricted to predict-
ing causal event span boundaries independently,
lacking in the consideration of causal associations.

Event Causality Mismatching: After the ex-
traction of potential causal events, the next step is
matching cause and effect events with semantics
and knowledge. Previous methods will usually face
an inevitable challenge, which is mismatching two
events by event span. As illustrated in Fig 1 Case
2, a human always estimates causality between
event pairs from two perspectives: semantic infor-
mation and contextual information. From the se-
mantic perspective, based on their common sense
and linguistics knowledge, humans can evaluate
event causality based on span. However, the final
decision cannot be divorced from contextual infor-
mation aside from causal events, such as conjunc-
tions, background, and correlations. Unfortunately,
previous studies focused on modeling the seman-
tic information inside event pairs, neglecting the
crucial role of contextual information outside. This
flaw in design could lead to confusion for models
when tackling complex causal event pair-matching
cases. Fig 1 Case 2 illustrates an example where
the model incorrectly predicts a causal relationship
between events A and B due to their perceived
semantic similarity. However, leveraging contex-
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tual information, we can determine that there is no
causal relationship between events A and B, but
rather that events A and B cause event C, simulta-
neously.

In this paper, we utilize LLM to optimize the task
definition, evolve the datasets, and strengthen our
proposed customized event causality extraction
framework to address the above issues. We in-
troduce a pattern that applies LLM to conclude
a task definition and annotation criteria accord-
ing to the case of labeling inconsistency. And
then automatically fix datasets by LLM based on
their viewpoint. Apart from the foundation of the
task, we construct a Contextual Highlighting Event
Causality Extraction framework (CHECE). Specifi-
cally, we propose an Event Highlighter to represent
an event independent of a specific span, and an
Event Concretization Module to predict a single
event boundary based on its causal counterpart.
Together deal with the event boundary deviation
from these three aspects. To deal with the event
causality mismatching problem, we propose a Con-
textual Event Causality Matching mechanism. And
to further ensure the model learns from context
correlation, we utilize LLM to diversify the context
templates.

The contributions of this paper are as follows:

1) We propose a paradigm to utilize LLM to clarify
the event causality extraction task annotation
and fix existing datasets. And we release the
metrics and datasets to promote the relevant
research.

2) To handle the event boundary deviation, we
propose an Event Highlighter and an Event
Concretization Module, guiding the model to
represent the event by a higher-level clus-
ter and consider its causal counterpart in
event boundary prediction. To tackle the event
causality mismatching, we devise a Contex-
tual Event Causality Matching mechanism and
apply LLM to diversify the content templates
to force the model to learn causality from con-
text.

3) Experiments on both Chinese and English
event causality extraction datasets show our
method outperforms state-of-the-art methods,
especially in our new metrics.

2. The Annotation Clarification and
Dataset of Event Causality

Extraction

Due to the frequent inconsistent annotations of
ECE datasets and their inevitability, which leads to
confusion in the final model, we explore clarifying
and aligning the dataset annotation with the assis-
tance of LLM, which is well-aligned with the given

Dataset Manual Label After Fix
CFC 85% 92%

FinCR 87% 93%

Table 1: Statistics of labeling accuracy before and
after dataset evolution.

annotating requirements and requires much less
labor compared with human annotators.

2.1. Annotation Clarification by LLM

We clarify the annotation criteria with the assis-
tance of the Large Language model(LLM). Taking
into account the presence of inconsistent anno-
tated data, we employ the LLM (specifically, text-
divinci-003) to generate multiple predictions, pre-
serving each distinct output. Thanks to the rich
knowledge that LLM contains and its great ability
to follow given instructions, the LLM is able to ana-
lyze which of the various outputs it predicts makes
the most sense, thereby establishing the essen-
tial attribute that should define the event boundary
judgment. As shown in Fig 2, the prompts are
organized in the format of the chain of thought
(Wang et al., 2022b). Through the above process
on several sets of inconsistent annotated data, the
annotation criteria of event boundary can be con-
cluded, which can be used to create instructions
for the LLM to perform dataset repairment following
these standards subsequently.

2.2. Measurement

Event Boundary Deviation arises due to the am-
biguous task definition and inconsistent dataset
annotations, as well as the inherent multivariate
nature of events. We propose Easy F1 to measure
the model performance more reasonably. In Easy
F1, a predicted causal event span is considered
correct if its similarity with the gold span surpasses
a predefined threshold. The choice of this thresh-
old can be adapted to the data distribution, and
we set it at 80 percent. In the English dataset
the similarity is measured by tokens, whereas in
the Chinese dataset, the similarity is measured by
word segmentations.

2.3. Fix Dataset by LLM

We set the concluded task’s definitions into
prompts and ask the LLM to repair the dataset as
required. In the example of concluded event bound-
ary definition "causal event should be fine-grained,
which means the output span cannot contain more
than one event and should include all the words
describing the same event". We set the obtained
definition to the requirements, and give three shots
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Dataset Train Dev Test Pairs Text Length Causal Distance Span Length
CFC 2000 250 250 2.17 41 3.4 9.67

FineCR 12541 1583 1557 1.14 69 8.3 13.38

Table 2: Statistics of two ECE datasets.

of manual repair of data according to the require-
ments. Then we ask the LLM to determine whether
the event boundary in the data meets the definition
according to the requirements, if not, it needs to
be corrected and explain the reason. The prompt
examples are shown in the Appendix.

3. Method

In this section, we first formally define the event
causality extraction task and then elaborate on
each component of our model. The overall archi-
tecture of our ECE framework is shown in Fig 3.

3.1. Problem Definition

The input sentence is X = {x1, x2, ..., xn} with n
tokens. Let S = {s1, s2, ..., sn} be all the possible
spans in X. The desired outputs are causal event
pairs as T (X) = {(c, e)|c, e ∈ S}, where c and e
are the cause event and effect event presented as
continuous spans in the input text.

The problem is decomposed into two parts, first
identifying the candidate cause events and effect
events and then assessing causality within event
pairs formed by combining all candidate cause
events with candidate effect events.

3.2. Span Proposal

Given the input sentence X, to obtain the represen-
tation of each token, we use a pre-trained language
model (PLM) as our sentence encoder. The output
is {

h1, h2, . . . , hn | hi ∈ Rd×1
}

(1)

where d is the embedding dimension, and n is
the number of tokens.

Then we judge each si in S whether it is a
causal event span following the previous span-
based method (Su et al., 2022), which uses a
global scoring matrix that considers the beginning
and the end positions of spans to predict all the
candidate cause(effect) spans. It’s worth noting
that the casual event spans predicted by the Span
Proposal Model are not exact events, they may
be part of the event lacking some boundary com-
ponents or they may include the event. In other
words, these spans reflect different emphases of
the event.

With the obtained sentence representation, us-
ing two feedforward layers that rely on the begin

Figure 3: The overall framework of CHECE.

and end indices of the span:

qi =Wqhi + bq (2)

kj =Wkhj + bk (3)

where qi ∈ Rd, kj ∈ Rd denote the vector represen-
tations of the start and end positions. The score
pi,j indicating the score of span s[i : j] that starts
with i being a cause(effect) span is computed as
follows:

pi,j = σ(q⊤i kj) (4)

where σ is the sigmoid function. Then we set a
threshold µ for the predicted score. We consider
the span s[i : j] as a candidate cause(effect) span
if pi,j exceeds the threshold value.
Class Imbalance Loss is introduced to the training
process Ls:

log(1 +
∑

(q,k)∈P

e−pq,k) + log(1 +
∑

(q,k)∈Q

epq,k) (5)

where q, k represent the start and tail indexes of a
span, P represents a collection of spans that are
considered candidate cause(effect) spans, Q rep-
resents a collection of spans that are not candidate
cause(effect) spans.

3.3. Event Highlighter

The Event Highlighter aims to build better represen-
tations for events. Due to the inherent uncertainty
and multivariate nature of events expressed with
natural language, employing a single specific span
to model the target event yields multiple candidates
with varying boundaries for a given event, thereby
significantly occupying the search space and in-
ducing model confusion during the matching of
event causality. To this end, we propose a cluster-
based event highlighter model to catch the overall
perspective and significance of events, exploring
to model the event at event-level instead of span-
level.

After obtaining all the candidate cause spans
and effect spans s[i : j] together with their scores
pi,j , the event highlighter captures the complete
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picture and emphasis of the target event E. Specif-
ically, there may be multiple candidate spans that
have a slight boundary deviation from the target
span (e.g., a different adjective), all describing the
same target event E but with different emphases.
We use the clustering method to gather the spans
that describe the same event. First, we evaluate
the token similarity between each span and the
target event centered on the target event E. If
the similarity exceeds the threshold λ, the span
is considered to describe the target event and is
clustered with the target event. Each target event
corresponds to an event cluster C = {s1, s2, ..., sk}.
Where λ is an adjustable hyperparameter and k is
the number of all spans describing the same target
event obtained after span clustering.

The representation of a single span is acquired
as follows.

hsi = Avgpool(hSTART (i):END(i)) (6)

whereAvgpool is the average pooling operation(Lin
et al., 2013), START (i) and END(i) denote the
start and end indices of the candidate span si.

Then the Event Highlighter combines all the can-
didate spans describing the same target event,
weighted by their score in the span proposal model
to find the most important tokens of the event and
see the full event description covering the longest
boundary:

hE =

k∑
1

pkhsk (7)

where k is the number of all spans describing the
same target event obtained after span clustering.

3.4. Contextual Event Causality Matching

The Event Causality matching model aims to take a
pair of cause event Ec and effect event Ee as input
and predict whether there is a causal relationship.
Previous works concatenate the representations of
event pairs and put them into the feedforward layer
for causality judgment, which only considers the
semantic representation. We argue that the explicit
use of contextual information plays an important
role in causal judgment. As illustrated in Fig 1, only
relying on the semantic representation of events, it
is easy to mistakenly judge that there is a causal
relationship between events A and B due to their
semantic similarity. But in fact, combining the con-
text structure information, we can judge that there
is no causal relationship between A and B, and it
is A and B that cause C together.
To this end, we propose utilizing the semantic infor-
mation and context information jointly to evaluate
the causality of input event pairs. First, the seman-
tic representations of input event pairs are obtained

as:

ψsem(Ec, Ee) =Wsem[hEc
;hEe

] + bsem (8)

where hEc and hEe are the event representation
obtained in the Event Highlighter model, Wsem and
bsem are trainable parameters, and [A;B] denotes
the concatenation operation.

Next, we turn to obtain the explicit contextual
representation. The mask token is used to replace
the position of the event’s original tokens and sent
to the BERT encoder to let the model pay attention
to the context information other than the semantics
of the specific token. Then the output mask token
is used as the contextual representation, rich in
context structure information:

ψcon(Ec, Ee) =Wcon[mEc
;mEe

] + bcon (9)

where mEc
,mEe

are the contextual representation
obtained from the mask token, Wcon and bcon are
trainable parameters.

With semantic representation and contextual
representation, we model the judgment of event
causality jointly by combing the two parts of infor-
mation using a hyperparameter θ.

ψ(Ec, Ee) = θψsem(Ec, Ee) + (1− θ)ψcon(Ec, Ee)
(10)

where ψ(Ec, Ee) is the score for cause event Ec

and effect event Ee to be a pair of causal events.
Then we set a threshold υ for the predicted score.
We consider cause event Ec and effect event Ee

to be a pair of causal events if pi,j exceeds the
threshold value.

During the training process, the loss is consid-
ered as follows:

Le = −
∑

Ei∈Ec,Ej∈Ee

logP
(
R∗

i,j | Ei, Ej

)
(11)

where R∗
i,j represents the gold relation type of

event pair.
To better utilize the contextual information, we

also augment the training data by constructing tem-
plate training data. Specifically, we replace each
causal event pair of the data in the training set
with [cause] and [effect] to form a contextual tem-
plate that preserves only structural information. We
store all the templates in a file. Furthermore, we
employ ChatGPT1 to generate causal event pairs
and causal templates in order to harvest rich do-
main knowledge and diverse causal contextual in-
formation from LLM. The detailed prompt is shown
in Appendix A.1. With the obtained causal event
pairs and causal templates, we synthesize extra
data during the training process by replacing the
[cause] and [effect] in the chosen template from

1https://chat.openai.com/chat
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the stored file with a random pair of causal events
in the training set or the causal event pairs gener-
ated by ChatGPT to enhance the model’s ability
capacity in capturing contextual information and
injecting domain knowledge into the model.

3.5. Event Concretization Module

The Event Concretization Module aims to reify the
event pairs judged to have causal relations in the
last step from the abstract event representation to
the concrete event span. In other words, given a
pair of input causal event clusters and their repre-
sentations, the Event Concretization Module needs
to output the most suitable cause span and effect
span that best represents the target causal event
pair as the final extraction result.

Previous works consider the spans that score
higher than the preset threshold in the Span Pro-
posal Module as predicted events. There are two
possible disadvantages to this practice: First, mul-
tiple spans with slight boundary differences are
referred to as the same event, thereby disentan-
gling the information inside the event and inevitably
introducing subsequent matching errors. Further-
more, this practice cut off the connections between
causal event pairs. As illustrated in Figure 2, judg-
ing the boundaries of cause or effect events sep-
arately ignores the overall connection of causal
events and is error-prone.

Given a pair of input cause and effect event clus-
ter Cc = {s1, s2, ..., sm} and Ce = {s1, s2, ..., sn}
with their representations. First, iterate over each
span si in the cause event cluster Cc and build
its connection with the effect event cluster Ce by
concatenating their representation and put into a
feedforward network:

Psi = σ(Wconcre[hsi ;hEe ] + bconcre) (12)

where σ is the sigmoid function, hsi and hEe
are

the span representation of si and event represen-
tation of Ee. We choose the span with the highest
score Psi in the cause event cluster as the final
output cause event. During the training process,
the loss is considered as follows:

Lc = −
∑

si∈Cc

logP
(
r∗i,j | si

)
(13)

where r∗i,j represents the gold type of span si which
means whether the span si is the gold span to rep-
resent the cause event. Event Concretization for
the effect event cluster is conducted in a symmetric
way.

3.6. Training Strategy

We adopt a joint training approach, wherein we op-
timize the combined objective function throughout

Dataset Method Dev Test
Easy-F1 Hard-F1 Easy-F1 Hard-F1

CFC

BERT-CRF 54.94 42.81 53.29 38.54
GlobalPointer 59.49 51.18 61.96 53.84

TP-Linker 62.81 53.39 62.28 53.97
PL-Marker 63.89 53.06 63.71 54.65
ChatGPT - - 31.39 12.56

Ours 64.40 53.86 63.81 55.24
Ours+LLM 64.88 55.09 65.63 55.73

FineCR

BERT-CRF 55.12 35.60 54.92 35.58
GlobalPointer 55.72 39.89 54.76 38.97

TP-Linker 56.21 40.05 56.60 39.39
PL-Marker 57.99 40.14 58.75 39.90
ChatGPT - - 17.68 7.62

Ours 58.85 40.37 59.77 40.21
Ours+LLM 59.91 40.47 60.61 40.55

Table 3: Comparison of our model and other base-
lines on two event causality extraction datasets.
We test ChatGPT with 3-shot task examples and
task descriptions. "Ours+LLM" means our full
model with ChatGPT data augmentation.

the training process while sharing the parameters
of the BERT encoder. The total loss is the sum of
these three parts:

Ltotal = ω1Ls + ω2Le + ω3Lc (14)

Performance might be better by carefully tuning the
weight of each sub-loss, but we just assign equal
weights for simplicity (i.e., ω1 = ω1 = ω1 = 1).

4. Experiments

4.1. Datasets and Preprocessing

We conduct experiments on FineCR and CFC
(Yang et al., 2022) proposed in Section 2 to verify
the effectiveness of our method. FineCR is a widely
used dataset in English. The experiments and anal-
ysis on it could be regarded as fair comparisons
with previous works. CFC is a more challenging
dataset with more ambiguous causal event spans
and multiple complicated causalities in a single
sentence. The detailed statistical information and
split information are shown in Table 2.

4.2. Metrics and Parameter Settings

For automatic evaluation, we utilize easy F1 and
hard F1 introduced in Section 2. Since previous
methods in full tagging paradigm apply token-wise
tag F1 score to report the performance, to fairly
compare our performance with baselines, we re-
produce these methods and report our metrics.

We use bert-base-uncased (Devlin et al., 2018)
and chinese-roberta-wwm-ext (Cui et al., 2021) as
the base encoders for the English dataset FineCR
and the Chinses dataset CFC. The learning rate
is set as 3e-5 in the backbone of BERT. We set
the max length of the input sentence to 200/75 for
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CFC and FineCR. The batch size is set as 16. We
train the model for at most 30 epochs and choose
the model with the best performance on the dev
set to output results on the test set.

4.3. Baselines

We compare our method with the following base-
lines:

BERT-CRF(Yang et al., 2022): BERT-CRF is a
powerful model that combines BERT’s contextual
understanding with CRF’s sequential tagging for
accurate squeue tagging.

GlobalPointer(Su et al., 2022): GlobaoPointer
is a span-based method using a global scoring
matrix that considers the beginning and the end
positions of spans with a global view.

TP-Linker(Wang et al., 2020): TP-Linker is a
one-stage joint entity and relation extraction model.
We use it to extract event spans that have larger
granularity than entities thus bringing great chal-
lenges to the model.

PL-Marker(Ye et al., 2021): PL-Marker pro-
posed a novel span representation approach to
consider the interrelation between the spans (pairs)
by strategically packing the markers in the encoder
and achieving SOTA performance in the entity and
relation extraction task.

ChatGPT: ChatGPT is a large language model
developed by OpenAI which has strong zero-shot
and few-shot learning abilities. However, it strug-
gles in the difficult task such as causal relation
extraction that requires more comprehensive com-
monsense knowledge and higher logical reasoning
ability. We test the model with a task description
and three-shot task examples.

4.4. Compared with State-of-the-art
Methods

Table 3 shows the results of our method on two
event causality extraction datasets. Overall, our
method achieves the best performance from these
baselines. Indicating our method’s effectiveness
and advancement. Specifically, compared among
full sequence tagging methods, whatever the tag-
ging schema setting, PLMs help them achieve bet-
ter performances. However, comparing ChatGPT-
Gen with other baselines, we can draw a conclu-
sion that the performance of LLM in this task is in-
ferior to supervised training models. It could be the
reason that the complex and specific demands in
the ECE task hinder the release of LLM’s extensive
capacity. Transferring methods in joint extraction
of entities and relations to ECE, TP-Linker(Wang
et al., 2020) and PL-Marker(Ye et al., 2021) achieve
higher f1 than full tagging methods. Prove they can
model the span representation and span relation

Method CFC FineCR
Easy-F1 Hard-F1 Easy-F1 Hard-F1

Ours 65.63 55.73 60.61 40.55
w/o event highlighter 60.11 53.37 52.15 38.12
w/o causal event matching 63.91 53.93 58.61 39.27
w/o LLM template 63.81 55.24 59.75 40.21
with 500 Augment Causality 64.08 53.74 - -
with 1000 Augment Causality 65.63 55.73 - -
with 1500 Augment Causality 63.43 55.12 - -

Table 4: Ablation results on the CFC and FineCR
test set.

better than plain tagging. Our method obtained bet-
ter performance in easy and hard f1 than TP-Linker
and PL-Marker, which struggle to extract events
that have larger granularity than entities. It demon-
strated the proposed Event Highlighter and Con-
textual Causal Event Matching is more customized
in this task and could deal with Event Boundary
Deviation and Event Causality Mismatching.

4.5. Ablation Experiments

To investigate the effectiveness of our proposed
components in the method, we also perform abla-
tion experiments on the CFC and FineCR datasets.
The ablation results are shown in Table 4, indi-
cating that none of these models can achieve a
comparable result with our full version. Demon-
strate that all those factors contribute a certain
improvement to our model.

Specifically, when we discard the whole event
highlighter part, and represent an event with a spe-
cific span (Ours w/o event highlighter), the perfor-
mance drops demonstrate the effectiveness of the
event highlighter. In Ours w/o causal event match-
ing, we calculate causal pair score only referring
to event representation and ignore the contextual
information. The suboptimal performance demon-
strates the effectiveness of contextual causal event
matching.

We employ ChatGPT to generate causal event
pairs and incorporate them into the constructed
template to synthesize new training data as intro-
duced in Section 3.4, injecting knowledge and con-
textual information into the model simultaneously.
To further explore the effectiveness of event pair
augment from LLM, we attempted varying template
count N utilized during training. The bottom of Ta-
ble 4 shows, when n is zero, the easy f1 drop X
from the full model, indicates the effectiveness of
the event pair augments from LLM. In addition,
the model performance could not improve with the
increase of N after N is larger than 1000, manifest-
ing that the templates generated by LLM is varies
considerably in quality.
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5. Related Work

Event Causality Extraction. Previous works use
feature-based methods for event causality extrac-
tion. (Ittoo and Bouma, 2011) proposes a method
for extracting causal pairs by leveraging part-of-
speech analysis, syntactic analysis, and causality
templates. (Hashimoto et al., 2014) uses semantic
relation (between nouns), context, and associa-
tion features to extract event causalities from the
web. In recent years, deep learning techniques
employed in causality extraction. (Li et al., 2021)
uses the BiLSTM-CRF model as the backbone
to extract cause and effect directly, formulating
the task in the causality tagging scheme. (Wang
et al., 2022a) proposed a model that aims to trans-
form event causality extraction into causal argu-
ment extraction, by incorporating both sentence-
level and document-level contextual information.
Recently, much progress has been made in this
task with the strong language modeling capabilities
and rich world knowledge of pre-trained language
models (PLMs) (Devlin et al., 2018). (Fajcik et al.,
2022) used T5 to identify all cause-effect-signal
span triplets. (Yang et al., 2022) and (Lyu et al.,
2022) use BERT-CRF model in Fine-grained Event
Causality Extraction and FinCausal 2022 tasks, re-
sulting in significant advancements.
LLMs Assist Tasks. The capability of Large
Language Models (LLMs) like ChatGPT to com-
prehend user intent and provide reasonable re-
sponses has made them extremely popular lately.
Recent studies show that the latest LLMs have
the ability to do Information Extraction tasks such
as Named Entity Recognization(NER), Relation
Extraction(RE), and Event Extraction(EE). (Xu
et al., 2023) proposed task-related instructions
and schema-constrained data generation to en-
hance LLM’s few-shot relation extraction perfor-
mance. (Tang et al., 2023) used LLM’s rich domain
knowledge to induce new event schemas. Some
works utilize LLM to improve the performance of
downstream tasks. (Dai et al., 2023) and (Ubani
et al., 2023) leveraged ChatGPT for text data aug-
mentation and synthetic training data generating
to induce extensive knowledge.

6. Conclusion

This paper proposes to utilize LLM to generate the
definition of event causality extraction tasks and
automatically evolve the datasets. Lay the foun-
dation for further research and improvement. We
propose a framework called CHECE to deal with
two unaddressed problems. Specifically, the Event
Highlighter and an Event Concretization Module,
guide the model to represent the event by a higher-
level cluster and consider its causal counterpart in

event boundary prediction to deal with event bound-
ary deviation. And the Contextual Event Causality
Matching mechanism forces the model to predict
causality from context information to overcome the
causal event pair mismatching issue. Meanwhile,
we apply LLM to diversify the content templates
to enhance this side. Experimental results on two
ECE datasets demonstrate the effectiveness of the
method.
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Limitations

Our work is not without limitations. From the LLM
side, on the one hand, the best prompt or the chain
of thought for the conclusion of task definition by
LLM is under-explored. We believe there exists
a better way for LLM to generate the definition
and further utilize it to evolve the datasets. On
the other hand, this paradigm could produce more
labeled data from news or documents from the web.
Release a larger dataset remains in our future work.
From the framework side, although effective our
method is slightly complicated. How to address the
above two challenges more concisely is a worth
exploring topic.
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Figure 4: Prompts and responses for dataset evolution.

Figure 5: Prompts and responses for contextual template generation.

Figure 6: Prompts and responses for event span pair generation.
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Figure 7: Tagging schema in Global Pointer.
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