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Message from the Workshop Organizers

Endowing machines with knowledge has long been regarded as one of the important goals
of AI. Traditionally, symbols and their relations represent knowledge for natural language
processing. Obviously, because of the limitations of the classical symbolic-based knowledge
representation theory and knowledge acquisition technologies, symbolic knowledge bases
have typical weaknesses, such as limited representation capacity, low acquisition efficiency,
low coverage of multiple knowledge types, and applicable difficulties in reasoning scenarios.
By contrast, large language models (LLMs) follow quite a different paradigm: the tradition
of connectionism and neural networks. It employs distributional numerical vectors/matrices
to represent the knowledge. This way, almost all knowledge types can be represented and
embodied into a unified semantic space.

LLMs can be treated as knowledge base and provide an easier way to acquire and collect
knowledge and inject knowledge into the downstream models or applications. However,
compared with traditional symbolic knowledge bases, LLMs still have limitations including
hallucination, and relying exclusively on fill-in-the-blank close tasks. A recent study showed
that LLMs may miss more tail knowledge than head knowledge. LLMs still struggle to acquire
negative knowledge. On the other hand, queries on knowledge graphs, in symbolic and/or
neural ways, can vastly answer more complex logical queries, such as union, intersection,
negation, counting, etc. Various strategies have been explored to improve the interpretability and
reasoning performance of LLMs, for example, CoT, CoT-SC, Tree-of-Thoughts, or using external
symbolic inference engines. unavailable. However, researchers still argue that LLMs are not
good logical reasoners. One of the main reasons is that LLMs’ reasoning is mostly non-rigorous
— neither the reasoning process nor the result is guaranteed to be correct and complete.
Despite these shortcomings, LLMs are becoming fundamental tools and have achieved great
success in both academia and industry. They not only unify various NLP-related tasks in the
form of text generation, but also have shown remarkable reasoning ability.

A cutting-edge research direction is to move from System I associative thinking to System II
rational thinking – in the sense of D. Kahneman. Researchers are targeting novel machine
learning systems for “slow, logical, sequential, conscious, linguistic, algorithmic, planning, and
reasoning” problems. Knowledge graphs provide a natural way of connecting the dots across
texts. Building an inherent linkage module for LLMs can provide a better global view of the
world.

Moving from System I thinking to System II thinking demands traditional deep-learning to
go beyond the statistical learning framework, and make qualitative extensions. A variety of
new learning biases has been proposed to narrow the gap between higher-level cognition
and traditional deep-learning. Language is embodied and schematizes space. The next
generation of neural language system shall be a brain- and AI-inspired understanding system
that explicitly represents situations, which roots in qualitative spatial representation, then
extending to spatio-temporal and event representation, moving on to causality and emotion.
Recent research proposes tensors as a unified representation for perception and memory,
proposes spheres to explicitly unify symbolic structure with neural embedding for deterministic
reasoning, neurosymbolic unification, and for humour understanding.

This workshop invited renowned scholars to give keynotes and active researchers to introduce
their pioneering works in the fields, topics covering both academic researches and industrial
applications. The state-of-the-art in deep learning for NLP and beyond shows that there
are many open research questions to be addressed at the interface of symbolic and neural
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approaches, and that bridging neurons and symbols may break the glass ceiling of deep learning
for NLP.

The NeusymBridge 2024 Organizers
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Keynote@NeusymBridge 2024

Human Value Representation in Large Language Models - Bridging
the Neural and the Symbolic

Pascale Fung
Department of Electronic and Computer Engineering

Hong Kong University of Science and Technology, Hong Kong
pascale@ece.ust.hk

Abstract
The widespread application of Large Language Models (LLMs) in many different areas and fields has necessitated
their explicit alignment to human values and preferences. LLMs have learned human values from their pre-training
data, through Reinforcement Learning with Human Feedback (RLHF) and through other forms of value fine-tuning.
Nevertheless we lack a systematic way of analyzing the scope and distribution of such human values embedded in
LLMs. One can use surveys of value-relevant questions to prompt LLMs for analysis and comparison. But surveys
are a form of sparse sampling. In this talk, I will present UniVar, a high dimension representation of human values
trained from a value taxonomy and 8 different language models in 6 different languages representing a sampling of
the world’s culture. We then show the UniVar representation distributions of 4 LLMs, namely ChatGPT, Llama 2, Sola,
and Yi, in English, Chinese, Japanese, Indonesian, Arabic and French, which clearly demonstrate the proximity of
cultures that share similar values, such as Chinese and Japanese, or Indonesian and Arabic. This is the first time
where a high dimensional neural representation has been shown to be effective in generalizing the survey based
symbolic representation of human values.
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Keynote@NeusymBridge 2024

Neural-symbolic Programming for Explainable Knowledge-intensive
Question Answering

Juanzi Li
Department of Computer Science and Technology

Tsinghua University, Beijing, 100084, China
lijuanzi@tsinghua.edu.cn

Abstract
Explainable knowledge-intensive QA aims at returning not only the accurate knowledge answer but also the explicit
reasoning process, which can enhance the interpretability and reliability of QA systems. However, state-of-the-art
large language models suffer from the notorious hallucination problem, and knowledge graph based methods, such
as question semantic parsing, face generalization issues. In this talk, I will present our neural-symbolic framework for
explainable knowledge-intensive QA. Specifically, I will introduce our experiences in knowledge-oriented programming,
automatic program induction, and probabilistic tree-of-thought reasoning by integrating the parametric knowledge of
LLMs and retrieved textual knowledge.
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Keynote@NeusymBridge 2024

The Semantic Gap in LLMs and How to Bridge It

Alessandro Lenci
Dipartimento di Filologia, Letteratura e Linguistica

Università di Pisa, Italy
alessandro.lenci@unipi.it

Abstract
The unprecedented success of LLMs in carrying out linguistic interactions disguises the fact that, at closer inspection,
their knowledge of meaning and inference abilities are still quite limited and different from human ones. They generate
human-analogue texts, but still fall short of fully understanding them. I will refer to this as the “semantic gap” of LLMs.
Some claim that this gap depends on the lack of grounding of text-only LLMs. I instead argue that the problem lies in
the very type of representations these models acquire. They learn highly complex association spaces that on the
other hand correspond only partially to truly semantic and inferential ones. This prompts the need to investigate the
missing links to bridge the gap between LLMs as sophisticated statistical engines and full-fledged semantic agents.
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Keynote@NeusymBridge 2024

The Tensor Brain: A Unified Theory of Perception, Memory and
Semantic Decoding

Volker Tresp
Lehrstuhl für Datenbanksysteme und Data Mining

Ludwig-Maximilians-Universität München
80538 München Germany

volker.tresp@lmu.de

Abstract
We discuss a unified computational theory of an agent’s perception and memory. In our model, both perception and
memory are realized by different operational modes of the oscillating interactions between a symbolic index layer and
a subsymbolic representation layer. The symbolic index layer contains indices for concepts, predicates, and episodic
instances known to the agent. The index layer labels the activation pattern in the representation layer and then feeds
back the embedding of that label to the representation layer. The embedding vectors are implemented as connection
weights linking both layers. An index is a focal point of activity and competes with other indices. Embeddings have an
integrative character: the embedding vector for a concept index integrates all that is known about that concept, and the
embedding vector for an episodic index represents the world state at that instance. The subsymbolic representation
layer is the main communication platform. In cognitive neuroscience, it would correspond to, what authors call, the
“mental canvas” or the “global workspace” and reflects the cognitive brain state. In bottom-up mode, scene inputs
activate the representation layer, which then activates the index layer. In top-down mode, an index activates the
representation layer, which might subsequently activate even earlier processing layers. This last process is called the
embodiment of a concept.
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Probing Large Language Models from A Human Behavioral
Perspective

Xintong Wang♠, Xiaoyu Li♡, Xingshan Li♢, Chris Biemann♠
♠Department of Informatics, Universität Hamburg

♡School of Computer Science and Technology, Beijing Institute of Technology
♢Institute of Psychology, Chinese Academy of Sciences

{xintong.wang, chris.biemann}@uni-hamburg.de,
demo.xyli@gmail.com, lixs@psych.ac.cn

Abstract
Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the
understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and
multi-head self-attention (MHSA), remains largely unexplored. In this work, we probe LLMs from a human behavioral
perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful
indicators of human reading patterns. Our findings reveal that LLMs exhibit a similar prediction pattern with humans
but distinct from that of Shallow Language Models (SLMs). Moreover, with the escalation of LLM layers from the
middle layers, the correlation coefficients also increase in FFN and MHSA, indicating that the logits within FFN
increasingly encapsulate word semantics suitable for predicting tokens from the vocabulary.

Keywords: Large Language Models, Interpretation and Understanding, Eye-Tracking, Human Behavioral

1. Introduction

Recent advancements in Large Language Models
(LLMs) (Devlin et al., 2018; Radford et al., 2019;
Touvron et al., 2023a,b) have showcased their su-
perior capabilities in language understanding, gen-
eration as well as zero-shot transferring. Despite
their remarkable successes, issues such as the
generation of hallucinated (Rawte et al., 2023) and
toxic outputs (Leong et al., 2023) have arisen, un-
derscoring the importance of understanding the
internal mechanisms and predictive behaviors of
LLMs to develop models that are both powerful and
reliable.

Research on LLM interpretation has emerged
(Zhao et al., 2023; Wang et al., 2023), focusing on
dissecting the components of Feed-Forward Lay-
ers (FFN) and Multi-Head Self-Attention (MHSA).
(Geva et al., 2022) highlighted the role of FFN in
LLMs, demonstrating how tokens are promoted by
utilizing logits in the late layers for word prediction
from a vocabulary. (Bills et al., 2023) explored
the activation of self-attention heads under varying
prompts. Concurrently, cognition and psycholin-
guistic studies have documented various measures
during human reading activities (Hollenstein et al.,
2018, 2019; Cop et al., 2017; Luke and Christian-
son, 2018), closely paralleling the processes ob-
served in language models (Hofmann et al., 2022).
As depicted in Figure 1, the juxtaposition of human
reading patterns and a transformer block illustrates
the similarity in attention allocation—eye-tracking
measurements for humans and FFN/MHSA values
for LLMs—motivating our approach to probe LLMs

from a human behavioral perspective.

Figure 1: Comparison of Human reading pattern
and transformer block. The left part shows the
fixation patterns of a human reader over a given
sentence, while the right part demonstrates a trans-
former block including FFN layers and multi-head
self-attention. The blue dots mark fixations on the
corresponding words above; a wider diameter rep-
resents a longer fixation duration.

Specifically, we investigate the internal work-
ings of FFN and MHSA in LLMs, such as the
GPT-2 model (Radford et al., 2019), by correlating
eye-tracking fixations with LLM values. Our find-
ings reveal that LLMs, particularly in their middle
layers, increasingly mirror human attention pat-
terns, focusing more on essential words. However,
in contrast to humans who prioritize crucial content,
the upper layers of LLMs refine context under-
standing, indicating a divergence in focus on less
critical aspects. This suggests that the outputs of
FFN in the upper layers can facilitate predictions
beyond just the final layers, encouraging methods
for efficient semantic editing (Wang et al., 2023).
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Furthermore, our comparison of prediction be-
haviors between LLMs and Shallow Language
Models (SLMs) reveals that LLMs more closely re-
semble human predictive patterns, where greater
emphasis on significant words enhances the cer-
tainty of word predictions.

Our contributions are as follows:

• We conduct a detailed analysis of the internal
mechanisms of FFN and MHSA in LLMs from
a human behavioral perspective.

• We juxtapose the word prediction processes of
LLMs and SLMs, reinforcing the evidence that
LLMs more closely align with human attention
patterns, focusing on crucial words to enhance
prediction certainty.

2. Related Work

Human Behavior Measures: Studies in cognition
and psycholinguistics have deployed simultaneous
eye-tracking and electroencephalography during
natural and task-specific reading to comprehend
human reading processes. Noteworthy datasets
in this context include ZuCo 1.0 (Hollenstein et al.,
2018), ZuCo 2.0 (Hollenstein et al., 2019), GECO
(Cop et al., 2017), and Provo (Luke and Christian-
son, 2018). However, to the best of our knowledge,
there is a paucity of work utilizing these datasets
to probe LLMs and their internal mechanisms.

Eye-movement Prediction: A shared task at
ACL 2021 (Hollenstein et al., 2021) involved us-
ing language models for predicting eye-movement
measures. In this shared task, models, including
Boosting, MLP, and RoBERTa, displayed signifi-
cant performance in this task. Besides, linguistic
features proved crucial for achieving superior re-
sults (Bestgen, 2021). In this paper, we focus on
employing eye-movement data for probing LLMs.

3. Preliminary

Large language models (LLMs) predominantly
rely on the Transformer architecture (Vaswani et al.,
2017), composed of Transformer blocks acting as
layers denoted by l = 1, 2..., L. As shown in Fig-
ure 1, each Transformer block primarily consists
of multi-heads self-attention and a feed-forward
network. The motivation for the multi-head self-
attention mechanism lies in its ability to extract
various aspects of the sequence, with its capacity
deepening with the increase of layers. Concur-
rently, the FFN serves to output for the current
layers and makes prediction over a vocabulary.

More specifically, in layer l, the currently pro-
cessed representation is denoted by X l

i , and the
output for FFN is computed as:

oli = FFN l
(
X l

i

)
, (1)

where oli denotes the output for the current FFN.
An updated representation x̃li, is then achieved

by adding X l
i and oli. The updated representa-

tion, x̃li, subsequently undergoes a self-attention
process. Given the presence of multi-head self-
attention in each layer, all the representations in
each self-attention head are concatenated to serve
as the input for the subsequent FFN layer, as illus-
trated below:

X l+1
i = concatenate

(
Attentionl (x̃li

))
, (2)

In this work, we present empirical evidence
understanding the function of multi-head self-
attention and FFN layers by correlating their values
with human behavioral data, eye-tracking measure-
ments.

4. Eye-tracking Measurements

Human behavioral signals, such as eye-tracking,
fMRI, and EEG, have been widely utilized in cogni-
tion and psycholinguistic studies. Among these
signals, eye-tracking offers millisecond-precise
recordings of gaze direction, illuminating the fo-
cus of attention during reading and comprehension.
This process bears resemblance to the operations
within a transformer block, as depicted in Figure 1.
Thus, we employ eye-tracking data to uncover the
internal mechanics of the transformer architecture.

Eye-movement
Measures

Abbrev. Definition

Gaze duration GD The sum of all fixations on the current word in the first-
pass reading before the eye moves out of the word

Total reading time TRT The sum of all fixation durations on the current word,
including regressions

First fixation dura-
tion

FFD The duration of the first fixation on the prevailing word

Single fixation dura-
tion

SFD The duration of the first and only fixation on the current
word

Go-past time GPT The sum of all fixations prior to progressing to the right
of the current word, including regressions to previous
words that originated from the current word

Table 1: Definition of Five Eye-tracking Mea-
sures: Gaze Duration (GD), Total Reading Time
(TRT), First Fixation Duration (FFD), Single Fixa-
tion Duration (SFD), and Go-Past Time (GPT).

In our study, we establish correlations between
metrics derived from multi-head self-attention
(MHSA), feed-forward neural (FFN) layers, and
five specific eye-tracking measurements: Gaze
Duration (GD), Total Reading Time (TRT), First
Fixation Duration (FFD), Single Fixation Duration
(SFD), and Go-Past Time (GPT). Each of these
metrics offers unique insights into the human read-
ing process. For instance, Gaze Duration (GD)
refers to the cumulative duration of all fixations on
a given word during initial reading before moving
to the next word, with longer durations indicating
the word’s significance. Similarly, Total Reading
Time (TRT) encompasses all fixation durations on
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a word, including regressions, indicating that read-
ers may revisit a word multiple times to refine their
understanding. The detailed meanings of these
eye-tracking measures can be found in Table 1.

By leveraging these interpretable eye-tracking
metrics, we aim to probe LLMs by correlating their
values with those observed in multi-head attention
and FFN layers.

5. Experiments

5.1. Experimental Settings

Language Models: For our investigation, we uti-
lized a pre-trained GPT-2 model (base) from Hug-
gingFace, focusing on analyzing the internal mech-
anisms of FFN and multi-head self-attention mech-
anisms due to its simplicity and general applica-
bility. We posit that our probing method is adapt-
able and can be extended to other, more advanced
open-source LLMs such as LLaMA (Touvron et al.,
2023a) and Qwen (Bai et al., 2023), among others.
Additionally, we broaden our analysis to include
Shallow Language Models (SLMs) like N-Gram
language models (Pauls and Klein, 2011), Recur-
rent Neural Networks (RNNs), Gated Recurrent
Units (GRUs), Long Short-Term Memory (LSTM)
networks (Sherstinsky, 2020), and a recently en-
hanced RNN variant, the RWKV-V4 model (Peng
et al., 2023), to conduct a comprehensive compari-
son of prediction probabilities. For the training of
SLMs, we employ the WikiText-103 dataset.

Eye-tracking Data: For human behavioral data,
we utilize the ZuCo 2.0 dataset (Hollenstein et al.,
2019), which contains concurrent eye-tracking
records captured during two types of reading activi-
ties: natural reading (NR) and task-specific reading
(TSR). This dataset is notably comprehensive, com-
prising 730 English sentences, split into 349 sen-
tences read under normal conditions and 390 sen-
tences read under a task-specific paradigm. Eye-
tracking data from 18 participants were recorded
during both NR and TSR activities. We conducted
word prediction experiments using various lan-
guage models on sentences from the ZuCo 2.0
dataset to then analyze the correlation patterns
between human reading behaviors and language
model predictions.

Correlation Metrics and Evaluation: Following
previous studies (Eberle et al., 2022) on analyz-
ing the prediction behavior of LLMs, we also em-
ploy three prevalent correlation metrics: Pearson
(Freedman et al., 2007), Spearman (Caruso and
Cliff, 1997), and Kendall (Abdi, 2007), to investigate
the relationship between values derived from LLMs
and human behavioral measures. Despite minor
differences, we find these correlation metrics yield
similar results. Among them, Spearman exhibits

superior robustness when compared to Pearson
and Kendall. Unless stated otherwise, experimen-
tal results are reported using Spearman analysis.
Given that larger fixations, as indicated by various
eye-tracking measures, signify the importance of
the current word, a stronger correlation implies
that LLMs also allocate more attention to the
processed word.

Figure 2: FFN Correlation Values. FFN values
through layers in GPT-2 base Correlated with five
different eye-tracking features in three groups: bot-
tom, middle, and upper. (Significant at p < 0.05)

5.2. FFN Correlation Analysis

We examine the functions of the FFN within GPT-
2. To elucidate our findings, we categorize the 12
layers of GPT-2 (base) into three groups: bottom
(l1 → l4), middle (l5 → l8), and upper (l9 → l12).
As illustrated in Figure 2, the bottom most layers
show a direct correlation between the embedding
of input tokens and human reading fixations. This
suggests that humans require more time to com-
prehend critical tokens that are also reflected in
the embeddings of LLMs. This correlation dimin-
ishes as we ascend through the layers, with the
topmost layer of the bottom group (Layer 3) indicat-
ing a divergence in processing tokens from human
behavior; the FFN at this level begins to process
tokens yet in a manner distinct from human reading
patterns.

Progressing to the middle layers, the correla-
tion coefficients initially increase and then stabilize,
peaking at Layer 6. This pattern suggests that the
FFN in these middle layers starts to show simi-
lar human fixation behaviors, indicating that the
logits within FFN increasingly encapsulate word
semantics suitable for predicting tokens from the
vocabulary.

Intriguingly, in the upper layers, we observe a
decline in correlation values. We hypothesize that
at this stage, the LLM begins to incorporate less
critical words within sentences into its considera-
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Figure 3: Attention Heads Correlated Values with Eye-tracking Measurements through Layers
Results. Lighter and larger values signify stronger correlations.

tion, diverging from human intuition, which tends
to focus on the most crucial aspects of the context
and disregard less important information.

5.3. Multi-head Self-attention Correlation

Figure 3 presents heatmaps that illustrate the cor-
relation between the values of 12 self-attention
heads across 12 distinct layers and human behav-
ioral data; where lighter and larger values signify
stronger correlations. Similar to our FFN analy-
sis, we categorized the 12 layers into three groups:
bottom, middle, and upper. The bottom group
exhibits a weaker correlation with human fixations,
indicating that while self-attention mechanisms be-
gin to process tokens at this stage, they do so
differently from human behavior.

As we ascend through the middle and upper
groups, we observe an increase in correlation
across different layers and attention heads with
human fixations. This pattern suggests that, in
these layers, LLMs begin to align more closely with
human patterns, especially in focusing on impor-
tant contextual tokens. Notably, unlike in the FFN
analysis, we did not observe a decrease in multi-
head attention correlation values in the upper lay-
ers. This difference implies that the comprehension
capabilities of LLMs are progressively refined up
to the final layer, enabling more diverse and accu-

rate word predictions compared to human reading
patterns.

Furthermore, among the five eye-tracking mea-
sures analyzed, Gaze Duration (GD), Total Read-
ing Time (TRT), First Fixation Duration (FFD), and
Go-Past Time (GPT) demonstrate stronger corre-
lations, whereas Single Fixation Duration (SFD)
shows a weaker correlation. Given that SFD rep-
resents the first and only fixation on a current
word—suggesting lesser importance—while GD,
TRT, FFD, and GPT include regressions on signif-
icant words, this discrepancy explains why LLMs
also prioritize these important words.

5.4. Prediction Probability Correlation

We further analyze word prediction probability be-
haviorals in LLMs and our investigation into the
correlation of word prediction probabilities reveals
distinct behaviors between Large Language Mod-
els (LLMs) and Shallow Language Models (SLMs).
For this analysis, we employed two reading tasks:
task-specific reading (TSR) and natural reading
(NR). The TSR task encompassed 5335 words
for prediction analysis, while the NR task included
5329 words. Our findings, detailed in Table 2, are
divided into two parts: the upper section presents
the correlation outcomes for the TSR task, and the
lower section for the NR task.
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Overall, SLMs exhibit a notable and consistent
negative correlation in both the TSR and NR
tasks. This trend suggests that SLMs tend to as-
sign higher prediction probabilities with fewer fixa-
tions on critical words, thereby increasing the un-
certainty of word predictions. In contrast, LLMs, ex-
emplified by GPT-2, demonstrate a significant and
positive correlation in both tasks. This positive
correlation indicates that LLMs exhibit a prediction
pattern akin to human behavior, where increased
attention to crucial words leads to more confident
predictions.

Though the aforementioned conclusions are con-
sistent for both the TSR and NR tasks, it is note-
worthy that the correlation values for the NR task
are consistently higher than those for the TSR task.
We hypothesize that during task-specific readings,
humans are guided by specific clues to identify and
concentrate on words that are pertinent to the task
at hand. Consequently, our word prediction anal-
ysis across different LMs aligns more closely with
the process in NR.

Model Eye-tracking Measures

GD TRT FFD SFD GPT

Task-specific Reading

N-Gram −0.26 −0.25 −0.23 −0.15 −0.23
RNN −0.44 −0.43 −0.41 −0.28 −0.40
GRU -0.46 -0.45 -0.43 -0.30 -0.43
LSTM −0.42 −0.41 −0.39 −0.26 −0.39
RWKV −0.39 −0.40 −0.40 −0.27 −0.33
GPT-2 0.23 0.21 0.20 0.12 0.28

Natural Reading

N-Gram −0.33 −0.33 −0.31 −0.15 −0.29
RNN −0.52 −0.51 −0.50 −0.26 −0.46
GRU -0.54 -0.53 -0.52 -0.29 -0.48
LSTM −0.52 −0.50 −0.49 −0.26 −0.46
RWKV −0.39 −0.39 −0.38 −0.19 −0.28
GPT-2 0.33 0.30 0.30 0.14 0.37

Table 2: Prediction Probability Correlation Re-
sults using Spearman correlation metric. The num-
bers in blue mean the significant negative correla-
tion, while the red represent the positive correlation.
(Significant at p < 0.05)

6. Conclusion

In this work, we probe LLMs through human behav-
ior, specifically employing eye-tracking measure-
ments to dissect the internal workings of LLMs,
including the feed-forward layers and multi-head
attention. Our findings reveal a similarity between
LLMs and humans on word prediction: both ex-
hibit a tendency where heightened attention to piv-
otal words results in more confident predictions.
Our analysis further delineates that feed-forward
networks begin to align with human fixation pat-
terns starting from the middle layers, leveraging
upper layers to broaden the contextual understand-
ing. Our probing approach stands out for its in-
terpretability from human reading indicators and
paves the way for the development of LLMs that

are not only reliable but also imbued with a greater
degree of trustworthiness.
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Abstract
Compressibility is closely related to the predictability of the texts from the information theory viewpoint. As large
language models (LLMs) are trained to maximize the conditional probabilities of upcoming words, they may capture
the subtlety and nuances of the semantic constraints underlying the texts, and texts aligning with the encoded
semantic constraints are more compressible than those that do not. This paper systematically tests whether and
how LLMs can act as compressors of semantic pairs. Using semantic relations from English and Chinese Wordnet,
we empirically demonstrate that texts with correct semantic pairings are more compressible than incorrect ones,
measured by the proposed compression advantages index. We also show that, with the Pythia model suite and a
fine-tuned model on Chinese Wordnet, compression capacities are modulated by the model’s seen data. These
findings are consistent with the view that LLMs encode the semantic knowledge as underlying constraints learned
from texts and can act as compressors of semantic information or potentially other structured knowledge.

Keywords: compression, arithmetic encoding, lexical resource, Chinese Wordnet, large language model

1. Introduction

The recent achievement of large language mod-
els (LLM) has driven explorations of interactions
between symbolic, knowledge-driven approaches
and subsymbolic, data-driven models (Tiddi and
Schlobach, 2022; Colon-Hernandez et al., 2021).
The motivation not only stems from the appar-
ent practical values: improving performance on
knowledge-intensive tasks and reducing model hal-
lucinations, but also from exploring how such knowl-
edge is learned from the unstructured textual inputs.
Indeed, studies have shown such models not only
rapidly saturate benchmarks and reach, if not ex-
ceed, human baselines (Kiela et al., 2021; Zhong
et al., 2022; OpenAI, 2023), but they also learn
from the texts substantial structured world or lin-
guistic knowledge, for example, sentential structure
(Linzen and Baroni, 2021), factual and common-
sense knowledge (Petroni et al., 2019; Luo et al.,
2023), and lexical categories (Tenney et al., 2019).
This leads to an interesting question: how does the
model encode the structured knowledge learned
from the unannotated syntagmatic raw texts?

In this paper, we offer an angle and empirical
findings of information-theoretic compression as a
high-level functional view of how a deep learning
model encodes structured knowledge during train-
ing. The role of compression is best seen in the writ-
ten form of linguistic communication. For effective
communication between a writer and a reader, they
must share common backgrounds. One of the back-
grounds can be English morphological agreement,

which makes some text parts more predictable. For
example, seeing an "I am" in the sentence, one will
be less surprised when seeing a verb with the suffix
"-ing" afterward (Juola, 1998).

Morphology, along with syntactical structures,
help the writers to build a structured text stream.
Texts having structures are more predictable from
the previous context, which, in information theory,
takes less effort to convey. According to Shan-
non(1948)’s source code theorem, the more pre-
dictable a message is, the less information content
it carries, and the more compressible it is. One
can study linguistic properties based on their com-
pressibility. For example, researchers study the
relationship between linguistic complexity and com-
pressibility of different languages. They manipu-
lated the texts on morphological, syntactical, and
pragmatical levels of a given language and studied
their impact on the size of the compressed text by a
text-based compressor (Juola, 2008; Ehret, 2018).

Structures in texts are not limited to ones sig-
naled with linguistic forms, the world and semantic
knowledge is also a shared background among lan-
guage users. This knowledge acts as a semantic
constraint underlying the text, which should also
affect the compressibility but might be far more
subtle than linguistic forms and may not be fully
captured by a text-based compressor. Yet, the cur-
rent LLMs have achieved remarkable performance
in various languages tasks, it is likely they can act
as a compressor which is sensitive to the subtlety
of semantic knowledge.

The exploration of LLMs acting as a compressor
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Figure 1: (A) This study explores the compression advantage of different semantic pairs with different
LLMs. The compression advantage is measured with semantic pairs, each of which comprises sequences
of correct pairing (empirical) and incorrect ones (permuted). We use arithmetic encoding with the LLM-
predicted probability distributions for each token to compress the sequence. The differences in bit length
between the compressed empirical and permuted sequences are defined as compression advantage. (B)
Different types of semantic pairs. PWN are pairs of semantic relations from Princeton WordNet; CWN
SemRel are semantic relations from CWN; CWN CharSD are novel character sense disambiguation
sequences not seen by the tested LLMs.

is motivated by both the machine learning and psy-
cholinguistics literature. On the machine learning
side, the LLMs are trained to maximize the log prob-
abilities of the following token, which are equivalent
to minimizing the bits required for encoding the mes-
sage (Deletang et al., 2024). That is, the probability
distribution produced by LLM may optimally encode
the message. (2) From psycholinguistics, implicit
from the next-token prediction assumes there is an
internal state from which the prediction is derived
(Ryskin and Nieuwland, 2023). For autoregres-
sive transformer-based LLMs, these internal states
are contextualized and always updated up to the
current token, thereby capturing the semantic in-
terdependencies among the texts. Therefore, the
LLMs are well-posed as a strong compressor for
semantic constraints.

To systematically analyze whether and to what
extent the LLMs compress semantic knowledge,
we use semantic relations found in English and
Chinese Wordnet. We conduct experiments and
compute the corresponding compression advan-
tage. These experiments use semantic pairs de-
rived from the Princeton WordNet and the Chinese
Wordnet (CWN). Each pair includes an empirical
sequence, which has a correct semantic pairing,
and a permuted one. The underlying rationale is
that if the LLMs encode semantic constraints, the
empirical sequence should be more compressible,
thus increasing the compression advantage. We
ask two questions in this paper: (1) whether the
LLMs indeed better compress the empirical seman-
tic pairs. (2) how the fine-tuning process affects
the model’s compression capacities (See Figure 1
for a general overview.)

The rest of the paper is organized as follows. We
briefly review the literature on incorporating linguis-
tic knowledge into large language models and how
compression offers insights into the model-learned
constraints. Next, we describe the proposed com-
pression advantage and the experiments. In Sec-
tion 4, we introduce LopeLlama1, which is fine-
tuned with the Chinese Wordnet, and compare the
compression capacities to the base model on three
different datasets.

2. Related Work

In addition to examining the LLMs as a compres-
sor of the semantic pairs, we study how the ad-
ditional data of semantic relations, either through
fine-tuning or retrieval-augmented generation af-
fect the compression advantage. Thus, we briefly
review the fine-tuning literature followed by the lit-
erature seeing LLMs as compressors.

2.1. Fine-tuning LLMs
Various approaches have been proposed to incor-
porate linguistic resources or structured knowledge
into large language models (Tom Brown et al., 2020;
Raffel et al., 2020; Ouyang et al., 2022; Hu et al.,
2023). These strategies include the input, archi-
tecture, or output injection to a pretrained model or
their combinations (Colon-Hernandez et al., 2021;
Wang et al., 2021a,b). For instance, the input
injection strategy involves converting knowledge

1LopeLlama’s Huggingface repo will be available af-
ter the anonymized review. The code repo: https:
//github.com/seantyh/llmcomp/
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Figure 2: The schematic illustration of arithmetic encoding. Each panel shows the encoder following
different probability distributions of a three-word sequence, “in this case”. The encoder compresses one
word in each step, assigning a unique interval to the word based on its probability, and the precision
needed to represent the interval determines the length of the compressed message. (A) In the uniform
distribution, the compressed message length is 7 bits. (B) When guided by a suitable conditional probability
distribution (such as provided by an LLM), the resulting compressed message is shorter. However, (C)
when the conditional probability is misspecified, the message becomes longer.

triples into masked sequences with input templates
(Bosselut et al., 2019). Along the same lines, one
can recast the task into instruction-tuning and write
the structured knowledge as an explicit task instruc-
tion (Ouyang et al., 2022; Chung et al., 2022; Sanh
et al., 2022). To efficiently fine-tune a pre-trained
large model, methods such as (low-rank) adaption
and quantization can reduce the computation re-
source requirements for tuning such a model (Hu
et al., 2022; Pfeiffer et al., 2020; Dettmers et al.,
2022, 2023).

Fine-tuning a model requires access to its base
weights. Prompting techniques come into play to
improve the model behavior of proprietary, closed-
source models. Lately, there has been a surge in
studies focused on prompting (Arora et al., 2022;
Singh et al., 2023; Wei et al., 2022; Yao et al.,
2023a; Fernando et al., 2023); one of the more
noticeable methods involves integrating reason-
ing and actions through external tools (Yao et al.,
2023b), such as lexical resources, allowing the
model to access external databases. The retrieved
data will be added to the prompt and augment the
model’s generation (retrieval-augmented genera-
tion, Lewis et al., 2020). Even without updating
model parameters, this in-context learning during
prompting resembles implicit gradient descent on
the model’s parameters (Dai et al., 2023; Von Os-
wald et al., 2023).

2.2. LLM as a compressor

The strong prediction capability of LLMs positions
them to be strong compressors. The relation-
ship between predictors and compressors has long
been established, and the underlying mechanisms
are described as “two sides of the same coin” (Dele-

tang et al., 2024; MacKay, 2003). The intrinsic con-
nection is best characterized by Shannon (1948)’s
source coding theorem, in which the optimal code
length of a compressed message is closely related
to the entropy of the input data. In this vein, the lan-
guage model’s compression capability stems from
the model’s ability to identify regularities among
input tokens, which allows the model to maximize
the predicted likelihood of the next token thereby
reducing the entropy of the input sequence.

Viewing an LLM as a compressor goes be-
yond producing optimal code. Following Ryskin
and Nieuwland (2023), underlying this prediction
or compression process reflects the internal con-
straints learned by the model during training, which
guide the prediction of the next token. Further-
more, the predicted likelihoods are directly linked
to notions of surprisal or cloze probability in psy-
cholinguistics literature (Kutas and Hillyard, 1984;
Levy, 2008). The compressed code length thus
offers a theoretically driven method to summarise
the predicted likelihoods of each token of the input
sequence into a simple measure.

3. Compression Advantage

In this section, we show that LLMs indeed act as
a compressor for semantic pairs. We first intro-
duce the arithmetic encoder, with which the pre-
dicted probabilities from LLMs are encoded into
compressed messages. Next, we demonstrate
that these compressed messages, after control-
ling for the sequence length, are always shorter for
the correct semantic pairs than the incorrect ones.
This pattern remains stable across different sizes
of LLMs and is modulated by the model’s training
iterations over time.
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3.1. Arithmetic encoding
The arithmetic encoding is depicted in Figure 2. An
arithmetic encoder is composed of two parts: (1)
a statistical coder that assigns a bit sequence (a
codeword) for individual tokens and (2) a proba-
bilistic model that estimates the token probability
at each point of coding (Howard and Vitter, 1994).
Arithmetic coding, as a statistical coder, is known
to produce code with almost optimal code length
given the token distribution N · H(xt), where N
is the sequence length, and H(xt) is the entropy
of the token distribution. Therefore, the encoder
assumes a model supplying the token’s probabil-
ity distribution. Figure 2a and 2b show the effects
of using different distributions to encode the same
word sequence. A uniform distribution has higher
entropy and results in a longer code, while the prob-
ability estimates from a language model result in
a shorter one. However, the probability estimates
can be misspecified (Figure 2c), which results in a
longer code.

The model used by the arithmetic encoder only
needs to provide a correct conditional probability
estimate rather than reflect the true generation
process. In other words, the model may com-
press the semantic pairs better without having
any semantic-related constraints that guide the
probability-generating process. Therefore, rather
than only inspecting the model’s compression ca-
pacity based on the produced distributions, eval-
uating the model’s capacity for semantic tasks
is also crucial. Ideally, establishing the correla-
tion between the compression advantages and the
model’s semantic task performance will strengthen
the argument that the model’s internal constraints
guiding the probability distribution are indeed linked
to semantic knowledge.

3.2. Semantic relations and compression
In what follows, we first evaluate the models’ com-
pletion task performance with semantic relation
pairs from Princeton WordNet. Next, we use these
models and an arithmetic encoder to compress the
semantic pairs and compare their compression ad-
vantages.

3.2.1. Semantic pair completion

The completion task of semantic relation pairs re-
quires the model, given the gloss, to complete ei-
ther the hypernym or the holonym of a word in
Princeton WordNet. We select the headwords of
synsets occurring more than five times in Sem-
Cor3.0 as materials. The model is prompted to
complete the question, and the textual completions
are automatically parsed to extract the predicted
words.

Figure 3: The compression advantage by model
size and throughout training. The compression
advantages consistently increase as the model in-
creases in size and over the course of training.

Holonym Hypernym

Models Noun
(N=164)

Noun
(N=702)

Verb
(N=583)

Pythia-12b .12 (.02) .51 (.01) .28 (.01)
Pythia-6.9b .19 (.02) .46 (.01) .32 (.01)
Pythia-2.8b .15 (.02) .42 (.01) .25 (.01)
Pythia-1.4b .08 (.01) .31 (.01) .12 (.01)
Pythia-410m .10 (.01) .14 (.01) .12 (.01)
GPT-3.5 .50 (.03) .66 (.01) .50 (.01)
GPT-3.5-inst .54 (.03) .51 (.01) .47 (.01)

Table 1: Model performances on the English se-
mantic relation task. Scores indicate the path sim-
ilarity score (the higher, the better). Numbers in
parentheses are standard errors. The API version
of GPT-3.5 is gpt-3.5-turbo-0613, GPT-3.5-
inst is gpt-3.5-turbo-instruct-0914.

Open models, along with the proprietary ones,
are selected for the current experiments. We select
the Pythia model suite (Biderman et al., 2023) as
they provide multiple model size and their check-
points during the training. The proprietary mod-
els, GPT-3.5 and GPT-3.5-instruct are included for
comparative purposes. We select these models as
they provide both chat-based and text-completion
interfaces and allow better comparisons. Never-
theless, we expect other closed-source commer-
cial models will have consistent patterns of results.
These closed models do not provide complete logits
required for arithmetic encoders but nevertheless
provide an idea of how well competitive LLMs can
perform in the task.

Table 1 presents the results. Numbers in the ta-
bles are path similarity of the predicted and target
words in Princeton WordNet. The scores range
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from 0, indicating no connecting path in WordNet,
to 1 (exact match). Instances where the model
merely repeats the test words are assigned a zero
score. Three observations are noteworthy. First,
the model performance generally correlates with
the model size, i.e., the larger model is better. Sec-
ond, the models perform better in hypernym com-
pletions than holonyms, and nominal hypernyms
are better than verbal ones. The pattern is con-
sistent across model sizes, and it is reasonable
because it may reflect the task difficulties between
lexical categories but is also consistent with the
hierarchical structure differences among different
relation types. Thirdly, the proprietary models have
consistent patterns, although they do have higher
scores across categories.

These findings pave the way to a more detailed
analysis of the modes’ compression capacities. Al-
though open models are not as competitive as the
GPTs, the consistent trend of model sizes shows
the extent to which these models capture semantic
relations is different. The interesting question is
whether the task performances are indeed corre-
lated with the compression advantages of these
models. The following experiment explores this
hypothesis.

3.2.2. Compression advantages of semantic
relations

Having established that the models of different
sizes have different performances on semantic
completion tasks, we now turn to whether the mod-
els’ performances consistently reflect on their com-
pression advantages.

We first define the compression ratio (CR) of a
given sequence X of length N as follows,

CR =
∥ArithEnc(pLLM(X))∥

N ·Hunif(x)

where ArithEnc stands for arithmetic encoder
used to generate a compressed message, and ∥·∥
is the message length (in bits). pLLM(X) indicates
the conditional probability distribution of each to-
ken, Hunif(x) is the entropy for each token given a
uniform distribution. The compression advantage
is in turn defined as the difference in CRs between
empirical and permuted sequences:

CompAdv = CRperm − CRemp

The empirical sequences have the correct se-
mantic pairing, which includes a question part,
the definition of synset and its headword, and
a response part, the definition of the hyper-
nym/holonym synset and its headword. The per-
muted sequence has the same format, only the
question part is replaced by another random ques-

tion part in the dataset (see Figure 1 for an exam-
ple).

We compare the compression advantage of the
response part of each sequence pair. Crucially,
the response text in the empirical/permuted pair is
the same, only the preceding context is different.
This way, any resulting compression advantage
of the response text must come from the pairing
itself. Therefore, if the model could discriminate
the empirical and permuted sequences of seman-
tic pairs, the compression ratio should be different.
Specifically, as the empirical one follows the seman-
tic constraints potentially learned from the training
text, the model should find it more compressible,
resulting in a shorter compressed message. When
compared to the permuted sequences, the com-
pression advantage should be larger. Furthermore,
this trend of advantage should correspond to the
models’ semantic task performance: the larger the
model, the higher the compression advantages.

Figure 3 shows the results. Consistent with the
hypothesis, the compression advantages generally
correlate with the model size. The advantage ap-
pears to plateau for models larger than 6.9b, which
is also observed from Table 1. These results sug-
gest that the model encodes the structured knowl-
edge as a form of internal constraints of what would
follow in the text. The larger the model, the learned
constraints are more robust, reflecting better se-
mantic task performances and higher compression
advantage.

What’s more interesting in Figure 3 is compres-
sion advantages improve not only with model sizes
but also with the training steps. It hints that the
data volume the model has seen matters: either
mere exposure to a large enough amount of data
enables the model to learn the constraints, or, in the
training materials, there are structured text patterns
that explicitly describe the semantic relations.

In the next section, we explore the factor of the
model’s seen data. We use another language, i.e.,
Traditional Chinese, to examine whether the com-
pression advantage would be larger when we ex-
plicitly introduce semantic relations to the model.
The objectives are twofold: firstly, to replicate the
findings of English WordNet in Chinese Wordnet,
and secondly, to assess whether direct fine-tuning
of a model with texts that explicitly describe seman-
tic relations leads to higher compression advan-
tages for semantic pairs.

4. Lexical Resource and
Compression

This section examines whether the introduction of
structured knowledge affects the compression ad-
vantages. In the previous section, we showed that
the more data the model has seen (further into the
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CWN MOE Dictionary
BertScore F1 SBERT BertScore F1 SBERT

Model Emp Perm Emp Perm Emp Perm Emp Perm
LopeLlama .910 .848 .737 .415 .888 .866 .586 .275
Taiwan-LLaMa .792 .770 .361 .170 .851 .832 .536 .229
Difference .118 .078 .376 .245 .037 .034 .050 .046

Table 2: The evaluation of LopeLlama and Taiwan-LLaMa’s task performance. We use BERTScore and
SBERT to evaluate the output of LopeLlama and Taiwan-LLaMa on 500 CWN and 100 MoeDict unseen
instances. Crucially, the differences between LopeLlama and Taiwan-LLaMa in empirical conditions are
always higher than the permuted ones.

training process), the larger the compression ad-
vantages. The question remains whether explicit
introduction of structured knowledge, in a relatively
small-amount, also improves the compression, and
how the improvement could generalize to different
tasks. To investigate this, we fine-tune a new model,
LopeLlama based on TaiwanLlama by explicitly
introducing the lexical knowledge from the Chinese
Wordnet. We first build and evaluate the fine-tuned
model in Section 4.1 and compare the compression
advantages of the fine-tuned and based model on
three different tasks in Section 4.2.2.

4.1. Fine-tuned model: LopeLlama

4.1.1. Training

We fine-tune LopeLlama on top of Taiwan-LLaMa
(Lin and Chen, 2023), which was pre-trained on
over 5 billion tokens of Traditional Chinese. The
model was further fine-tuned on over 490K multi-
turn conversational data to enable instruction-
following and context-aware responses.

We train LopeLlama with Chinese Wordnet
(CWN), a lexical resource of traditional Chinese.
CWN has 29,619 senses, of which 26,657 are
used for training, and 2,962 are left for testing.
Each sense has a definition or semantic relations.
We use these attributes to generate an instruction
dataset with the following generation tasks: se-
mantic relation, definition, example sentences, syn-
onyms, hypernyms, and hyponyms (the details of
each task are shown in supplementary). For se-
quences that are too long for the model’s context
size, we split them into sets of ten. Therefore, a
task involving a given sense may be spread across
several training examples. After preprocessing, we
have 101,483 training examples.

LopeLlama is trained from the base model Tai-
wanLlama 2 with LLaMa Factory (hiyouga, 2023).
The fine-tuning is configured to use QLoRA (Hu
et al., 2021; Dettmers et al., 2023) of 4-bit quantiza-

2https://huggingface.co/yentinglin/
Taiwan-LLaMa-v1.0

tion and FlashAttention-2(Dao, 2023). The model
is trained with 3 epochs, learning rate 4e-4 with
cosine scheduling, and the LoRA rank is 16. Com-
plete training parameters can be found in the sup-
plementary materials. The training was completed
in about four days on a single RTX A5000.

4.1.2. Performance evaluation

We use automatic evaluation and qualitative case
studies to verify that the fine-tuned model has a
better performance on the semantic tasks.

To automatically evaluate the output of the fine-
tuned LopeLlama, we use BERTScore (Zhang
et al., 2020) and SBERT (Reimers and Gurevych,
2020)3, along with the baseline performance of the
base model. BERTScore compares the sequence
pairs based on token similarity; it calculates the
cosine similarities of the most similar token pairs
among the reference and candidate sentences. By
contrast, SBERT works on the sentence level; it
is fine-tuned such that produced sentence embed-
dings are semantically meaningful and can be com-
pared using cosine-similarity.

Table 2 shows the scores of both fine-tuned
LopeLlama and the base model Taiwan-LLaMa.
The evaluation results are based on the evalua-
tion split which contains 500 instances. Consid-
ering the instruction dataset always follows a pre-
defined template, the differences in BertScore or
SBERT may result from the model learning superfi-
cial sentential structures. Therefore, we provide a
permutation baseline, which permuted the pairing
between the instruction prompts and the responses’
ground truths in each instance. That is, in permu-
tation sequences, the model’s generation will be
compared to an incorrect ground truth which never-
theless follows the same response template. This
way, the scores in permutation sequences serve
as the baseline resulting from superficial sentential
structures.

3The BERTScore model used is distilbert-base-
multilingual-cased, and SBERT is paraphrase-
multilingual-MiniLM-L12-v2

13



Word Generation Samples

弦
xián

CWN 繫在弓上下兩端的線 ‘String tied to the upper and lower ends of the bow.’
LopeLlama弓的兩端繫上的線 ‘String tied to both ends of the bow.’
TwLlama 弦是一種由絲、絹或其他材料製成的細長而敏感的樂器 ‘A stringed instrument made from silk,

satin, or other materials, which is slender and sensitive.’
雙向

shuāng
xiàng

CWN 形容事件進行的方向有兩個 ‘Describing an event with two directions.’
LopeLlama形容兩方同時進行 ‘Describing two sides happening simultaneously.’
TwLlama 雙向：以兩種語言或方向進行溝通 ‘Bilingual: Communicating in two languages or directions.’

獸
shòu

MOE 總稱有四足而全身有毛的脊椎動物 ‘General term for vertebrate animals with four legs and fur.’
LopeLlama四隻腳、全身有毛的脊椎動物的總稱 ‘Vertebrate animals with four legs and fur, general term’
TwLlama 與動物有關的事物 ‘Things related to animals.’

岌
jí

MOE 山勢高峻 ‘High and steep mountain terrain.’
LopeLlama形容山形陡峭，高低落差大的 ‘Describes steep mountain shapes with large elevation

changes.’
TwLlama 岌（yǎn）：形容詞。指小山丘。例句：1.《爾雅．釋山》：「小山岌，大山峘。」2.

如：「岌峨」、「岌嶪」 ‘(yǎn): Adjective. Refers to small hills. Example sentences: 1.
"Erya．Explaining Mountains": Small hills are岌, and big mountains are峘. 2. Such as "岌
峨" and "岌嶪"’

Table 3: LopeLlama and Taiwan-LLaMa sample outputs in definition generation task, given the headword,
POS, and example sentences of words from CWN or MOE.

Furthermore, it can be argued that the fine-tuned
model only learn the writing style (e.g. lexical
choice or collocation patterns) instead of under-
lying semantics. To address the concerns, we add
an additional 100 instances from the MOE dictio-
nary, which have different writing styles in defini-
tions and example sentences, are included. Com-
paring two models on these instances ensure any
sentence similarity cannot be attributed to the sur-
face features. The results show that in all com-
parisons, LopeLlama always perform better than
Taiwan-LLaMA, as seen the empirical differences
are always larger than the permuted ones. The
differences in MOE Dictionary is indeed smaller,
suggesting the fine-tuned model is strongly influ-
enced by the response format. Nevertheless, the
findings suggest that the fine-tuned model performs
better in the semantic tasks.

In addition to quantitative evaluations, we further
manually examine 500 text generation in the test
splits, with greedy decoding. Generation samples
are shown in Table 3. For instance, in case #1. 弦,
LopeLlama accurately describes it with “tied at both
ends,” while Taiwan-LLaMa’s response is mixed
with definitions of instruments and silk materials.
Also, in #2. 雙向, where LopeLlama’s generation
is similar to the CWN ground truth, while Taiwan-
LLaMa’s generation is more related to ‘bilingual’.
Similar cases are observed in MOE dictionary in-
stances, such as #3. 獸. LopeLlama provides rel-
evant features such as “vertebrate animals,” “four
legs,” and “fur,” while Taiwan-LLaMa’s only provides
a general description.

The automatic and manual evaluations both indi-

cate the fine-tuned model, LopeLlama, has better
task performance compared to the base model. We
now proceed to examine how the compression ca-
pacities of the fine-tuned model, having been fine-
tuned on the explicit semantic instruction dataset,
differ from those of the original base model.

4.2. Compression advantage in the
fine-tuned model

To further study the compression capacities of the
fine-tuned LopeLlama model, we compare their
compression advantages with three datasets.

The first dataset is the evaluation split of the
LopeLlama fine-tuning dataset, which is the ex-
act same dataset used in Table 2. The compres-
sion advantages (CAs), as computed in Section
3.2.2, are the difference in the response part’s com-
pression ratio between empirical and permuted se-
quences. The CA of the fine-tuned LopeLlama is
0.115 (SE = .0072), and the one of the base model,
TaiwanLlama, is 0.080 (SE = .0076). Therefore,
consistent with the previous findings, models that
perform better in semantic tasks also have larger
CAs.

4.2.1. CWN semantic relations

The observed difference in CA might not be sur-
prising for the following reasons. First, these se-
quences follow the same surface structure as the
dataset used to train LopeLlama. A higher CA may
result from the model learning to expect surface
structures rather than the underlying semantics.
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Secondly, different from the English semantic re-
lation dataset used in 3.2.2, the empirical and per-
muted sequences have the same instruction part
but differ in response parts. Although CA automat-
ically controls for different sequence lengths, the
sequence difference is nevertheless a confounding
variable in the comparison.

To address these concerns, we introduce a sec-
ond dataset, semantic relation pairs from CWN.
The dataset is aimed to serve as the counterpart of
the English semantic pair dataset in 3.2.2. There
are 626 instances in this dataset, which are 549
hypernymys and 77 holonymys. Each sequence
starts with a prompt consisting of a word, its defini-
tion, and the intended semantic relation, followed
by the response part, which is the target word and
its definition. As in the English dataset, the empiri-
cal and permuted sequences in a given pair shared
the same response (see CWN SemRel. in 1(B)).

The CAs are computed the same way for both
models, which is for 0.060 (SE = 0.004) LopeL-
lama and 0.044 (SE = 0.004) for the TaiwanLlama
model. The pattern is the same as observed in the
first dataset. The consistent findings suggest that
the fine-tuned model captures the superficial sen-
tential structure and learns to encode the semantic
relations within the pairs better. More interestingly,
the Taiwan-LLaMa is trained on 35B tokens, yet
the LopeLlama is fine-tuned with less than 30M
tokens. This implies that even a small amount of
training data can significantly change compression
capacities.

4.2.2. Character sense-disambiguation

The last question about the fine-tuned model’s
compression capacity is how well it generalizes
the learned semantic constraints to unseen tasks.
Here, we use the third dataset, which includes task
sequences entirely novel for the model: a character
sense-disambiguation task. This task exploits the
morphological structure in Chinese bisyllabic words.
These words have two characters (syllables), most
of which could be used as a single-character words
and have their own meanings. Thus, these bisyl-
labic words can also be considered compounds
where each constituting single-character words
contribute their own meanings, among their multiple
senses, to the whole two-character compound. In
this character sense-disambiguation dataset, each
sequence’s question part is to find the meaning
of a given character in a bisyllabic word, and the
response part is the character’s meaning in that
word.

There are 469 bisyllabic words in this character
sense-disambiguation dataset. These words are
selected from CWN, and their constituting charac-
ters must also have 5 to 10 senses when used as
single-character words. The dataset is automat-

Figure 4: Compression advantages of LopeLlama
and Taiwan-LLaMa on three different tasks. LopeL-
lama shows consistent compression advantages
over the base model Taiwan-LLaMa across different
datasets. Error bars indicate one standard error.

ically generated by an independently developed
system that leverages the LangChain framework
(Chase) and the GPT-3.5 model (Tom Brown et al.,
2020) that has access to CWN database through
retrieval-augmented generation (further details of
this system, LopeGPT, can be found in Supple-
mentary). It should be noted that identifying the
character’s meaning in a bisyllabic word is a contro-
versial linguistic topic (Packard, 2000). Therefore,
this dataset only serves as a medium to study the
compression capacities of the model rather than a
normative linguistic analysis of Chinese morphol-
ogy. The dataset includes empirical and permuted
sequence pairs, where the question parts are dif-
ferent, and the response parts are the same in a
given sequence pair.

Interestingly, the same CAs patterns are ob-
served, which are .071 (SE = .002) for LopeLlama
and .057 (SE = .002) for TaiwanLLaMa, which
indicates the fine-tuned model’s compression ca-
pacities generalize to the unseen task (CAs results
of all three datasets are shown in Figure 4). Cru-
cially, the sequences in this dataset are generated
by another model that only has access to CWN
through retrieval augmentation. Better CAs in the
fine-tuned model than in the base model imply that
the fine-tuned model learns abstract semantic con-
straints underlying CWN. In summary, the findings
from the three datasets all indicate that the model’s
fine-tuning process modulates its semantic com-
pression capacities.

5. Conclusion

This paper offers an angle of seeing LLMs as strong
compressors from the information-theoretic com-
pression viewpoint, which is motivated both by the
machine learning study on information theory and
psycholinguistics theory on prediction mechanism
(Juola, 2008; Deletang et al., 2024; Ryskin and
Nieuwland, 2023). Along this line, we conduct a se-
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ries of experiments on the semantic relations from
English and Chinese Wordnet, empirically demon-
strating that LLMs can indeed compress semantic
relations better measured by the proposed com-
pression advantages index, and the compression
capacities are consistent with the model’s perfor-
mance on semantic tasks. Moreover, by fine-tuning
a new model with a small semantic relation dataset,
the compression advantages improve, even in the
unseen task. Performance-wise, these results are
not surprising given LLMs are competent in natural
language processing tasks(Qin et al., 2023); yet,
the compression angle shed light on the model per-
formance in a more functional way: as the source
coding theorem suggests, predicting and compres-
sion are the two sides of the same coin. This paper
empirically provides evidence that an LLM can be
viewed as a compressor of semantic information or
potentially other structured knowledge, where the
model learns the text input’s underlying constraints,
helping it maximize the predictive probabilities.

The compression angle offers a high-level com-
putational viewpoint to LLMs and the semantic re-
lations, yet it does not deal with the algorithmic and
representational problem (Marr, 1982): how the
model represents the constraints guiding the com-
pression. This question will require further work in-
specting the model’s states such as contextualized
embeddings, circuits, and specific nodes(Prakash
et al., 2024; Ghandeharioun et al., 2024; Wang
et al., 2023), and how they interact with compres-
sion. These studies will help us better understand
how LLMs learn and encode structured knowledge.
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A. LopeLlama: Training
Hyperparameters

Table A1 are the hyperparameters of low-rank adap-
tation when training LopeLlama on the base model.

Hyperparameter Value
batch_size 4
gradient_accumulation_steps 8
lr_scheduler_type cosine
learning_rate 4e-4
num_train_epochs 3
fp16 True
quantization_bit 4
lora_rank 16
lora_alpha 16
lora_dropout 0.05
flash_attn True

Table A1: Training arguments for LopeLlama. All
other parameters were set to the default value.

B. Training data for LopeLlama

See Table A2 for the training data and their formats
of LopeLlama instruction fine-tuning.

C. Individual scores of LopeLlama on
CWN tasks

Table A3 shows the performances of LopeLlama
on the individual tasks based on Chinese Wordnet.

D. LopeGPT

LopeGPT is built as a chatbot service leveraging
the LangChain framework (Chase) and the GPT-
3.5 model (Tom Brown et al., 2020) and integrating
language resources to enhance its language un-
derstanding and providing more effective, contextu-
ally relevant responses. In addition to the charac-
ter disambiguation tasks used in the current study,
LopeGPT offers more functions and helps users
accomplish tasks regarding lexical semantics and
corpus linguistics. The integrated resources are
listed as follows:

CWN. It serves as a language knowledge re-
source focusing on word senses and semantic re-
lations in Taiwan Mandarin. This wordnet includes
over 29,000 senses derived from over 29,000 lem-
mas, as well as over 12,000 synsets and over
59,000 semantic relations.4 As we manage to in-
tegrate lexical knowledge into LopeGPT, the word
sense tagger is also added as an external resource.

4Each sense includes its definition, example sen-
tences, part-of-speech, and semantic relations.

Corpus data in Taiwan. The data derives from
two resources: (1) Academia Sinica Balanced Cor-
pus of Modern Chinese (ASBC), which includes
19,247 texts, 11M word tokens and 239K word
types. (2) Social Media Corpus in Taiwan (SoMe),
which collects articles and comments from PTT5, a
BBS (Bulletin Board System) with more than 15 mil-
lion users in Taiwan. There are 70K posts, along
with 3M comments, ranging from 2020 to 2023,
extracted from SoMe. The posts have been prepro-
cessed and embedded via the text-embedding-
ada-002 model (OpenAI).

These resources are built into external tools and
made available to LopeGPT. Therefore, LopeGPT
can capitalize on the aforementioned language re-
sources for lexical semantic tasks. We conducted
a series of experiments to assess LopeGPT’s ca-
pacity for sense identification (for a single charac-
ter in a bi-syllabic word), semantic relation identi-
fication (for a neologism), lemmatizing and POS-
tagging sentences, and sense disambiguation (see
supplementary for details). The preliminary re-
sults demonstrate LopeGPT’s proficiency in com-
prehending word and character meanings in terms
of the evaluation tasks. In other words, language
resources such as corpora and WordNet signifi-
cantly enhance LLMs’ language comprehension
and performance across various natural language
processing tasks.

LopeGPT access to the external linguistic re-
sources by the use of tools (as formulated by
langchain, Chase). These tools are defined as
follows:

• SenseTagTool(text): Tokenizes and tags text
using DistilTagger from the CWN to provide
rich contextual information for further process-
ing.

• QuerySenseFromDefinitionTool(text): Returns
all senses that contain the given text in their
definitions. The text can be specified using
regular expressions for flexibility.

• QuerySenseFromLemmaTool(text): Returns
all senses that contain the given text in their
lemmas (i.e., the basic form of a word). Like
other tools, it also supports regular expression-
based text input.

• QuerySenseFromExampleTool(text): Returns
all senses that contain the given text in their
examples. This tool allows for context-based
sense querying.

• QueryAsbcSenseFrequencyTool(sense_id):
Provides the frequency of a particular
sense_id in the ASBC, offering insights into
the usage and prominence of specific senses.

5http://www.ptt.cc/bbs/index.html
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Task Given Want # %
Relations HW, POS, DEF REL 28,042 27.6
Definition HW, POS, SENT DEF 26,657 26.3
Representative Sentence HW, POS, DEF SENT 25,173 24.8
Synonyms HW, POS, DEF, SENT SYN 9,863 9.7
PWN Synset HW, POS, DEF PWN 7,568 7.5
Hypernyms HW, POS, DEF HYPER 3,071 3.0
Hyponyms HW, POS, DEF HYPO 1,023 1.0
Supplementary HW, POS, DEF, SENT SUPP 86 0.1
Total 101,483 100

Table A2: Training data for LopeLlama. Several tasks are generated for each sense that represents a
specific aspect of that sense. “Given” indicates what information is provided to the model. “Requested” is
what the model should generate. HW: headword, POS: part of speech, DEF: definition, REL: relation,
SENT: example sentence, HYPER: hypernym, HYPO: hyponym, PWN: Princeton WordNet Synset, SUPP:
supplementary

.

Model Task # BS F1 (Perm.) BS P (Perm.) BS R (Perm.) SBERT (Perm.)
LopeLlama REL 141 0.9456 (0.8624) 0.9551 (0.8711) 0.9368 (0.8553) 0.8858 (0.6203)
Taiwan-LLaMa 0.7718 (0.7339) 0.8232 (0.7695) 0.7287 (0.7038) 0.3967 (0.2326)
LopeLlama DEF 137 0.9243 (0.8572) 0.9263 (0.8588) 0.9228 (0.8566) 0.7460 (0.2660)
Taiwan-LLaMa 0.8393 (0.8200) 0.8347 (0.8176) 0.8444 (0.8231) 0.4484 (0.1835)
LopeLlama SENT 119 0.8157 (0.7810) 0.8303 (0.7888) 0.8024 (0.7743) 0.4358 (0.2320)
Taiwan-LLaMa 0.7975 (0.7843) 0.8306 (0.8157) 0.7673 (0.7557) 0.2645 (0.1019)
LopeLlama SYN 47 0.9506 (0.8536) 0.9520 (0.8574) 0.9493 (0.8507) 0.9071 (0.3950)
Taiwan-LLaMa 0.7594 (0.7335) 0.7899 (0.7542) 0.7329 (0.7164) 0.3689 (0.1552)
LopeLlama PWN 41 0.9642 (0.9473) 0.9687 (0.9512) 0.9600 (0.9436) 0.8757 (0.7451)
Taiwan-LLaMa 0.7244 (0.7242) 0.7256 (0.7250) 0.7247 (0.7250) 0.2227 (0.1416)
LopeLlama HYPER 9 0.9516 (0.8993) 0.9455 (0.8957) 0.9579 (0.9035) 0.7996 (0.4902)
Taiwan-LLaMa 0.7935 (0.7840) 0.8243 (0.8097) 0.7657 (0.7609) 0.3251 (0.1463)
LopeLlama HYPO 6 0.8493 (0.8171) 0.8667 (0.8316) 0.8329 (0.8037) 0.6025 (0.3916)
Taiwan-LLaMa 0.7726 (0.7613) 0.8278 (0.8143) 0.7250 (0.7154) 0.3664 (0.1129)

Table A3: Individual scores for each task on Chinese WordNet. We use BERTScore (BS) and SBERT to
evaluate the output of LopeLlama and Taiwan-LLaMa across Chinese WordNet and MoeDict. Permuted
(Perm.) means that the reference answer in each prediction is compared against is randomly shuffled within
each task (e.g., tasks that generate a definition have references shuffled within that group). BERTScore
calculates precision, recall and F1 while SBERT calculates cosine similarity. # = Number of samples
for task, P = Precision, R = Recall. HW: headword, POS: part of speech, DEF: definition, REL: relation,
SENT: example sentence, HYPER: hypernym, HYPO: hyponym, PWN: Princeton WordNet Synset, SUPP:
supplementary

• QueryRelationsFromSenseIdTool(sense_id):
Returns all relations associated with a given
sense_id, enabling exploration of semantic
connections and relations.

• QueryAsbcFullTextTool(text): Enables search-
ing the ASBC and returns the first 50 lines con-
taining the specified text, facilitating access to
relevant textual contexts.

• QueryPTTSearchTool(text): Converts the in-
put text into vectors and performs similarity-
based retrieval to find the top 10 articles most

closely related to the query. This tool aids in re-
trieving contextually relevant information from
online sources.
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Abstract
Word Sense Disambiguation (WSD) is one of the hardest tasks in natural language understanding and knowledge
engineering. The glass ceiling of the 80% F1 score is recently achieved through supervised learning, enriched
by knowledge graphs. Here, we propose a novel neurosymbolic methodology that may push the F1 score above
90%. The core of our methodology is a neurosymbolic sense embedding, in terms of a configuration of nested
n-dimensional balls. The central point of a ball well preserves pre-trained word embeddings learned from data, which
partially fixes the locations of balls. Inclusion relations among balls precisely encode symbolic hypernym relations
among senses, and enable simple logic deduction among sense embeddings. We trained a Transformer to learn the
mapping from a contextualized word embedding to its sense ball embedding, just like playing the game of darts (a
game of shooting darts into a dartboard). A series of experiments are carried out using pretraining n ball embeddings,
which cover around 70% training data and 75% testing data in the benchmark WSD corpus. Euclidean distance
and cosine similarity functions are used as objective functions, separately, and each reaches > 95.0% F1 score
in the ALL-nball dataset. This substantially breaks the glass ceiling of deep learning methods. Future work is dis-
cussed to develop a full-fledged neurosymbolic WSD system that substantially outperforms deep learning approaches.

Keywords: sense disambiguation, neurosymbolic representation, knowledge graph, NLP

1. Introduction

Word Sense Disambiguation (WSD) is the task of
acquiring the intended meaning of a word within
the context where it appears (Navigli, 2009). It is
one of the fundamental topics of natural language
understanding in Artificial Intelligence (AI) (Weaver,
1949/1955), in part because WSD is hard, and
has wide applications, such as information extrac-
tion, machine translation, opinion mining, question-
answering, sentiment analysis, text understanding.
Deep learning approaches have attained estimated
human performance, and reached a glass ceiling
over 80% (Bevilacqua et al., 2021), yet, they still
make simple mistakes that humans would not do
(Maru et al., 2022). Technically, classifying a word
and its context into a word-sense class is limited
to the knowledge that can be acquired from the
training data (Bevilacqua et al., 2021), because
word-senses are represented as opaque classes,
and symbolic hypernym relations among senses
cannot be used for deduction in the vector space.
However, recent researches show ways to repre-
sent sense class in probabilistic box lattice (Vilnis
et al., 2018) or fuzzy boxes (Dasgupta et al., 2022),
or approximated in the hyperbolic space (Nickel and
Kiela, 2017). However, it is possible to embed with-
out loss a large symbolic tree-structured taxonomy
of word senses as nested spheres with crisp bound-
aries, while well-preserving pre-trained vector em-
bedding in the sphere centres (Dong et al., 2019a,b;
Dong, 2021). In such a neurosymbolic paradigm,
a word-sense is no more an opaque class; rather,

Figure 1: A neurosymbolic approach to Word-
Sense Disambiguation works like playing the game
of Dart. A deep neural network learns to shoot a
contextualized word embedding vector to its sense
regions in the Dart board.

it is explicitly embedded as an n-dimensional re-
gion with a crisp boundary. This provides a new
way to tackle the tough WSD problem. Here, we
vividly describe the new approach as a game of
darts as follows: A neurosymbolic WSD is a neural
dart player that shoots a contextualized word vector
to the place of a configuration of regions, where
its sense is located. This configuration of regions
precisely encodes the sense inventory and latent
features of words, as illustrated in Figure 1.
For example, apple.n.01, orange.n.01, and water-
melon.n.01 are members of fruit.n.01. In classic
deep-learning approaches, they are embedded as
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four vectors. Here, we extend them into regions,
so that their membership relations are explicitly
represented by inclusion relations among these
balls: the ball of fruit.n.01 contains the balls of ap-
ple.n.01, orange.n.01, and watermelon.n.01. The
advantage for WSD is not only that shooting to
a region is much easier than shooting to a point,
but also that explicit region representation enables
logical deduction among senses: shooting a con-
textualized vector of the word apple to the region
of fruit.n.01 is sufficient to determine apple.n.01 as
the intended sense; while shooting to the region
of abstraction.n.06 is reasonable to hypothesize
that it may refer to a company, even apple does
not have the sense of company (company.n.01) in
the sense inventory, as shown by the blue shooting
path in Figure 1. The contribution in this paper are
listed as follows.

1. We propose a novel neurosymbolic method-
ology for WSD, which seamlessly unifies su-
pervised learning approaches and simple sym-
bolic reasoning among hypernym relations;

2. We implement a simple Transformer to realise
the first neurosymbolic WSD system, whose in-
put is pre-trained word embeddings and whose
output is a vectorial location in the pre-trained
n-ball sense embeddings. The performance
of this WSD breaks the ceiling of traditional
deep-learning approaches in all 6 benchmark
datasets where hypernym structures are avail-
able, and outperforms ChatGPT;

3. Our experiments show that using Direct Up-
per Hypernym (DUH) in testing achieved the
best F1 score, while using DUH in training re-
duces the amount of training senses without
weakening the performance;

4. Supported by our preliminary experiments, we
envisage a novel neurosymbolic WSD system
that may greatly outperform current SOTA sys-
tems and list a number of future works.

The rest of the article is structured as follows: we
first review the recent WSD methods, and motivate
our approach; then, we describe the details of the
novel neurosymbolic approach. In experiments,
we first set the targets, and report the statistics of
training and testing dataset, then report and anal-
yse experiments results, by comparing with perfor-
mances of SOTA WSD systems and ChatGPT. In
the end, we list a number of future work to realise
full-fledged neurosymbolic WSD systems.

2. Related Works
2.1. Word Sense Disambiguation
The research on Word Sense Disambiguation
(WSD) has a long history, with contributions from

many researchers worldwide. A recent survey can
be found in (Bevilacqua et al., 2021). The task of
WSD is to automatically decide the intended sense
in a given context, where senses of words are se-
lected from the fixed word-sense inventory. A WSD
system has three components, as follows: (1) a
word in a given context, (2) a word sense inven-
tory, e.g., WordNet (Miller et al., 1990; Miller, 1995),
BabelNet (Navigli et al., 2021), and (3) an anno-
tated corpus, e.g. SemCor (Miller et al., 1993),
where some words have been manually or auto-
matically annotated with intended word senses.
The knowledge graph approaches and supervised
deep-learning approaches are the main WSD ap-
proaches. Their performances are determined by
the quality and the size of the knowledge bases
(Pilehvar and Navigli, 2014).
Knowledge-based approaches for WSD
Knowledge-based approaches leverage part of
the graph structure of word-sense inventories,
e.g. WordNet, BabelNet, where words connect
with all their senses. By injecting the context of a
word into the graph will slightly change the graph
structure, and affect the probability distribution of
senses of the word in the graph, which can be
computed by the Personized PageRank algorithm
(Agirre et al., 2014). The sense with the highest
probability will be selected. This approach can
be improved by connecting word-sense inventory
with large web texts, e.g., BabelNet (Navigli et al.,
2021), a knowledge base that integrates WordNet
with Wikipedia (Moro et al., 2014).
From the game theoretical perspective (von Neu-
mann and Morgenstern, 1947), a word can be
viewed as a player, and its possible senses as
strategies that the player can choose, to maximize
a utility function (Tripodi and Navigli, 2019). Pre-
cisely, let W = {w1, . . . , wn} be the set of the con-
tent words in text T , Si = {s1, . . . , smi} be the set of
senses ofwi, S =

⋃
Si is the set of all the strategies

of the games. The strategy space of a player wi is
represented as a probabilistic distribution xi. The
way how the context determines senses of words
is simulated by interactions between two words wi

and wj through a utility matrix Z. The cell zr,t rep-
resents the utility value when wi chooses the rth
strategy andwj chooses the tth strategy. The value
of one sense’s strategy is related to its partners, in
the following three aspects: word similarity, word-
sense similarity, and their sense distributions, and
computed in the manner similar to the attention
mechanism.
Supervised deep learning for WSD Supervised
deep learning approaches frame WSD as a multi-
classification task – classifying a word w plus its
context C into one of its word-senses s, using an
annotated corpus D, in the form of a list of triples
< w, c, s >, and realized by supervised deep learn-
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ing (Kågebäck and Salomonsson, 2016; Raganato
et al., 2017b; Uslu et al., 2018).
The straightforward way of the supervised deep-
learning approach is to compare the similarity be-
tween the contextualized embedding of a word w in
the testing context c and senses s in the annotated
corpus, and choose the most similar one, mea-
sured by a loss function L(w, c, s), either by feed-
forward networks (Hadiwinoto et al., 2019), or trans-
formers (Bevilacqua and Navigli, 2019). In these
approaches, word senses are treated as discrete
class labels. This may cause poor performance on
low-frequency senses. To overcome this limitation,
(Kumar et al., 2019) explicitly computed word sense
embeddings by applying embedding methods for
the hypernym structure of the WordNet, then trained
an attentive BiLSTM to learn the context embedding
of a word to its sense embedding. (Scarlini et al.,
2020) computed contextualized sense embeddings
by utilizing a variety of resources, such as SemCor,
gloss in WordNet, SyntagNet (Maru et al., 2019),
UKB (Agirre et al., 2014), and BERT (Devlin et al.,
2018). (Loureiro and Jorge, 2019) computed sense
embeddings by fully utilizing relations in WordNet,
and achieved very competitive performance. Using
explicit sense embeddings, (Bevilacqua and Nav-
igli, 2020) successfully reached over 80% F1 score
for WSD. (Barba et al., 2021) is able to choose
the most important context definition for the target
word. Their method inherits the idea of the game-
theoretic WSD approach by using a feedback loop
to consider the explicit senses of nearby words.

2.2. Neuosymbolic Unification
Both knowledge-based and supervised deep-
learning WSD approaches have two assumptions
as follows: (1) word senses are opaque classes, (2)
a sense inventory has a fixed taxonomy (Bevilacqua
et al., 2021). Consequently, in knowledge-based
WSD approaches, word senses are represented
by probabilistic distributions; in supervised WSD
approaches, word senses are represented by latent
vector embeddings. However, the two assumptions
are somehow incompatible with the existence of a
symbolic sense inventory – if a sense inventory has
a well-structured and fixed taxonomy, why senses
are opaque classes in both approaches? Such in-
compatibility lies in the discrepancy between the
continuous numeric sense representation and the
discrete symbolic sense representation – The con-
tinuous numeric representation, either as a prob-
abilistic distribution or as a latent vector, cannot
explicitly represent the well-defined symbolic tax-
onomy structure. This incompatibility could be re-
solved, if word sense embedding can precisely en-
code the discrete symbolic fixed taxonomy.
A vector sense embedding can be enlarged into an
n-dimensional ball, whose radius is geometrically

computed to strictly satisfy two conditions as fol-
lows: (1) balls of sibling senses are disconnected
from each other; (2) balls of child and parent senses
are precisely nested – the ball of a child sense is
inside the ball of its parent sense. By utilising geo-
metric methods, (Dong et al., 2019a) precisely in-
jected a large tree-structured taxonomy of senses in
WordNet-3.0 into pre-trained word embeddings, re-
sulting in a configuration of nested low-dimensional
balls. Thus, these nested balls unify numerical vec-
tor embeddings and symbolic structures into one
representation without loss. Hyperbolic geometric
embedding also has the power of neuro-symbolic
unification (Tifrea et al., 2019; Chami et al., 2020),
so that computational models can inherit good fea-
tures from both neural computing and symbolic
reasoning (Besold et al., 2017; Dong, 2021; Dong
et al., 2022; Garcez and Lamb, 2023).

3. Dart4WSD: A neurosymbolic
Darter

Dart4WSD is a novel supervised neurosymbolic
learning methodology for Word Sense Disambigua-
tion, with the novelty that senses are embedded
as regions in vector space and that these region
embeddings explicitly represent a fixed taxonomy
in a sense inventory and well-preserve pre-train
vector embeddings. Dart4WSD utilises a Trans-
former to learn the intended sense of a word in
a given context, whose general architecture con-
sists of five components; word embedding, a fixed
sense inventory, a network that learns contextual-
ized word embedding, a network that transforms
the contextualized word embedding to a location in
the neurosymbolic region, as illustrated in Figure 2.

3.1. Notations used in Dart4WSD
Let w and −→w be a word and its vector word-
embedding, respectively, C represent a context;
−→wC be a vector embedding of word w in the con-
text C. Let −→VwC

be the output of our neural net-
work, with the input −→wC , that is, −→VwC

= NN(−→wC).
Let w have k different senses in the inventory
Sw = {Sw

1 , . . . , S
w
k }, and O[Sw

i ] be the ball embed-
ding of Sw

i , with the central point −→O [Sw
i ] and the

radius r[Sw
i ].

3.2. The task formulation for Dart4WSD
Given an annotated corpus D, we train a neural net-
work NN , with a loss function L(NN(−→wC),O[Sw

i ])
that improves the shooting technique of NN so
that most of its output vectors are located inside
balls of the target senses. In this preliminary
work, we compare two objective functions: (1)
the Euclidean distance, −→

VwC
= NN(−→wC) is in-

side O[Sw
i ], that is, the distance between −→

VwC

and −→
O [Sw

i ] is less than or equal to r[Sw
i ]. That

is, Ldis(
−→
VwC

,O[Sw
i ]) = max{0, ‖−→VwC

− ~O[Sw
i ]‖ −
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Figure 2: The supervised learning architecture of Dart4WSD: (A) word embeddings; (B) the fixed word
sense taxonomy extracted from a sense inventory; (C) a neural network that learned contextualized word
embeddings; (D) a neural network that learns to map a word in a context to its word sense ball embedding;
(E) the neurosymbolic nested ball embeddings of word senses.

r[Sw
i ]}; (2) the well-known cosine similarity, that

is, Lcos(
−→
VwC

,O[Sw
i ]) ≈ cos(−→wC ,

−→
O [Sw

i ]). The
cosine approximation works well, when balls of
sibling senses in the inventory are of the similar
size. For example, in Figure 3, the apple.n.01,
orange.n.01, and watermelon.n.01, three child
senses of fruit.n.01, are embedded as balls with
similar sizes; fruit.n.01 and tree.n.01 are siblings at
the upper level in the inventory, and also embedded
in the similar size. To correctly determine that the
word apple in the phrase eating a juicy apple, the
neural network shall map the contextualized word
embedding (−−−→appleeating a juicy) to a vector inside
the ball of the sense fruit.n.01 (O[Sfruit

1 ]). Then,
the sense apple.n.01 inside the fruit.n.01 will be
chosen as the target sense.
Using upper category information for WSD in the
embedding space has been proposed in (Beviá
et al., 2006; Vial et al., 2019), we show that using
explicit region embedding can fully utilise the upper
category information, for at least two reasons as
follows: (1) explicit and precise boundaries of re-
gions endow our method the ability to reason with
the symbolic hypernym relations in the embedding
space; (2) It is reasonable to argue that the con-
text information eating a juicy… shall not provide
information to direct the word embedding of apple
exactly to the ball embedding of apple.n.01, as eat-
ing a juicy orange and eating a juicy watermelon are
as meaningful as eating a juicy apple. We argue
that this context information shall direct the word

Figure 3: A novel method to choose senses by car-
rying out reasoning with hypernym relations in the
embedding space: as long as the contextualised
word embedding −−−→

appleeating a juicy is shot within
the fruit.n.01 ball, our system will choose apple.n.01
as the target sense.

embedding of apple towards the sense embedding
of its direct upper hypernym, here, fruit.n.01, and
deviate from direct upper hypernym balls of its other
senses, here, tree.n.01.
Let H1(S

w
i ) be the direct upper hypernym of Sw

i in
the inventory. We assume that there are no two Sw

i

and Sw
j have the same direct upper hypernym, that

is, H1(S
w
i ) 6= H1(S

w
j ), if Sw

i 6= Sw
j . In the case of

using Euclidean distance as the objective function,
the sense of w, whose O[H1(S

w
i )] (the boundary

of the ball of the direct upper hypernym of w) is
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Figure 4: A transformer architecture for Dart4WSD.

nearest to −→
VwC

, will be selected as the sense of w
in the current context.

Sw = arg min
Sw
i
∈Sw

max{0, ‖−→VwC
− ~O[Sw

i ]‖ − r[Sw
i ]}

In the case of using cosine similarity as the objec-
tive function, the sense of w, whose −→

O [H1(S
w
i )]

(the centre vector of the ball of the direct upper hy-
pernym of w) has the largest cosine value with −→

VwC
,

will be selected as the sense of w in the current
context.

Sw = arg max
Sw
i
∈Sw

cos(−→VwC
,
−→
O [H1(S

w
i )])

3.3. The neurosymbolic Dartboard for
senses

Considering the normal WSD situation that each
contextualised word has one target sense, we re-
strict here the taxonomy of word senses as a tree
structure. Accordingly, child-parent senses are pre-
cisely encoded as the child ball is inside the parent
ball; sibling relation senses are precisely encoded
as the disconnectedness relations among sibling
sense balls, as illustrated in Figure 3. These fea-
tures are fulfilled by n-ball embeddings (Dong et al.,
2019a,b; Dong, 2021), in which (1) the symbolic
taxonomy of word senses is explicitly and precisely
encoded by boundary relations among regions, and
(2) existing vector sense embedding is preserved
by the centre vector of a region, as illustrated in
Figure 2. Thus, we use n-balls as the neurosym-
bolic Dartboard of Dart4WSD, for quick prototyping
and the proof of concept, and also for the ease of
re-production and extension.

3.4. A supervised learning process
The Transformer architecture was originally de-
signed for sequence-to-sequence tasks (Vaswani
et al., 2017), and has been applied in a variety of
fields (Lin et al., 2021). It can be used as a universal
approximation of sequence-to-sequence functions
(Yun et al., 2020). We use a Transformer architec-
ture to learn the mapping from the contextualized
words to balls of their target senses, as illustrated
in Figure 4. Given a sentence s, we transform it
into a list of tokens (t1, t2, t3...tm), then, replace
each token with contextualised word embedding,

#training #exclude #n-ball #no ball
SC 224415 56207 156483 11725
SC+O 1135547 259375 837147 39025

Table 1: The statistics of the numbers of training
records. SC represents SemCor; SC+O repre-
sents SemCor+OMSTI.

senses #s-class #s-nball #s-L1
SC 18953 15025 5799
SC+O 19253 15298 5852

Table 2: The statistics of senses in our experiments.
#s-class: the total number of senses whose hyper-
nym path is longer than 1; #s-nball: the total num-
ber of senses that have ball embedding; #s-L1: the
total number of senses that are the direct hypernym
of senses in #s-nball.

−→
t 1,C1

,
−→
t 2,C2

,
−→
t 3,C3

. . .
−→
t m,Cm

(Yap et al., 2020).
We feed −→

t Ci
into a Transformer (TF ), whose out-

puts are fed into a two-layered perceptron as fol-
lows. Ideally, the output of the perceptron −→

V shall
be inside the n-ball of the target word sense.

−→
VwC

= Linear(Relu(Linear(TF (
−→
t i,Ci

))))

4. Experiments
The target of the experiments is to examine the
WSD performance, when the symbolic structure
of the sense classes is explicitly and precisely
represented in the vector space. We developed
Dart4WSD as the first such a WSD system, and
compared its performance with the SOTA perfor-
mance, and with the WSD performance of Chat-
GPT. Our four experiments are designed to answer
the questions as follows.

1. How is the WSD performance of LLMs, e.g.,
ChatGPT?

2. How good is Dart4WSD in the task of mapping
contextualized word vector to sense vectors,
using Euclidean distance and cosine similarity
objective functions, respectively? Which ob-
jective function leads to better performance?

3. How is the performance of Dart4WSD, if it uses
the direct upper hypernym of the target sense
(here, n-dimensional balls)? Which objective
function leads to better performance?

4. Will the performance be improved in the test-
ing phase, if in the learning phase Dart4WSD
maps to n-balls of direct upper hypernym
senses?
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#test #exclude #nball #no nball
S-2 2275 722 1459 94
S-3 1832 396 1341 95
S-07 449 8 420 21
S-13 1621 0 1435 186
S-15 1013 248 712 53
ALL 7181 1374 5358 449

Table 3: The statistics of testing records. S-2
represents Senseval-2, S-3 represents Senseval-
3, S-07 represents SemEval-07, S-13 represents
SemEval-13, S-15 represents SemEval-15.

#S-2/L1 #S-3/L1 #S-07/L1
#nball 711/522 780//605 327/281

#S-13/L1 #S-15/L1 #A/L1
#nball 669/408 350/256 2251/1424

Table 4: The statistics of senses in test records. #S-
2/L1 represents the numbers of different n-balls in
Senseval-2 and the direct upper level hypernyms.
Others are interpreted in the same way.

4.1. Datasets
We exclude, from benchmark datasets SemCor
(SC) and SemCor+OMSTI (SC+O), senses that do
not have class structures, as our target focuses on
the WSD performances, subject to opaque or clear
embedding of sense classes.
SemCor has 224415 training records, among which
there are 25845 different senses; senses in 156483
records have n-ball embedding, among which
there are 15025 different senses; senses in 11725
records do not yet have n-ball embedding, totalling
3928 different senses. Senses in 56207 records
do not have a taxonomy, totalling 6892 different
senses.
SemCor+OMSTI has 1135547 training records,
among which there are 26265 different senses;
senses in 837147 records have n-ball embedding,
among which there are 15298 different senses.
Senses in 39025 records do not yet have n-ball
embedding, totaling 3955 different senses. Senses
in 259375 records do not have a taxonomy, totaling
7012 different senses, as listed in Table 1 and Ta-
ble 2. The n-ball embedding contains 47,634 word
senses, covering around 80% senses in the WSD
benchmark datasets.

4.1.1. Training data
We create four training datasets, as follows: (1)
SemCor-nball, (2) SemCor+OMSTI-nball, (3)
SemCor-nball-L1, and (4) SemCor+OMSTI-nball-
L1 in the following way: Firstly, we transform
training data into the form as follows: “(sense,
a list of word, the index for the word(s) of the
sense)”. For example, (‘aim.n.02’, [‘have’, ‘you’,
‘set’, ‘specific’, ‘objectives’], [4]), which means

that the word pointed by the index 4, that is
the word ‘objectives’, should have the sense
‘aim.n.02’. The first two datasets SemCor-nball
and SemCor+OMSTI-nball are extracted from
SemCor and SemCor+OMSTI with the criteria that
target senses have n-ball embeddings. That is,
if ‘aim.n.02’ has an n-ball embedding, this piece
of training record will be selected. The other two
datasets are created, by setting each target sense
in the first two datasets with its direct hypernym. If
this hypernym has n-ball embedding, the training
record will be selected. For example, ‘aim.n.02’
has an hypernym path in WordNet-3.0, as fol-
lows: [‘aim.n.02’, ‘goal.n.01’, ‘content.n.05’, ‘cog-
nition.n.01’, …]. Its direct hypernym is ‘goal.n.01’.
If it has an n-ball embedding, the following train-
ing record will be added into the corresponding -L1
dataset, for example, (‘goal.n.01’, ‘aim.n.02’, [‘have’,
‘you’, ..., ‘objectives’], [4]).

4.1.2. Testing data
We create 6 × 2 = 12 datasets from the
six benchmark datasets, namely, Senseval-2,
Senseval-3, SemEval-07, SemEval-13, SemEval-
15, ALL (Raganato et al., 2017a). From each
dataset E∈{Senseval-2, Senseval-3, SemEval-
07, SemEval-13, SemEval-15, ALL}, we derive 2
testing datasets as follws: E-nball and E-nball-L1.
E-nball and E-nball-L1 are created in the same
way as we create training data, as listed in Table 3.

4.1.3. Evaluation
We use the F1 calculation software in the stan-
dard WSD corpus, downloaded from http://lcl.
uniroma1.it/wsdeval/home.

4.2. Setting and running of experiments
Dart4WSD is implemented in PyTorch. We set
learning rate to 0.001, 20 epochs, with 4-fold cross
validation. Experiments were conducted on Mac-
Book Pro Apple M1 Max (10C CPU/24C GPU),
32 GB memory. Using 50-d Glove word embed-
ding, Dart4WSD took less than 10 seconds for one
epoch for SemCor-nball training data. Dart4WSD
converges very fast: the loss of the second epoch
is only one tenth of the loss of the first epoch.

4.3. Experiments and Results
4.3.1. Experiment 1
Recent research shows that LLMs, e.g., Chat-
GPT, can do almost perfect human-like question-
answering, and their ability to reason can be im-
proved by using prompt engineering. We created
four kinds of prompts to evaluate performances
of ChatGPT (gpt-3.5-turbo) on the six benchmark
WSD test datasets, as follows: (1) Zero-shot
prompt, which gives ChatGPT all senses of a word
w, and a sentence containing w, and let ChatGPT
choose the right one from the list; (2) few-shot
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Obj. func.: Senseval-2 Senseval-3 Senseval-07 Senseval-13 Senseval-15
Ldis L0 L1 L0 L1 L0 L1 L0 L1 L0 L1
SC 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%

SC L1 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%
SC+O 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%

SC+O L1 34.1% 94.9% 37.5% 94.1% 32.0% 88.2% 32.8% 100.0% 33.9% 91.7%

Table 5: F1 scores of 5×2 datasets by using Euclidean distance as the objective function. The F1
is computed by the standard tool for WSD, which is available in the dataset download from http:
//lcl.uniroma1.it/wsdeval/home.

Obj. func.: Senseval-2 Senseval-3 Senseval-07 Senseval-13 Senseval-15
Lcos L0 L1 L0 L1 L0 L1 L0 L1 L0 L1
SC 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%

SC L1 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%
SC+O 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%

SC+O L1 34.6% 95.2% 38.0% 93.3% 33.2% 89.5% 41.3% 100.0% 39.5% 92.9%

Table 6: F1 scores of 5×2 datasets by using cosine similarity as the objective function.

prompt, which adds one example to the zero-shot
prompt; (3) CoT prompt, which uses the gloss as a
mid-step to connect a sense and the word in a con-
text; (4) few-shot CoT, which adds an example to
the Cot prompt. The zero-shot prompt produces the
lowest performance, ranging from 30.7% to 37.6%,
the few-shot CoT delivers the best performance,
ranging from 55.4% to 68.4%, which is below 80%
the glass ceiling of the SOTA performance. Other
experiments found that LLMs may make correct an-
swers with incorrect explanations (Creswell et al.,
2022; Zelikman et al., 2022). Similarly, the case of
WSD may provide chances to explore how Chat-
GPT may correctly understand the meaning of sen-
tences, while misunderstanding the meanings of
single words in the sentence.

4.3.2. Experiment2

To answer the second question, we used the
SemCor-nball dataset to train our Dart4WSD
neural-network. It learns to map from contextual-
ized word embeddings to centre vectors of sense n-
balls. The performances using Euclidean distance
range from 32.8% to 37.5% (F1 score); while the
performances using cosine similarity range from
33.2% to 39.5%, in all the testing datasets, as illus-
trated in column L0 of Table 5, Table 6. Compared
with the current best result 80% (Bevilacqua and
Navigli, 2020), this performance is not good, in part
because our inputs are pre-trained glove vectors
and the context vector is approximated by aver-
aging the vectors of neighbourhood words with a
fixed window size, which limits the Transformer to
dynamically select the right contexts, and results in
a similar performance as ChatGPT using zero-shot
prompt.

ALL (Ldis) ALL (Lcos)
L0 L1 L0 L1

SC 34.4% 95.2% 37.8% 95.3%
SC L1 34.4% 95.2% 37.8% 95.3%
SC+O 34.4% 95.2% 37.8% 95.3%

SC+O L1 34.4% 95.2% 37.8% 95.3%

Table 7: F1 scores of the ALL-L0 and ALL-L1
datasets. Using direct hypernyms of target senses
(ALL-L1), the performances (with both objective
functions) of Dart4WSD break the glass ceiling of
deep learning methods.

4.3.3. Experiment3
For the third question, we used the trained model
in Experiment 2, and evaluated whether it success-
fully hit the ball of the direct upper hypernym senses.
The F1 scores range from 88.2% to 100% using Eu-
clidean distance, and range from 89.5% to 100%
using cosine similarity, as listed in Table 5, Table 6.
The F1 score for the ALL-L1 data set reaches 95.0%
(Table 7) with each objective function (Euclidean
distance and cosine similarity), which greatly out-
performs the SOTA performance (80%) (Bevilac-
qua et al., 2021), and break the performance ceiling
(a bit above 90%) of traditional deep-learning ap-
proaches (Raganato et al., 2017a).

4.3.4. Experiment4
To answer the third question, we trained
Dart4WSD by utilising the SemCor-nball-L1
and SemCor+OMSTI-nball L1 datasets. The
target senses in the two training data sets are
replaced by their direct hypernyms, so they have
less number of senses for learning. There are no
drops in the performance, as illustrated in the rows
SC L1 and SC+O L1 of Table 5 – 7. This shows
that Dart4WSD is less data-hungry, compared with
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Figure 5: (a) the sphere boundary of human.n.01
includes the dani.n.01 sphere; (b-c) Sample images
of Greek people and Dani people.

traditional deep learning systems.

4.3.5. Analysis and Discussions
By using the direct upper-level senses in the test-
ing datasets, Dart4WSD outperforms ChatGPT and
the SOTA systems, and even breaks the glass ceil-
ing of deep learning approaches, in the setting of
current experiments. We also performed experi-
ments by utilising other pre-trained embeddings,
e.g., BERT, and had very similar results. This con-
vergently suggests that the high performance shall
be ascribed to the neurosymbolic n-ball embedding
that precisely imposes a symbolic sense inventory
into the embedding space, while preserving pre-
trained word embeddings in the centre points of
these n-balls. In this way, the configuration of all
n-balls endows Dart4WSD with the capability to
better represent out-of-distribution data by utilising
boundary relations among n-balls. For example,
Dani people may have different cultures and histo-
ries from many other human races, e.g., Greeks.
Their sample images as illustrated in Figure 5(b-c).
Descriptions about them may appear in different
types of corpus, which may result in different vector
embeddings whose cosine similarity is less than 0,
as illustrated in Figure 5(a). By utilising n-ball rep-
resentation, they are represented within the human
ball. This may bring the advantage to Dart4WSD,
easier to make correct decisions, compared with
traditional deep learning systems.

5. Conclusions and Outlooks
We prototyped Dart4WSD, a novel supervised neu-
rosymbolic method for Word-Sense Disambigua-
tion that dramatically outperforms the traditional
deep learning approaches. The core of our method
is a configuration of n-dimensional sphere embed-
dings whose boundary relations explicitly and pre-
cisely embed a symbolic sense inventory in the vec-
tor space and whose centre hosts latent features
learned from data. This neurosymbolic approach
is independent of languages and could be espe-
cially useful for low-resource languages. To this
end, a number of problems shall be solved, listed
as follows.

New Datasets for Neuro-symbolic WSD A
benchmark dataset for neuro-symbolic WSD shall
consist of not only labelled data for traditional su-
pervised learning, but also a symbolic taxonomy of
sense inventory. This symbolic part can be a part
of a large sense inventory that only describes the
taxonomy of senses in the labelled data.
Using a traditional deep-learning system as the
backbone Our neurosymbolic method demon-
strates its performance only when a well-designed
sense inventory is available, which can be unreal-
istic. It would be promising to build up a neurosym-
bolic component above a traditional deep-learning
WSD system.
More powerful geometric objective functions
We used Euclidean distances and cosine similarity
as two objective functions. Intuitively, Euclidean
distance is more precise to measure relations be-
tween spheres, however, its performance in current
experiments is a bit less than that of using cosine
similarity, which cannot take the boundary informa-
tion of balls into consideration. There should be
powerful geometric objective functions to outper-
form the cosine similarity measurement.
N -ball for DAG structures The sense inventory
in Word-Net 3.0 (Miller, 1995) is not a tree struc-
ture, but a Directed Acyclic Graph (DAG). We shall
extend the current geometric approach for DAG
structures. Creating a new n-ball configuration is
not trivial, as the sense taxonomy needs to be pre-
cisely embedded (reaching the global loss of zero).
This is a very challenging machine-learning task
that is worth further research.
Heterogenous structure One assumption of our
approach is that senses of word shall have different
direct upper hypernyms, so, we can use balls of
direct upper hypernyms. This assumption holds for
nouns in most of the cases, but, might not hold for
verbs. For example, fly.v.01 (travel through the air;
be airborne) and fly.v.06 (be dispersed or dissemi-
nated) are both senses the word fly, they share the
same direct upper hypernym travel.n.01 (change
location; move, travel, or proceed, also metaphor-
ically). In this case, using direct upper hypernym
is not sufficient to disambiguate between fly.v.01
and fly.v.06. We may need to integrate other knowl-
edge into the sense inventory. We may need to
consider Descartes’s product of n-balls. For ex-
ample, one encodes hypernym relations, another
encodes part-whole relations.
Towards a new methodology for classification
Dart4WSD can be generalised for solving any clas-
sification problem. In contrast to traditional super-
vised deep-learning methods, our method will cre-
ate the dart board before shooting, instead of the
other way around (shooting first, then drawing the
best-fit target, as described in (Gigerenzer, 2022)).
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Abstract
Event Causality Extraction (ECE) aims to extract explicit causal relations between event pairs from the text. However,
the event boundary deviation and the causal event pair mismatching are two crucial challenges that remain
unaddressed. To address the above issues, we propose a paradigm to utilize LLM to optimize the task definition,
evolve the datasets, and strengthen our proposed customized Contextual Highlighting Event Causality Extraction
framework (CHECE). Specifically in CHECE, we propose an Event Highlighter and an Event Concretization Module,
guiding the model to represent the event by a higher-level cluster and consider its causal counterpart in event
boundary prediction to deal with event boundary deviation. And we propose a Contextual Event Causality Matching
mechanism, meanwhile, applying LLM to diversify the content templates to force the model to learn causality from
context to targeting on causal event pair mismatching. Experimental results on two ECE datasets demonstrate the
effectiveness of our method.

Keywords: Event Extraction, Large Language Model, Knowledge Graph

1. Introduction

Event Causality Extraction (ECE) aims to extract
causal relations between event pairs, in which each
event is presented as a continuous span within the
sentences or documents. Abundant downstream
application tasks can be facilitated after extracting
event causality from text, including event detection
(Weng and Lee, 2011), event prediction (Granroth-
Wilding and Clark, 2016) Xu et al. (2020), logical
reasoning (Tappin et al., 2020), question answering
(Karpukhin et al., 2020), and constructing an event
logic graph (Ding et al., 2019) Gao et al. (2022).

Given plain text, an ECE system is responsible
for extracting event spans and matching them by
causality. Previous works (Yang et al., 2022) (Lyu
et al., 2022) (Zhang et al., 2022) Yang et al. (2022)
Heindorf et al. (2020) in event causality extraction
predominantly employ a two-stage method: event
tagging and span-based event causality match-
ing. Much progress (Yang et al., 2022) has been
made in this paradigm with the development of
pre-trained language models (Devlin et al., 2018).
However, two challenges have not caught much
attention: Event Boundary Deviation and Event
Causality Mismatching.

Event Boundary Deviation: Previous methods
struggle to predict causal event boundaries, result-
ing in redundant or missing words. As shown in
Fig 1 Case 1, a typical ECE model makes different

*Corresponding author

Figure 1: Case study in ECE.

predictions P1 to P3 in spans of the effect, but all
predictions describe the same event as labeled in
GOLD. We explore the origin of the event bound-
ary deviation phenomenon from two perspectives:
concluding practical experimental experience and
digging deep into the principle of the ECE task.

In the process of the case study in preliminary
experiments, we observe frequent inconsistent an-
notations of ECE datasets. As shown in Table
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Figure 2: Prompts and responses for task definition generation.

1, there exists a large proportion of labeling in-
consistencies in both typical Chinese and English
ECE datasets. These inconsistencies confused
the model in event boundary predictions trained in
these datasets. However, we argue that labeling
mistakes are ineluctable. As the model prediction
case shown in Fig 1 Case 1, a causal event ex-
pressed in span form with consecutive words exists
in multiple reasonable variants. In addition, previ-
ous research overlooked the explicit definition and
annotation guidelines in event causality extraction,
hindering the restoration process in these datasets.
To this end, clarifying the ECE task definition and
fixing inconsistencies in datasets are the primary
goals.

On the other hand, we dig into the reasonable
span variants of the event. First, each event com-
posed of a continuous span within the input text
exhibits multiple literal forms that depict the event
with different emphases. Therefore, modeling the
event with a specific span fails to capture its overall
perspective. However, previous works employ a
particular span on behalf of the event, having an
inherent shortage of capturing the entirety. Further-
more, building an association between cause and
effect events when predicting event span bound-
aries is essential. As illustrated in Fig 1 Case 3,
for the first prediction, "category 15 Typhoon Pearl"
cause "rain" constitutes a reasonable but rough
causal event pair when independently predicting
event span boundaries. But when considering the

interdependence between the causal event pair,
for the second prediction given the level and name
of the typhoon in the cause event, the effect event
should include specific rainfall locations and inten-
sity. However, previous works restricted to predict-
ing causal event span boundaries independently,
lacking in the consideration of causal associations.

Event Causality Mismatching: After the ex-
traction of potential causal events, the next step is
matching cause and effect events with semantics
and knowledge. Previous methods will usually face
an inevitable challenge, which is mismatching two
events by event span. As illustrated in Fig 1 Case
2, a human always estimates causality between
event pairs from two perspectives: semantic infor-
mation and contextual information. From the se-
mantic perspective, based on their common sense
and linguistics knowledge, humans can evaluate
event causality based on span. However, the final
decision cannot be divorced from contextual infor-
mation aside from causal events, such as conjunc-
tions, background, and correlations. Unfortunately,
previous studies focused on modeling the seman-
tic information inside event pairs, neglecting the
crucial role of contextual information outside. This
flaw in design could lead to confusion for models
when tackling complex causal event pair-matching
cases. Fig 1 Case 2 illustrates an example where
the model incorrectly predicts a causal relationship
between events A and B due to their perceived
semantic similarity. However, leveraging contex-
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tual information, we can determine that there is no
causal relationship between events A and B, but
rather that events A and B cause event C, simulta-
neously.

In this paper, we utilize LLM to optimize the task
definition, evolve the datasets, and strengthen our
proposed customized event causality extraction
framework to address the above issues. We in-
troduce a pattern that applies LLM to conclude
a task definition and annotation criteria accord-
ing to the case of labeling inconsistency. And
then automatically fix datasets by LLM based on
their viewpoint. Apart from the foundation of the
task, we construct a Contextual Highlighting Event
Causality Extraction framework (CHECE). Specifi-
cally, we propose an Event Highlighter to represent
an event independent of a specific span, and an
Event Concretization Module to predict a single
event boundary based on its causal counterpart.
Together deal with the event boundary deviation
from these three aspects. To deal with the event
causality mismatching problem, we propose a Con-
textual Event Causality Matching mechanism. And
to further ensure the model learns from context
correlation, we utilize LLM to diversify the context
templates.

The contributions of this paper are as follows:

1) We propose a paradigm to utilize LLM to clarify
the event causality extraction task annotation
and fix existing datasets. And we release the
metrics and datasets to promote the relevant
research.

2) To handle the event boundary deviation, we
propose an Event Highlighter and an Event
Concretization Module, guiding the model to
represent the event by a higher-level clus-
ter and consider its causal counterpart in
event boundary prediction. To tackle the event
causality mismatching, we devise a Contex-
tual Event Causality Matching mechanism and
apply LLM to diversify the content templates
to force the model to learn causality from con-
text.

3) Experiments on both Chinese and English
event causality extraction datasets show our
method outperforms state-of-the-art methods,
especially in our new metrics.

2. The Annotation Clarification and
Dataset of Event Causality

Extraction

Due to the frequent inconsistent annotations of
ECE datasets and their inevitability, which leads to
confusion in the final model, we explore clarifying
and aligning the dataset annotation with the assis-
tance of LLM, which is well-aligned with the given

Dataset Manual Label After Fix
CFC 85% 92%

FinCR 87% 93%

Table 1: Statistics of labeling accuracy before and
after dataset evolution.

annotating requirements and requires much less
labor compared with human annotators.

2.1. Annotation Clarification by LLM

We clarify the annotation criteria with the assis-
tance of the Large Language model(LLM). Taking
into account the presence of inconsistent anno-
tated data, we employ the LLM (specifically, text-
divinci-003) to generate multiple predictions, pre-
serving each distinct output. Thanks to the rich
knowledge that LLM contains and its great ability
to follow given instructions, the LLM is able to ana-
lyze which of the various outputs it predicts makes
the most sense, thereby establishing the essen-
tial attribute that should define the event boundary
judgment. As shown in Fig 2, the prompts are
organized in the format of the chain of thought
(Wang et al., 2022b). Through the above process
on several sets of inconsistent annotated data, the
annotation criteria of event boundary can be con-
cluded, which can be used to create instructions
for the LLM to perform dataset repairment following
these standards subsequently.

2.2. Measurement

Event Boundary Deviation arises due to the am-
biguous task definition and inconsistent dataset
annotations, as well as the inherent multivariate
nature of events. We propose Easy F1 to measure
the model performance more reasonably. In Easy
F1, a predicted causal event span is considered
correct if its similarity with the gold span surpasses
a predefined threshold. The choice of this thresh-
old can be adapted to the data distribution, and
we set it at 80 percent. In the English dataset
the similarity is measured by tokens, whereas in
the Chinese dataset, the similarity is measured by
word segmentations.

2.3. Fix Dataset by LLM

We set the concluded task’s definitions into
prompts and ask the LLM to repair the dataset as
required. In the example of concluded event bound-
ary definition "causal event should be fine-grained,
which means the output span cannot contain more
than one event and should include all the words
describing the same event". We set the obtained
definition to the requirements, and give three shots
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Dataset Train Dev Test Pairs Text Length Causal Distance Span Length
CFC 2000 250 250 2.17 41 3.4 9.67

FineCR 12541 1583 1557 1.14 69 8.3 13.38

Table 2: Statistics of two ECE datasets.

of manual repair of data according to the require-
ments. Then we ask the LLM to determine whether
the event boundary in the data meets the definition
according to the requirements, if not, it needs to
be corrected and explain the reason. The prompt
examples are shown in the Appendix.

3. Method

In this section, we first formally define the event
causality extraction task and then elaborate on
each component of our model. The overall archi-
tecture of our ECE framework is shown in Fig 3.

3.1. Problem Definition

The input sentence is X = {x1, x2, ..., xn} with n
tokens. Let S = {s1, s2, ..., sn} be all the possible
spans in X. The desired outputs are causal event
pairs as T (X) = {(c, e)|c, e ∈ S}, where c and e
are the cause event and effect event presented as
continuous spans in the input text.

The problem is decomposed into two parts, first
identifying the candidate cause events and effect
events and then assessing causality within event
pairs formed by combining all candidate cause
events with candidate effect events.

3.2. Span Proposal

Given the input sentence X, to obtain the represen-
tation of each token, we use a pre-trained language
model (PLM) as our sentence encoder. The output
is {

h1, h2, . . . , hn | hi ∈ Rd×1
}

(1)

where d is the embedding dimension, and n is
the number of tokens.

Then we judge each si in S whether it is a
causal event span following the previous span-
based method (Su et al., 2022), which uses a
global scoring matrix that considers the beginning
and the end positions of spans to predict all the
candidate cause(effect) spans. It’s worth noting
that the casual event spans predicted by the Span
Proposal Model are not exact events, they may
be part of the event lacking some boundary com-
ponents or they may include the event. In other
words, these spans reflect different emphases of
the event.

With the obtained sentence representation, us-
ing two feedforward layers that rely on the begin

Figure 3: The overall framework of CHECE.

and end indices of the span:

qi =Wqhi + bq (2)

kj =Wkhj + bk (3)

where qi ∈ Rd, kj ∈ Rd denote the vector represen-
tations of the start and end positions. The score
pi,j indicating the score of span s[i : j] that starts
with i being a cause(effect) span is computed as
follows:

pi,j = σ(q⊤i kj) (4)

where σ is the sigmoid function. Then we set a
threshold µ for the predicted score. We consider
the span s[i : j] as a candidate cause(effect) span
if pi,j exceeds the threshold value.
Class Imbalance Loss is introduced to the training
process Ls:

log(1 +
∑

(q,k)∈P

e−pq,k) + log(1 +
∑

(q,k)∈Q

epq,k) (5)

where q, k represent the start and tail indexes of a
span, P represents a collection of spans that are
considered candidate cause(effect) spans, Q rep-
resents a collection of spans that are not candidate
cause(effect) spans.

3.3. Event Highlighter

The Event Highlighter aims to build better represen-
tations for events. Due to the inherent uncertainty
and multivariate nature of events expressed with
natural language, employing a single specific span
to model the target event yields multiple candidates
with varying boundaries for a given event, thereby
significantly occupying the search space and in-
ducing model confusion during the matching of
event causality. To this end, we propose a cluster-
based event highlighter model to catch the overall
perspective and significance of events, exploring
to model the event at event-level instead of span-
level.

After obtaining all the candidate cause spans
and effect spans s[i : j] together with their scores
pi,j , the event highlighter captures the complete
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picture and emphasis of the target event E. Specif-
ically, there may be multiple candidate spans that
have a slight boundary deviation from the target
span (e.g., a different adjective), all describing the
same target event E but with different emphases.
We use the clustering method to gather the spans
that describe the same event. First, we evaluate
the token similarity between each span and the
target event centered on the target event E. If
the similarity exceeds the threshold λ, the span
is considered to describe the target event and is
clustered with the target event. Each target event
corresponds to an event cluster C = {s1, s2, ..., sk}.
Where λ is an adjustable hyperparameter and k is
the number of all spans describing the same target
event obtained after span clustering.

The representation of a single span is acquired
as follows.

hsi = Avgpool(hSTART (i):END(i)) (6)

whereAvgpool is the average pooling operation(Lin
et al., 2013), START (i) and END(i) denote the
start and end indices of the candidate span si.

Then the Event Highlighter combines all the can-
didate spans describing the same target event,
weighted by their score in the span proposal model
to find the most important tokens of the event and
see the full event description covering the longest
boundary:

hE =

k∑

1

pkhsk (7)

where k is the number of all spans describing the
same target event obtained after span clustering.

3.4. Contextual Event Causality Matching

The Event Causality matching model aims to take a
pair of cause event Ec and effect event Ee as input
and predict whether there is a causal relationship.
Previous works concatenate the representations of
event pairs and put them into the feedforward layer
for causality judgment, which only considers the
semantic representation. We argue that the explicit
use of contextual information plays an important
role in causal judgment. As illustrated in Fig 1, only
relying on the semantic representation of events, it
is easy to mistakenly judge that there is a causal
relationship between events A and B due to their
semantic similarity. But in fact, combining the con-
text structure information, we can judge that there
is no causal relationship between A and B, and it
is A and B that cause C together.
To this end, we propose utilizing the semantic infor-
mation and context information jointly to evaluate
the causality of input event pairs. First, the seman-
tic representations of input event pairs are obtained

as:

ψsem(Ec, Ee) =Wsem[hEc
;hEe

] + bsem (8)

where hEc and hEe are the event representation
obtained in the Event Highlighter model, Wsem and
bsem are trainable parameters, and [A;B] denotes
the concatenation operation.

Next, we turn to obtain the explicit contextual
representation. The mask token is used to replace
the position of the event’s original tokens and sent
to the BERT encoder to let the model pay attention
to the context information other than the semantics
of the specific token. Then the output mask token
is used as the contextual representation, rich in
context structure information:

ψcon(Ec, Ee) =Wcon[mEc
;mEe

] + bcon (9)

where mEc
,mEe

are the contextual representation
obtained from the mask token, Wcon and bcon are
trainable parameters.

With semantic representation and contextual
representation, we model the judgment of event
causality jointly by combing the two parts of infor-
mation using a hyperparameter θ.

ψ(Ec, Ee) = θψsem(Ec, Ee) + (1− θ)ψcon(Ec, Ee)
(10)

where ψ(Ec, Ee) is the score for cause event Ec

and effect event Ee to be a pair of causal events.
Then we set a threshold υ for the predicted score.
We consider cause event Ec and effect event Ee

to be a pair of causal events if pi,j exceeds the
threshold value.

During the training process, the loss is consid-
ered as follows:

Le = −
∑

Ei∈Ec,Ej∈Ee

logP
(
R∗

i,j | Ei, Ej

)
(11)

where R∗
i,j represents the gold relation type of

event pair.
To better utilize the contextual information, we

also augment the training data by constructing tem-
plate training data. Specifically, we replace each
causal event pair of the data in the training set
with [cause] and [effect] to form a contextual tem-
plate that preserves only structural information. We
store all the templates in a file. Furthermore, we
employ ChatGPT1 to generate causal event pairs
and causal templates in order to harvest rich do-
main knowledge and diverse causal contextual in-
formation from LLM. The detailed prompt is shown
in Appendix A.1. With the obtained causal event
pairs and causal templates, we synthesize extra
data during the training process by replacing the
[cause] and [effect] in the chosen template from

1https://chat.openai.com/chat
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the stored file with a random pair of causal events
in the training set or the causal event pairs gener-
ated by ChatGPT to enhance the model’s ability
capacity in capturing contextual information and
injecting domain knowledge into the model.

3.5. Event Concretization Module

The Event Concretization Module aims to reify the
event pairs judged to have causal relations in the
last step from the abstract event representation to
the concrete event span. In other words, given a
pair of input causal event clusters and their repre-
sentations, the Event Concretization Module needs
to output the most suitable cause span and effect
span that best represents the target causal event
pair as the final extraction result.

Previous works consider the spans that score
higher than the preset threshold in the Span Pro-
posal Module as predicted events. There are two
possible disadvantages to this practice: First, mul-
tiple spans with slight boundary differences are
referred to as the same event, thereby disentan-
gling the information inside the event and inevitably
introducing subsequent matching errors. Further-
more, this practice cut off the connections between
causal event pairs. As illustrated in Figure 2, judg-
ing the boundaries of cause or effect events sep-
arately ignores the overall connection of causal
events and is error-prone.

Given a pair of input cause and effect event clus-
ter Cc = {s1, s2, ..., sm} and Ce = {s1, s2, ..., sn}
with their representations. First, iterate over each
span si in the cause event cluster Cc and build
its connection with the effect event cluster Ce by
concatenating their representation and put into a
feedforward network:

Psi = σ(Wconcre[hsi ;hEe ] + bconcre) (12)

where σ is the sigmoid function, hsi and hEe
are

the span representation of si and event represen-
tation of Ee. We choose the span with the highest
score Psi in the cause event cluster as the final
output cause event. During the training process,
the loss is considered as follows:

Lc = −
∑

si∈Cc

logP
(
r∗i,j | si

)
(13)

where r∗i,j represents the gold type of span si which
means whether the span si is the gold span to rep-
resent the cause event. Event Concretization for
the effect event cluster is conducted in a symmetric
way.

3.6. Training Strategy

We adopt a joint training approach, wherein we op-
timize the combined objective function throughout

Dataset Method Dev Test
Easy-F1 Hard-F1 Easy-F1 Hard-F1

CFC

BERT-CRF 54.94 42.81 53.29 38.54
GlobalPointer 59.49 51.18 61.96 53.84

TP-Linker 62.81 53.39 62.28 53.97
PL-Marker 63.89 53.06 63.71 54.65
ChatGPT - - 31.39 12.56

Ours 64.40 53.86 63.81 55.24
Ours+LLM 64.88 55.09 65.63 55.73

FineCR

BERT-CRF 55.12 35.60 54.92 35.58
GlobalPointer 55.72 39.89 54.76 38.97

TP-Linker 56.21 40.05 56.60 39.39
PL-Marker 57.99 40.14 58.75 39.90
ChatGPT - - 17.68 7.62

Ours 58.85 40.37 59.77 40.21
Ours+LLM 59.91 40.47 60.61 40.55

Table 3: Comparison of our model and other base-
lines on two event causality extraction datasets.
We test ChatGPT with 3-shot task examples and
task descriptions. "Ours+LLM" means our full
model with ChatGPT data augmentation.

the training process while sharing the parameters
of the BERT encoder. The total loss is the sum of
these three parts:

Ltotal = ω1Ls + ω2Le + ω3Lc (14)

Performance might be better by carefully tuning the
weight of each sub-loss, but we just assign equal
weights for simplicity (i.e., ω1 = ω1 = ω1 = 1).

4. Experiments

4.1. Datasets and Preprocessing

We conduct experiments on FineCR and CFC
(Yang et al., 2022) proposed in Section 2 to verify
the effectiveness of our method. FineCR is a widely
used dataset in English. The experiments and anal-
ysis on it could be regarded as fair comparisons
with previous works. CFC is a more challenging
dataset with more ambiguous causal event spans
and multiple complicated causalities in a single
sentence. The detailed statistical information and
split information are shown in Table 2.

4.2. Metrics and Parameter Settings

For automatic evaluation, we utilize easy F1 and
hard F1 introduced in Section 2. Since previous
methods in full tagging paradigm apply token-wise
tag F1 score to report the performance, to fairly
compare our performance with baselines, we re-
produce these methods and report our metrics.

We use bert-base-uncased (Devlin et al., 2018)
and chinese-roberta-wwm-ext (Cui et al., 2021) as
the base encoders for the English dataset FineCR
and the Chinses dataset CFC. The learning rate
is set as 3e-5 in the backbone of BERT. We set
the max length of the input sentence to 200/75 for
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CFC and FineCR. The batch size is set as 16. We
train the model for at most 30 epochs and choose
the model with the best performance on the dev
set to output results on the test set.

4.3. Baselines

We compare our method with the following base-
lines:

BERT-CRF(Yang et al., 2022): BERT-CRF is a
powerful model that combines BERT’s contextual
understanding with CRF’s sequential tagging for
accurate squeue tagging.

GlobalPointer(Su et al., 2022): GlobaoPointer
is a span-based method using a global scoring
matrix that considers the beginning and the end
positions of spans with a global view.

TP-Linker(Wang et al., 2020): TP-Linker is a
one-stage joint entity and relation extraction model.
We use it to extract event spans that have larger
granularity than entities thus bringing great chal-
lenges to the model.

PL-Marker(Ye et al., 2021): PL-Marker pro-
posed a novel span representation approach to
consider the interrelation between the spans (pairs)
by strategically packing the markers in the encoder
and achieving SOTA performance in the entity and
relation extraction task.

ChatGPT: ChatGPT is a large language model
developed by OpenAI which has strong zero-shot
and few-shot learning abilities. However, it strug-
gles in the difficult task such as causal relation
extraction that requires more comprehensive com-
monsense knowledge and higher logical reasoning
ability. We test the model with a task description
and three-shot task examples.

4.4. Compared with State-of-the-art
Methods

Table 3 shows the results of our method on two
event causality extraction datasets. Overall, our
method achieves the best performance from these
baselines. Indicating our method’s effectiveness
and advancement. Specifically, compared among
full sequence tagging methods, whatever the tag-
ging schema setting, PLMs help them achieve bet-
ter performances. However, comparing ChatGPT-
Gen with other baselines, we can draw a conclu-
sion that the performance of LLM in this task is in-
ferior to supervised training models. It could be the
reason that the complex and specific demands in
the ECE task hinder the release of LLM’s extensive
capacity. Transferring methods in joint extraction
of entities and relations to ECE, TP-Linker(Wang
et al., 2020) and PL-Marker(Ye et al., 2021) achieve
higher f1 than full tagging methods. Prove they can
model the span representation and span relation

Method CFC FineCR
Easy-F1 Hard-F1 Easy-F1 Hard-F1

Ours 65.63 55.73 60.61 40.55
w/o event highlighter 60.11 53.37 52.15 38.12
w/o causal event matching 63.91 53.93 58.61 39.27
w/o LLM template 63.81 55.24 59.75 40.21
with 500 Augment Causality 64.08 53.74 - -
with 1000 Augment Causality 65.63 55.73 - -
with 1500 Augment Causality 63.43 55.12 - -

Table 4: Ablation results on the CFC and FineCR
test set.

better than plain tagging. Our method obtained bet-
ter performance in easy and hard f1 than TP-Linker
and PL-Marker, which struggle to extract events
that have larger granularity than entities. It demon-
strated the proposed Event Highlighter and Con-
textual Causal Event Matching is more customized
in this task and could deal with Event Boundary
Deviation and Event Causality Mismatching.

4.5. Ablation Experiments

To investigate the effectiveness of our proposed
components in the method, we also perform abla-
tion experiments on the CFC and FineCR datasets.
The ablation results are shown in Table 4, indi-
cating that none of these models can achieve a
comparable result with our full version. Demon-
strate that all those factors contribute a certain
improvement to our model.

Specifically, when we discard the whole event
highlighter part, and represent an event with a spe-
cific span (Ours w/o event highlighter), the perfor-
mance drops demonstrate the effectiveness of the
event highlighter. In Ours w/o causal event match-
ing, we calculate causal pair score only referring
to event representation and ignore the contextual
information. The suboptimal performance demon-
strates the effectiveness of contextual causal event
matching.

We employ ChatGPT to generate causal event
pairs and incorporate them into the constructed
template to synthesize new training data as intro-
duced in Section 3.4, injecting knowledge and con-
textual information into the model simultaneously.
To further explore the effectiveness of event pair
augment from LLM, we attempted varying template
count N utilized during training. The bottom of Ta-
ble 4 shows, when n is zero, the easy f1 drop X
from the full model, indicates the effectiveness of
the event pair augments from LLM. In addition,
the model performance could not improve with the
increase of N after N is larger than 1000, manifest-
ing that the templates generated by LLM is varies
considerably in quality.
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5. Related Work

Event Causality Extraction. Previous works use
feature-based methods for event causality extrac-
tion. (Ittoo and Bouma, 2011) proposes a method
for extracting causal pairs by leveraging part-of-
speech analysis, syntactic analysis, and causality
templates. (Hashimoto et al., 2014) uses semantic
relation (between nouns), context, and associa-
tion features to extract event causalities from the
web. In recent years, deep learning techniques
employed in causality extraction. (Li et al., 2021)
uses the BiLSTM-CRF model as the backbone
to extract cause and effect directly, formulating
the task in the causality tagging scheme. (Wang
et al., 2022a) proposed a model that aims to trans-
form event causality extraction into causal argu-
ment extraction, by incorporating both sentence-
level and document-level contextual information.
Recently, much progress has been made in this
task with the strong language modeling capabilities
and rich world knowledge of pre-trained language
models (PLMs) (Devlin et al., 2018). (Fajcik et al.,
2022) used T5 to identify all cause-effect-signal
span triplets. (Yang et al., 2022) and (Lyu et al.,
2022) use BERT-CRF model in Fine-grained Event
Causality Extraction and FinCausal 2022 tasks, re-
sulting in significant advancements.
LLMs Assist Tasks. The capability of Large
Language Models (LLMs) like ChatGPT to com-
prehend user intent and provide reasonable re-
sponses has made them extremely popular lately.
Recent studies show that the latest LLMs have
the ability to do Information Extraction tasks such
as Named Entity Recognization(NER), Relation
Extraction(RE), and Event Extraction(EE). (Xu
et al., 2023) proposed task-related instructions
and schema-constrained data generation to en-
hance LLM’s few-shot relation extraction perfor-
mance. (Tang et al., 2023) used LLM’s rich domain
knowledge to induce new event schemas. Some
works utilize LLM to improve the performance of
downstream tasks. (Dai et al., 2023) and (Ubani
et al., 2023) leveraged ChatGPT for text data aug-
mentation and synthetic training data generating
to induce extensive knowledge.

6. Conclusion

This paper proposes to utilize LLM to generate the
definition of event causality extraction tasks and
automatically evolve the datasets. Lay the foun-
dation for further research and improvement. We
propose a framework called CHECE to deal with
two unaddressed problems. Specifically, the Event
Highlighter and an Event Concretization Module,
guide the model to represent the event by a higher-
level cluster and consider its causal counterpart in

event boundary prediction to deal with event bound-
ary deviation. And the Contextual Event Causality
Matching mechanism forces the model to predict
causality from context information to overcome the
causal event pair mismatching issue. Meanwhile,
we apply LLM to diversify the content templates
to enhance this side. Experimental results on two
ECE datasets demonstrate the effectiveness of the
method.
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Limitations

Our work is not without limitations. From the LLM
side, on the one hand, the best prompt or the chain
of thought for the conclusion of task definition by
LLM is under-explored. We believe there exists
a better way for LLM to generate the definition
and further utilize it to evolve the datasets. On
the other hand, this paradigm could produce more
labeled data from news or documents from the web.
Release a larger dataset remains in our future work.
From the framework side, although effective our
method is slightly complicated. How to address the
above two challenges more concisely is a worth
exploring topic.
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Figure 4: Prompts and responses for dataset evolution.

Figure 5: Prompts and responses for contextual template generation.

Figure 6: Prompts and responses for event span pair generation.
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Figure 7: Tagging schema in Global Pointer.
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Abstract
Grounding is a pertinent part of the design of LLM-based dialogue systems. Although research on grounding
has a long tradition, the paradigm shift caused by LLMs has brought the concept onto the foreground, in
particular in the context of cognitive robotics. To avoid generation of irrelevant or false information, the system
needs to ground its utterances into real-world events, and to avoid the statistical parrot effect, the system
needs to construct shared understanding of the dialogue context and of the partner’s intents. Grounding and
construction of the shared context enables cooperation between the participants, and thus supports trustworthy
interaction. This paper discusses grounding using neural LLM technology. It aims to bridge neural and symbolic
computing on the cognitive architecture level, so as to contribute to a better understanding of how conversa-
tional reasoning and collaboration can be linked to LLM implementations to support trustworthy and flexible interaction.

Keywords: grounding, spoken dialogue systems, large language models, Theory of Mind, conversational
AI, knowledge graphs, language-capable robots

1. Introduction

One of the main challenges in cognitive robotics
is language-based communication which should
be natural as well as grounded in the context in
which the dialogue takes place. As pointed out by
Wilcock and Jokinen (2023), among others, the
main problem of ChatGPT-type interaction is that
the models have no understanding of the real world:
sentences are generated as strings of words, but
they are not grounded in real world experience and
they do not convey feelings or a genuine intention
to communicate. A robot may assist humans to ma-
nipulate objects or navigate in the environment, so
the meaning of the utterances must be linked to a
true representation of relevant events, objects and
actions. Also the lack of trustworthy information
and tendency to hallucinate undermine the reliabil-
ity of LLMs for applications especially in the health
and eldercare domains, because of the model’s
outdated information and unknown data sources,
as well as the “long-tail” problem, i.e., problems
learning low-frequency facts (Kandpal et al., 2022).
Recently also semantic inconsistency of ChatGPT
has been studied (Jang and Lukasiewicz, 2023)
with the conclusion that inconsistency issues un-
dermine its reliability and cannot simply be resolved
by prompt design and data augmentation.

The contributions of this paper deal with research
areas of cognitive robotics and conversational AI.
We study the linking of neural and symbolic pro-
cessing from the point of view of conversational
AI and support the view that grounding (actually
more than one type of grounding) is needed in LLM-
based dialogue systems which aim to be of value
for human users by providing cognitively plausible

dialogue behaviour. We draft a model that uses
conversational AI and knowledge graphs for the
purpose of building shared understanding of the
dialogue situation, combining neural technologies
for symbol-level interaction and creating common
ground, and also discuss how grounding can be
used to leverage both reliable information exchange
and smooth interaction for robot dialogues.

The paper is structured as follows. Section 2
summarizes previous and related work. We discuss
the grounding models in Section 3. The knowledge
graph technologies used in our models are briefly
presented in Section 4. We conclude with discus-
sion on future directions in Section 5.

2. Previous and Related Work

We give an overview of our general framework of
Constructive Dialogue Model in Subsection 2.1,
and summarize related work in grounding in Sub-
section 2.2

2.1. Constructive Dialogue Model
Context-aware dialogue research (Jokinen, 2018)
emphasizes that an intelligent agent needs to be
aware of its context in order to support natural and
attentive dialogues. An important characteristic of
the agent is the ability to communicate in a manner
which is well-timed concerning the partner’s atten-
tion and appropriately formulated concerning the
partner’s intentions. Such behavior creates com-
mon ground to achieve goals, seek information,
and create social bonds, i.e. dialogue partners
construct conversation together in their conversa-
tional interaction.
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In cognitive robotics (Cangelosi and Asada,
2022), robots should communicate with humans
in a socially correct way, and their ability to recog-
nize the user’s spoken and multimodal utterances
must be combined with their own speech, gesturing
and multimodal behaviour. Consequently, human-
robot interactions resemble interactive situations
between two agents. However, our claim is not
that the robot agent is conscious about its acts or
that it understands the meaning of linguistic sym-
bols in the same way as humans; rather, we put
forward the view that human-robot interactions are
perceived as natural and intentional, if the robot
agent’s operation and interaction are based on
similar capabilities (affordances) as those used in
human-human interactions.

The Constructive Dialogue Model (CDM) is a
conceptual and operational framework which re-
gards conversational interactions as cooperative
activities through which the participants build com-
mon ground (for more information see (Jokinen,
1996, 2009)). The CDM architecture takes into ac-
count the multidimensional and intertwined nature
of human-agent interaction from a dynamic sys-
tems theory perspective. Dynamic systems theory
perceives human development as a connection-
ist process of self-organization and emergence:
systems can generate novelty through their own
activity, which consists of many decentralized and
local interactions that occur in real time. In sys-
temic approaches, communication is understood
as the emergent product of multiple activities in the
participants’ cognitive neuroarchitectures, and it
can be viewed as a constant but regulated change
within a complex dynamic system, formed by the
intertwined activities.

In CDM, participants aim to achieve their commu-
nicative goals by conveying information about their
intentions and tasks. They are engaged in the ex-
change of new information which includes feedback
about their understanding, attitude, emotions, and
willingness to interact. Their individual acts create a
new (cognitive) state and together the participants
generate conversation as a joint action. The dy-
namic development of conversation enables the
participants to construct mutual understanding (al-
though not necessarily agreement about the tasks
and intentions), whereas various enablements of
communication constrain and regulate the interac-
tion, such as the need to be in contact, to perceive
various partner actions as communicative signals,
to be able to understand the partner’s message,
and to be able to produce one’s own reaction. Re-
action encodes new information which changes the
system state and causes the agents to organise
their reasoning with respect to the new state.

One of the main challenges for CDM is how to
update one’s knowledge in order to align with the

partner to construct shared context and react ap-
propriately. The process of grounding is used to
establish links between new and old information,
and to determine optimal communicative action for
the construction of shared knowledge. Ground-
ing is manifested by the signals that indicate the
agents’ cooperation and their attention to the part-
ner’s needs: verbal acknowledgement and relevant
continuation of the conversation is accompanied
by non-verbal feedback. Several studies deal with
multimodal feedback-giving processes, expressed
by eye-gaze, facial expressions, head nods, hand
gestures, body movement, and a wide range of vo-
calisations such as laughter etc. For instance, Mori
et al. (2022) studied nods in human conversations,
and proposed a model which includes a component
for updating the partner’s internal cognitive state
(such as knowledge, understanding and emotional
stance), on the basis of which the agent can decide
on the appropriate feedback. The model focuses
on the type of nod, but takes into account also a
whole repertoire of possible feedback expression
(verbal, gesturing, body posture). Models for such
expressive interaction are important in many cogni-
tive robotics applications, where task completion is
not enough but more comprehensive and affective
interaction is desired.

2.2. Related Work
Rather than focusing solely on task completion as
the basis of the efficient communication, linguis-
tic grounding research has focussed on natural-
ness of interactions and measuring user engage-
ment through the participants’ multimodal activity.
Such approaches concern cooperative dialogue
management (Clark and Wilkes-Gibbs, 1986; Clark
and Brennan, 1991; Allwood et al., 1992; Traum
and Allen, 1992; Traum and Heeman, 1996), and
more recently (Kawano et al., 2021; Udagawa and
Aizawa, 2021). Some recent research on linguistic
grounding has also been conducted by Axelsson
and Skantze (2023a,b) using the Furhat robot as
an interface robot. In this work, general knowledge
graph entities and links are marked by temporary
labels, and the memory space has to be updated
every time time a dialogue session starts.

Jokinen et al. (2024) explore how to predict
grounding and shared knowledge in dialogues,
given the listener feedback and a suitable prompt
design with examples. In particular, they investigate
if LLMs can be used to construct shared knowledge
in an interactive context of an information seeker
and an information provider conversing over a par-
ticular topic. The information provider’s knowledge
is structured in a table format, while the seeker
queries the information until understood and satis-
fied with the result. Three types of conversational
grounding are assumed: explicit (expressed by ex-
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plicit feedback signals that show the partner’s un-
derstanding), implicit (expressed by moving on in
the dialogue to other topics without explicit linguis-
tic signals to show the partner’s understanding),
and clarification (expressed by a clarification ques-
tion to ask further information). The results are
positive and demonstrate the LLMs capability to
dynamically build structured knowledge, but further
studies are needed to distinguish between the im-
plicit and clarification types of grounding, to include
multimodal feedback, and to fine-grain the analysis
of situations where misunderstandings occur.

In a series of papers (Wilcock and Jokinen,
2022a,c; Jokinen and Wilcock, 2024), Jokinen and
Wilcock have extensively studied cooperative and
uncooperative robot behaviour, also using Furhat
robots. They propose a solution with knowledge
graphs for grounding to control LLMs in dialogue
modelling and to alleviate the LLM’s tendency to
produce false information.

Figure 1: Different errors in LLM-based dialogues.

Their recent work (Wilcock and Jokinen, 2023)
compares LLM-based dialogue systems with knowl-
edge graph-based systems from the point of view
of errors that occur in testing. They distinguish
false implications, ontological errors, and Theory
of Mind errors, as shown in Figure 1. The figure
also includes speech recognition errors but these
are not discussed here as their solutions are not
directly included in the knowledge-base reasoning.

False implications are errors where the user is
led into making assumptions that are not true, while
ontological errors result from a lack of knowledge
of the semantics and structure of the world. They
can be remedied by adding semantic metadata
such as taxonomies and geographical locations to
the knowledge graphs, and by using more flexible
searches. Theory of Mind errors occur when partic-
ipants have different perspectives of the situation,
and are caused by lack of grounding.

3. Grounding Models

We distinguish between Theory of Mind grounding
(in Subsection 3.1) and knowledge grounding (in
Subsection 3.2).

3.1. Theory of Mind and Grounding
As mentioned, Wilcock and Jokinen (2023) point
out that while the other interaction errors may be re-
solved by the RAG approach and its developments,
Theory of Mind (ToM) errors occur when the par-
ticipants have different knowledge of the situation
and its solution requires modelling of the partner’s
mental state.

According to Theory of Mind (ToM) (Baron-
Cohen, 1991), the development of human cognition
requires the understanding of other minds having
different content than one’s own: another person’s
mind is related to their perspective of the world
which is not necessarily the same as one’s own.
In cognitive robotics, ToM is used as a basis for
the studies to construct a shared knowledge and
mutual understanding of the context of the physical
world, which are also the main issues in cooperative
dialogue modelling.

LLM-based interactions lack shared understand-
ing of the partner’s worldview, experience, emo-
tions, and environment. Figure 2 exemplifies a
common situation in human-robot interactions. In
the user’s mind the referent of the last one is the re-
cently listed item To the Herbs, whereas the system
regards the phrase the last one to refer to Pesche
Doro, the last one in its list of database items. The
mismatch leads to confusion but can be resolved
by a clarification question. The error is not seen as
a mistake but as a lack of relevant knowledge, and
its recovery thus becomes a matter of construct-
ing appropriate shared knowledge. We call this
conversational grounding, as it is based on the con-
versational context of what the partners have been
talking about and how they interpret the language
referents in the current context.

Figure 2: Conversational grounding (ToM error).

Another type of grounding is exemplified in Fig-
ure 3. In order to act in the real world and cooperate
with humans, the robot agent must have knowledge
of the environment and how language concepts are
linked to the entities in the environment where the
interaction takes place. For instance, in object ma-
nipulation and navigation tasks where the robot
collaborates with humans, computer vision technol-

47



ogy needs to be combined with LLMs to give the
robot a sense of the environment and the skill to talk
about it. We call this visual grounding, which has
been long studied in robotics (cf. (Harnad, 1990)),
where it refers to the grounding of utterances into
the perceptions of the world. Simultaneous visual
and conversational grounding allows the agent to
assess the relevance and truth of the partner’s ut-
terances with respect to the current environment
and to generate an appropriate response within the
shared knowledge, e.g. asking a clarification ques-
tion to recognize the correct referent mentioned by
the user.

Figure 3: Visual grounding and the real world.

Perspective taking is one of the challenges in
current computer vision research (Lemaignan et al.,
2011), whereas recent advances in Visual Dialogue
Modelling (Wu et al., 2017) combine speech and
images in order to allow spoken natural language
questions and answers deal with the elements that
are recognized in the image.

To address ToM errors, the agent must distin-
guish private and shared knowledge, and have a
goal to build shared knowledge in order to advance
the task via communication. We make a distinction
between existing static knowledge and dynamic dia-
logue processing knowledge, but represent both in
a knowledge graph. Each user can have a personal
knowledgebase which contains their personal infor-
mation and preferences but can also be extended
dynamically in the dialogue, including their view of
the dialogue situation. In order to update one’s own
knowledge and align it with the partner’s knowledge,
the agent constructs a shared context as part of the
knowledge representation. We aim to leverage the
knowledgebase approach for updates and reason-
ing by deploying the typical procedures for search-
ing and updating knowledge graph databases. For
instance, communicative actions establish links be-
tween the nodes in the graph structure, and these
can be dynamically updated as property updates
of the entities and the links.

3.2. LLMs, KGs and Grounding

As discussed above, simple application of LLMs
enables the robot agents to talk fluently on any
topic, but the sentences are basically imitations of
what could be said, rather than manifestations of
the speaker’s intention to convey some information
to the partner (giving rise to the phrase “statistical
parrot” (Bender et al., 2021)). In the knowledge-
base approach, generated sentences are grounded
in the knowledgebase, curated by humans to rep-
resent true facts of the world. Ontologies and se-
mantic metadata are important tools in providing
necessary information about how the world is struc-
tured (see Wilcock and Jokinen (2022b)) and we
can also use different knowledgebases (document
collections, knowledge graphs) which contains rel-
evant information about the domain and dialogue,
and can also be said to "represent" the world.

Currently much research is focused on combin-
ing Knowledge Graphs (KGs) and LLMs, and a
survey of this work is provided by Pan et al. (2023).
When KGs are curated by human experts, the data
provenance is known and errors of outdated data
can be resolved (cf. Wikipedia). For instance, Di
Bratto et al. (2021) describe how graph databases
can be used as a framework for a understanding
the domain during dialogue. They use Internet
Movie Database and Wikidata with a reference to
personal and common ground concepts. Wilcock
and Jokinen (2023) discuss how KGs can be used
to provide trustworthy information to the user and
how KGs can be augmented with WikiData meta-
data. Fu et al. (2023) present how KG reasoning
and ontologies enable more cooperative responses
based on reliable data, and Schneider et al. (2023)
describe how to use knowledge graphs and conver-
sational interfaces for exploratory search, bridging
the gap between structured and unstructured infor-
mation retrieval on news articles.

As fluent conversational capability is one of the
main advantages of LLMs, current research efforts
aim to combine such capability with trustworthy reli-
able information. The third meaning for “grounding”
can hence be found in the LLM and Knowledge
Graph literature: it is discussed in the context of
knowledgebases providing a reliable starting point
for the LLM generation. We call this knowledge
grounding as it refers to the grounding of linguistic
information to the speaker’s knowledge and experi-
ence of world, stored in knowledgebases and rep-
resented in texts, KGs, and cognitive models of the
agent’s knowledge.
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4. Grounding and Knowledge Graph
Technologies

In this section we briefly explore how knowledge
grounding can be included in dialogue manage-
ment, using LLMs, retrieval augmentation, and
knowledge graphs.

The RAG (Retrieval Augmented Generation) ap-
proach (Lewis et al., 2020) is commonly used as
a generation model for reliable knowledge inclu-
sion. It provides a solution to problems with false
implications and ontological errors. The process-
ing pipeline is divided into language understanding
and response generation. First the user input is
analysed to extract important concepts and the
user intent. The analysis is then used for mak-
ing a search query to retrieve relevant information
from the knowledgebase. Response generation
uses the information retrieved from the knowledge-
base together with the user query and dialogue his-
tory, as input for the LLM-based generation module
which then generates a response.

We use Neo4j graph databases (Robinson et al.,
2015) in our work. Most recently LLMs have been
used to generate Cypher queries that can search
knowledge graphs in Neo4j (Bratanic, 2023). Sym-
bolic representation of knowledge can thus be used
as a grounding model for LLMs. Neo4j also in-
cludes a vector search capability which supports
efficient semantic search of KGs by adding an em-
bedding vector to each node. It can be used with
LLMs to make semantic searches based on user
queries in natural language that do not require ex-
act lexical matches with node labels. It is interest-
ing that the description of this capability refers to
"grounding LLM responses", which in this paper
is regarded as an example of knowledge ground-
ing, i.e. representing a way how generative models
ground their responses into curated knowledge.

This approach has been demonstated in Wilcock
and Jokinen (2023) where knowledge graphs are
used with robot dialogues in the CityTalk applica-
tion to talk about restaurants and hotels (Wilcock,
2019). A similar approach is used in Jokinen and
Wilcock (2024) but the interaction deals with the
Kyoto cooking database (Kiyomaru et al., 2018)
which has been converted into a knowledge graph.
The graph is stored in a Neo4j graph database, as
shown in Figure 4.

All the nodes in the Kyoto Cooking database are
labelled with Japanese names. It is thus possible
to have multilingual interaction as the graph can
be queried in English or Japanese. An example of
these mixed-language queries in Figure 5 is from
an earlier version of the system where the names
of dishes, ingredients, nutrients, and cooking meth-
ods in the responses are in Japanese, and the
number of responses is limited to 3.

Figure 4: Kyoto Cooking knowledge graph in Neo4j.

Figure 5: Currently mixed-language responses.

5. Conclusion and Future Work

The paper describes ongoing research on human-
robot dialogues where knowledge graphs are used
to make the interaction more natural and trustwor-
thy. The paper supports the view that human in-
teraction with robots is quite unlike interactions
with text-based systems or with other types of mo-
bile devices, and that conversational robot agents
should enable a grounding process in order to cre-
ate shared context with the human partner, so as to
advance technological readiness of cognitive robot
applications.

The shared context is constructed through
grounding dynamically in the conversation, and it
is represented by knowledge graphs. Structured
knowledge modelling concerns relevant informa-
tion of the application domain and of the world, and
ultimately of the speaker’s own view-point of the
real-world events and entities. The paper aims
to show the dynamic nature of grounding and the
complexity of the construction of shared knowledge
between the dialogue partners.

Three different types of grounding are distin-
guished: 1) conversational grounding establishes
links from language expressions to the shared di-
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alogue context (i.e. beliefs of what knowledge is
shared in the context), 2) visual grounding sup-
ports grounding of language expressions to suit-
able elements in the context taking into account
the whole visual scene, and 3) knowledge ground-
ing anchors language expressions into the agent’s
own knowledge (long-term memory in which the
agent’s knowledge and experience is stored). Each
type has an important role in the communication
and in the processing of the partner’s communica-
tive signals. They also demonstrate how the sym-
bolic representations can be grounded within the
same framework of structured knowledge graphs
as vectorized documents and LLMs, thus linking
symbolic representations of thoughts and intentions
to cognitive processing of neural representations.
The grounding models also show how the dynamic
communication system can be controlled by com-
municative enablements, and how the problematic
issues of false and irrelevant information can be
alleviated to harness the conversational power of
LLMs for language-capable robots.

Future work concerns user studies to evaluate
appropriateness and success of the dialogues, as
well as application of the approach to knowledge
bases of various sizes and domains. In grounding
research, multimodal aspects of dialogue need to
be taken into account, as well as better understand-
ing of the grounding process and its cogntive mod-
elling. Main challenges deal with the construction
of structured knowledge bases, their maintenance
and updating, sustainability of LLMs, and various
ethical aspects (Williams et al., 2023) related to
language capable agents.
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