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Abstract

This paper presents a novel approach to legal
judgment prediction by combining BERT em-
beddings with a Delaunay-based Graph Neu-
ral Network (GNN). Unlike inductive methods
that classify legal documents independently,
our transductive approach models the entire
document set as a graph, capturing both contex-
tual and relational information. This method
significantly improves classification accuracy
by enabling effective label propagation across
connected documents. Evaluated on the Swiss-
Judgment-Prediction (SJP) dataset, our model
outperforms established baselines, including
larger models with cross-lingual training and
data augmentation techniques, while main-
taining efficiency with minimal computational
overhead.

1 Introduction

Modeling legal texts have attracted lots of inter-
est recently in two directions (Cui et al., 2023).
The first is to gather large collections of legal
text such as the MultiLegalPile corpus (Niklaus
et al., 2024) and train legal large language models
(LLMs) such as (Colombo et al., 2024). The second
focuses on smaller, manually annotated and spe-
cialized datasets and benchmarks such as the Swiss
Judgment Prediction1 (SJP) dataset (Niklaus et al.,
2021), LexGLUE (Chalkidis et al., 2022) and LEX-
TREME (Niklaus et al., 2023), and train smaller su-
pervised models, mainly by finetuning BERT-like
models, sometimes applying cross-lingual transfer
and data augmentation (Niklaus et al., 2022).

General-purpose LLMs like ChatGPT often per-
form poorly on legal tasks in zero and few-shot
settings (Chalkidis, 2023; Niklaus et al., 2023),
though they can be useful as components in larger
frameworks (Wu et al., 2023). Specialized mod-
els, fine-tuned with supervised learning (Niklaus

1We use the term prediction in the machine learning sense
and not in the juridical sense (Medvedeva and Mcbride, 2023).

et al., 2021, 2022, 2023), require significant re-
sources to improve performance, such as applying
cross-lingual transfer, adapter-based fine-tuning, or
tripling the dataset size with machine-translated
documents (Niklaus et al., 2022). The suboptimal
performance is likely due to the complexity of legal
texts, which are long, dense, and filled with special-
ized terminology that generic pre-trained models
struggle to understand. Additionally, these mod-
els lack sufficient exposure to the contextual and
nuanced nature of legal reasoning, requiring more
domain-specific data to adapt effectively.

In this paper, we hypothesize that transductive
learning techniques (Gammerman et al., 1998;
Joachims, 1999) are well adapted to Legal Judg-
ment Prediction (LJP) as it has been shown to
work well in few-shot scenarios (Liu et al., 2019;
Colombo et al., 2023) and on small training
datasets (Li et al., 2021; Lin et al., 2021). Along
these lines, we construct a single graph with all
training (labeled) and test (unlabeled) documents as
nodes, allowing a Graph Neural Network (GNN) to
learn from the entire dataset simultaneously. This
approach leverages the relationships between docu-
ments for effective label propagation and context-
aware classification, improving generalization by
using both labeled and unlabeled data. It also cap-
tures domain-specific knowledge through connec-
tions like citations and shared terminology, adapts
dynamically to the test set, and reduces overfitting
by integrating test data into the learning process.

Our model (§3) is a simple and efficient graph-
based approach that achieves state-of-the-art re-
sults on the Swiss Judgment Prediction (SJP) task
(Niklaus et al., 2021) without additional resources.
It is also simpler than existing transductive graph-
based models for document classificaiton (Lin et al.,
2021). Experiments (§4) show it outperforms
strong baselines from the literature and a new zero-
shot SaulLM-7B baseline (Colombo et al., 2024).
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2 Related Work

Transductive GNNs for Text Classification
GNNs (Goller and Kuchler, 1996) have demon-
strated effectiveness across various domains (Wu
et al., 2020; Nathani et al., 2019; Schlichtkrull et al.,
2018; Vashishth et al., 2020), and have been ap-
plied to various text processing tasks (Nikolentzos
et al., 2020; Wang et al., 2024). Most similar to
our work is their use in transducive models. For
instance, BertGCN (Lin et al., 2021) which builds
a heterogeneous graph over a dataset, represent-
ing documents as nodes using BERT embeddings
and modeling semantic relationships between them,
allowing both labeled and unlabeled data to con-
tribute to learning. Our model differs by using De-
launay triangulation for simpler graph construction,
avoiding joint BERT and GCN training to reduce
memory usage, and not requiring interpolation with
a separate BERT-based classifier, resulting in more
efficient graph construction and faster training. Kn-
nGCN (Benamira et al., 2019) constructs corpus-
level graphs using a KNN approach, which is less
suited to GNNs than our Delaunay-based method.
In contrast, TextGTL (Li et al., 2021) builds three
non-heterogeneous graphs (Semantic, Syntax, and
Context Text Graphs) using complex techniques
like canonical correlation analysis and dependency
parsing, whereas our model employs simpler graph
construction techniques. Furthermore, none of the
previous models have been specifically applied to
LJP.

Graph-Based Methods in Legal Text Graph-
based models have been explored for legal judg-
ment prediction, similar to our approach. Zhao
et al. (2022) use a graph network with heteroge-
neous text graphs and a GCN to predict outcomes,
while LADAN (Xu et al., 2020) employs a graph
neural network and attention mechanism to distin-
guish between confusing law articles. However,
neither constructs a comprehensive graph for all
documents, as we do. Other methods focus on
different tasks, such as LegalGNN (Yang et al.,
2021) for legal recommendations, using a hetero-
geneous graph with user queries, and CaseGNN
(Tang et al., 2024) for legal case retrieval by mod-
eling document-level relationships.

3 Method

In this section we describe our architecture, also
depicted in Figure 1.

Native BertDocument

CLS Token

Delaunay Graph

X

GNN

Prediction

Dimension Reduction

Figure 1: Our model architecture. A document is pro-
cessed through a BERT model to obtain CLS tokens,
which are then used alongside the Delaunay graph of
documents for classification using a GNN.

Document Encoder We begin by modeling docu-
ments as a graph, using the [CLS] tokens extracted
from a standard BERT model (Devlin, 2018) (up
to 512 tokens) to represent each document. While
this approach leverages BERT’s document repre-
sentation, our method is flexible and can easily
incorporate other encoders that provide document
representations. Documents that are longer than
BERT context capacity are cut off. In contrast to
our simple approach, some of the baselines we
present in §4.2 handle long documents hierarchi-
cally or using larger models.

Delaunay Graph To effectively model docu-
ments as a graph, we propose using a a Delaunay
graph (Attali et al., 2024). This kind of graph is par-
ticularly advantageous for information propagation
by a GNN. It helps mitigating common challenges
such as oversquashing (Alon and Yahav, 2021) –
information loss due to bottleneck structures in the
graph, and oversmoothing (Oono and Suzuki, 2020;
Cai and Wang, 2020) – information mixing which
can blur distinctions between nodes. In fact, De-
launay graphs do not have tight bottlenecks and
large cliques (Nguyen et al., 2023). Additionally,
Delaunay triangulation correlates with improved
homophily of the graph, meaning it better captures
the similarity between connected nodes.

In our approach, each document to be classi-
fied is represented as a node within this graph. To
construct the graph, we employ a strategy similar
to that used in Attali et al. (2024). First, we per-
form a Delaunay triangulation in a 2-dimensional
feature space, where each [CLS] token represents
the document’s embedding. Since the [CLS] to-
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ken is typically high-dimensional, we reduce its
dimensionality using UMAP (McInnes et al., 2018)
that preserves the local structure of data. Delaunay
graphs basically establish relationships between
documents based on their distances in feature space.
This operation is computationally efficient and scal-
able as we show in our experiments §4.

GNN-Based Classification Finally, for classifi-
cation, we use a simple GCN (Kipf and Welling,
2017). Our GCN takes as input the [CLS] output
from BERT, which represents the document (node)
embeddings, and the adjacency matrix of the Delau-
nay graph. We construct a single graph for training,
validation and test sets.

Training To maintain simplicity and modularity,
we adopt a two-stage training approach. In the first
stage, we add a binary classification MLP on top
of BERT’s [CLS] token and train both BERT and
the MLP to minimize the binary cross-entropy loss
using the true labels from the training set. The
MLP is used only during this training phase. In the
second stage, we train the GNN on the Delaunay
graph constructed from all document embeddings,
using the same binary classification loss on the
training set labels.

4 Experiments

4.1 Dataset

To assess the effectiveness of our method, we uti-
lize the task of Legal Judgment Prediction, aiming
to forecast the verdict of a case based on the pro-
vided facts (Aletras et al., 2016; Zhong et al., 2018;
Chalkidis et al., 2019a; Niklaus et al., 2021; Cui
et al., 2023). For this evaluation, we use the Swiss-
Judgment-Prediction dataset (Niklaus et al., 2021),
a comprehensive multilingual resource compris-
ing 85,000 cases from the Swiss Federal Supreme
Court (FSCS). Each case in this dataset is annotated
with a binarized judgment outcome, indicating ei-
ther approval or dismissal. See Table 1 for dataset
statistics.

4.2 Baselines

Finetuned LMs We compare our architecture
with three types of monolingual baselines as pre-
sented by Niklaus et al. (2021). The simplest ones
use standard BERT (Devlin, 2018) for German
(Branden Chan and Yeung, 2019), French (Martin
et al., 2019), and Italian (Parisi et al., 2020), han-
dling up to 512 tokens. Long BERT is an extended

Dataset #Train #Val #Test #Time
Italian 3,072 408 812 ≈ 11s
German 35,452 4,705 9,725 ≈ 50s
French 21,179 3,095 6,820 ≈ 30s

Table 1: Dataset statistics. Time indicates the total time
required to construct the graph, including the time spent
on dimensionality reduction.

version of Standard BERT that includes additional
positional encodings, allowing it to process longer
texts of up to 2048 tokens. Hierarchical BERT,
on the other hand, first processes text segments of
up to 512 tokens each with a standard BERT, and
then combines these segment encodings using a
BiLSTM (Chalkidis et al., 2019b). We also com-
pare to multilingual baselines that use pre-trained
XLM-R (Conneau, 2019) along with data augmen-
tation techniques based on machine translation and
cross-lingual transfer as presented by Niklaus et al.
(2022).

Zero-shot LLM (SaulLM-7B) In this baseline,
we use a role-based prompt instructing the model to
evaluate legal cases as a Swiss judge, analyzing the
facts step-by-step and determining whether to dis-
miss or approve the request in a chain-of-thought
style (Wei et al., 2024). SaulLM-7B (Colombo
et al., 2024) is employed through a text generation
pipeline, generating responses with a limit of 600
tokens. The outputs are parsed using regular ex-
pressions and conflict resolution rules to identify
patterns indicating each class.

4.3 Experimental Setup

For the experiments, we follow the same training
procedure as described in (Niklaus et al., 2021).
For our method, we use the standard BERT [CLS]
token embedding (up to 512 tokens). For the final
classification we use a GCN (Kipf and Welling,
2017). We fix the number of layers to 2 and the
dropout rate to 0.5, in line with (Pei et al., 2020;
Attali et al., 2024). We fine-tune the learning rate,
testing values of {0.005, 0.0005, 0.0001}, and the
weight decay among {5e-05, 5e-6, 5e-07} on the
validation set. The main results are presented in Ta-
ble 2, where we report the average macro-averages
F1-score for each method across 5 runs. We use
the macro-averaged F1-score instead of the micro-
average to give equal weight to all classes, ensur-
ing that the performance on less frequent classes is
fairly represented.
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Model De Fr It
Majority 44.5 44.9 44.8
Stratified 50.0 50.0 48.8
Linear (BoW) 52.6 56.6 53.9
BERT 63.7 58.6 55.2
Long BERT 67.9 68.0 59.8
Hierarchical BERT 68.5 70.2 57.1
Hierarchical BERT+MT 70.0 71.0 71.9
XLM-R+Adapters+CL 69.9 71.8 70.7
XLM-R+Adapt.+CL+MT 70.3 72.1 72.3
SaulLM-7B 51.0 52.0 52.0
BERT+Delaunay+GCN 79.2 77.5 74.4

Table 2: Main results. The baselines including BERT
and XLM-R are taken from (Niklaus et al., 2021, 2022).
Best scores are in bold. Our method achieves standard
deviations ranging between 0.5 and 0.7 across different
languages, making it the most stable method compared
to the baselines.

4.4 Results

Main Findings Our model achieves the highest
scores across all languages as presented in Table
2. This demonstrates that our approach, which
builds on top of a fine-tuned BERT outperforms
the BERT baseline with negligible computational
overhead and without retraining BERT. Despite be-
ing a smaller model, BERT+Delaunay+GCN out-
performs Hierarchical BERT and Long BERT, and
XLM-R models with cross-lingual training and data
augmentation techniques like machine translation.
Additionally, our transductive approach seems to
mitigate the lack of resources, as seen in the results
for the Italian dataset. While the Italian scores are
generally lower than those for German and French,
mainly due to the smaller dataset size. This un-
derscores our model’s robustness, particularly for
lower-resource languages. Finally, our model out-
performs the specialized legal LLM (SaulLM-7B),
confirming findings from the literature that generic,
powerful language models like ChatGPT underper-
form on this task (Niklaus et al., 2023; Chalkidis,
2023).

Running Time The Delaunay graph can be con-
structed efficiently including dimensionality reduc-
tion as presented in Table 1. Adding a GCN-based
classification layer is highly scalable and computa-
tionally efficient. On average, a single run of clas-
sification takes 91 seconds on the German dataset,
42 seconds on the French dataset, and 5 seconds on
the Italian dataset when using a T4 GPU.

De Fr It
SBERT + Delaunay+GCN 44.8 47.6 51.9
BERT + KMeans 52.0 74.2 66.4
BERT + Delaunay+GCN 79.2 77.5 74.4

Table 3: Results of our ablation study.

Ablations To demonstrate the necessity of both
(a) fine-tuning document representations for the
task at hand and (b) enriching them through GNNs,
we conducted a series of comparisons. First, we re-
placed the Delaunay+GCN part of the architecture
with KMeans unsupervised clustering on [CLS] to-
kens which does not need any training. In a second
experiments, we replaced the finetuned BERT with
pre-trained SBERT (Reimers, 2019) without any
further finetuning on the task to generate document
embeddings. The results are shown in Table 3.

The results show that our method consistently
outperforms both KMeans clustering and SBERT-
based encoding, emphasizing the importance of
first fine-tuning document representations for task-
specific alignment and then further refining them
with graph-based methods like Delaunay GNN.
This approach effectively captures structural re-
lationships, enhancing representation quality and
leading to more accurate classification.

5 Conclusions

This paper demonstrates that a transductive legal
judgment prediction method, combining BERT
embeddings with Delaunay-based GNNs, signif-
icantly outperforms traditional inductive classifica-
tion methods by effectively utilizing contextual and
relational information between legal documents for
more accurate label propagation and classification.
In future work, we will study the necessity of re-
training the model whenever a new batch of doc-
uments are to be classified. We will also explore
semi-supervised training approaches to study the
dependency of the performance on annotated data.

6 Limitations

Our study is limited by its exclusive focus on the
SJP dataset, which may affect its generalizability
to other legal systems. The model may also in-
herit biases from the training data, and we have not
performed a bias analysis. While our approach im-
proves performance, it may not fully capture all the
complex factors influencing judicial decisions and
may face scalability challenges with larger datasets.
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7 Ethics Statement

Our work uses machine learning techniques for
legal judgment prediction based on SJP dataset.
We acknowledge that models trained on historical
data may inherit biases, such as disparities in legal
decisions or underrepresentation of certain groups.
Since our model is based on cases from the Swiss
Federal Supreme Court, it may not generalize to
other jurisdictions or legal systems with different
laws or cultural contexts. We have not tested its
applicability outside the Swiss judicial system, and
extending it to other settings would require careful
adaptation and validation.

Our method is not intended to replace human
judgment but to provide supplementary insights to
legal professionals. Its outputs should be viewed
as probabilistic suggestions, not definitive conclu-
sions, and should always be used alongside human
oversight to consider the broader context and ethi-
cal implications not captured in the training data.

To mitigate risks of bias and unjust outcomes,
we recommend integrating our model in a way that
enhances, rather than replaces, human decision-
making. Any deployment should include mecha-
nisms for regular monitoring and auditing to detect
and address potential biases promptly, ensuring its
alignment with fair legal practices.
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