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Abstract

This work presents a new task-aware prompt
design and example retrieval approach for infor-
mation extraction (IE) using a prompt chaining
technique. Our approach divides IE tasks into
two steps: (1) text classification to understand
what information (e.g., entity or event types)
is contained in the underlying text and (2) in-
formation extraction for the identified types.
Initially, we use a large language model (LLM)
in a few-shot setting to classify the contained
information. The classification output is used
to select the relevant prompt and retrieve the
examples relevant to the input text. Finally,
we ask a LLM to do the information extrac-
tion with the generated prompt. By evaluating
our approach on legal IE tasks with two dif-
ferent LLMs, we demonstrate that the prompt
chaining technique improves the LLM’s overall
performance in a few-shot setting when com-
pared to the baseline in which examples from
all possible classes are included in the prompt.
Our approach can be used in a low-resource
setting as it does not require a large amount of
training data. Also, it can be easily adapted to
many different IE tasks by simply adjusting the
prompts. Lastly, it provides a cost benefit by
reducing the number of tokens in the prompt.

1 Introduction

This work introduces a new prompt chaining tech-
nique for information extraction (IE) in the in-
context learning (ICL) setting. Since the large
language model (LLM)’s capability of handling
various tasks in a few-shot setting has been demon-
strated (Brown et al., 2020), many researchers have
investigated using LLMs in the ICL setting.

A key challenge in this research area is exam-
ple retrieval. Retrieving good examples for the

prompt improves the performance of LLMs in the
ICL setting (Gao et al., 2021; Liu et al., 2022).
Different approaches have been made to retrieve
good examples, but they rely mostly on seman-
tic similarity with the underlying text. However,
semantic similarity-based example retrieval does
not guarantee good example quality. As Wan et al.
(2023) indicates, there are cases where task-aware
example retrieval works better. For example, when
working on a IE task from a domain-specific docu-
ment in which many sentences share high semantic
similarity yet contain different types of informa-
tion, retrieving examples based on the information
type contained in each sentence is a better option
than using a semantic similarity-based approach.
There are a few works that present task-aware ex-
ample retrieval techniques (Wan et al., 2023; Huang
et al., 2023). However, the techniques are not eas-
ily adaptable because they require training or fine-
tuning a model. They also focus on addressing
specific tasks rather than general IE tasks.

Our approach with the prompt chaining tech-
nique provides an alternative to these methods as
it does not involve any training nor fine-tuning.
Also, it can be easily adapted to various IE tasks
by simply adjusting prompts. The main idea of
our approach is to split the IE tasks into two steps:
(1) text classification and (2) information extrac-
tion. In the text classification step, an input text
is classified based on the information contained in
it. We prompt a LLM to do the text classification
in a few-shot setting. The output from this step
is used to retrieve examples of the relevant type(s)
that are relevant to the input text. With the retrieved
examples, the prompt for the information extrac-
tion is generated. Lastly, we ask a LLM to do the
information extraction using the generated prompt.
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The main contributions of this work are:

• This work introduces a new task-aware exam-
ple retrieval technique using prompt chaining.
This approach does not require any model
training nor fine-tuning. It can be applied
in the low-resource setting as it does not re-
quire training data. Also, this approach can
be easily adapted to many IE tasks by simply
adjusting the prompts.

• We demonstrate that the prompt chaining tech-
nique improves LLM’s performance on the IE
tasks in a few-shot setting when compared to
the baseline model in which examples from
all possible classes are included in the prompt.
GPT-4’s results show that in the in-domain
dataset, the prompt chaining approach im-
proves the F1 score by 3.41 percentage points
for entity extraction (76.40% vs. 72.99%)
and 3.68 percentage points for event extrac-
tion (67.02% vs. 63.34%) compared to the
baseline. In the out-of-domain dataset, it also
outperforms the baseline for entity extraction
(56.89% vs. 54.97%) and event extraction
(39.44% vs. 38.08%). GPT-4o mini shows a
similar trend, with the prompt chaining boost-
ing entity extraction by 1.52 percentage points
(77.05% vs. 75.53%) and event extraction by
2.37 percentage points (70.67% vs. 68.30%)
in-domain. Out-of-domain, it improves entity
extraction by 0.71 percentage points (58.82%
vs. 58.11%) and event extraction by 7.09 per-
centage points (42.13% vs. 35.04%).

• Employing the technique provides cost bene-
fits by reducing the number of tokens con-
tained in a prompt. In our evaluation,
the prompt chaining approach is 6.99 times
cheaper in input processing compared to the
baseline model.

2 Related Work

2.1 Prompt Engineering Focusing on Example
Retrieval

Recently there has been considerable research on
prompt engineering techniques, focused particu-
lary on example retrieval. Earlier works focus on
retrieving examples that are semantically similar to
the query. Gao et al. (2021) and Liu et al. (2022)

use a k-nearest neighbors (NN) algorithm to re-
trieve examples that are semantically similar to the
query.

More recent works train example retrievers to
find examples with higher relevance to the input
query. Rubin et al. (2022), Luo et al. (2023) and Li
et al. (2023b) train dense retriever using the LLM’s
training signal. Wang et al. (2024) presents a frame-
work which can be used to train dense retrievers
iteratively by employing a reward model trained on
the LLM’s training signal.

Another approach emphasizes the inclusion of a
wide range of examples, rather than just those that
are semantically similar or relevant to the query.
Ye et al. (2023) and Polat et al. use a Maximal
Marginal Relevance-based approach to select ex-
amples that are not only relevant to the given query,
but also complementary to each other. Mo et al.
(2024) uses k-NN algorithm and a self-consistency
retrieval strategy to include both correct/semanti-
cally similar examples and wrong/negative exam-
ples in the prompt. He et al. (2023) and Guo et al.
(2024) focus on constructing diverse demonstra-
tions to handle document information extraction
and unified information extraction, respectively.

There are a few works that concentrate on task-
aware retrieval. Wan et al. (2023) proposes two
task-aware retrieval methods for relation extraction
tasks: (1) entity-prompted sentence embedding and
(2) fine-tuned relation representations. Huang et al.
(2023) presents a API Entity-Relation Joint Ex-
traction framework, which consists of a dynamic
prompt generator and a joint entity-relation extrac-
tor. The work employs a BERT-based classifier
to identify the top-3 candidate relations from an
input text, generating a prompt that includes only
examples relevant to these candidate relations.

Our work also concentrates on task-aware re-
trieval, but it differs from previous efforts in two
aspects. First, our work does not involve any model
training or fine-tuning. Both Wan et al. (2023)
and Huang et al. (2023) require training or fine-
tuning a model. Our approach can be applied in a
low-resource setting as it does not require a large
amount of training data. Second, our approach
can be adapted to various types of IE tasks. If
the prompt is adjusted properly, our approach can
handle a variety of IE tasks ranging from entity
extraction to complex event extraction. In contrast,
Wan et al. (2023) and Huang et al. (2023) focus on
addressing specific tasks (relation extraction and
API entity and relation extraction).
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Figure 1: This figure shows an overview of our prompt chaining technique for information extraction. When an
input text is given, it is first classified based on the information contained in it to understand which entities and
events are likely to be present. We prompt an LLM (e.g., GPT-3.5 in this work) to do the text classification in a
few-shot setting. Based on the text classification result, the examples for inclusion in the information extraction
prompt are chosen. With the prompt completed with the chosen examples, we ask a second LLM (e.g., GPT-4 or
GPT-4o mini in this work) to perform the information extraction task and produce the final result.

2.2 IE using LLMs with In-context Learning

With the rapid development of LLMs’ capability
in the ICL setting, many works investigate us-
ing LLMs in the ICL setting for various tasks,
including information extraction. In particular,
many works focus on named entity recognition
(NER) and relation extraction (RE). For instance,
Jimenez Gutierrez et al. (2022) evaluates GPT-3 on
biomedical NER and RE in the ICL setting, while
Kwak et al. (2023) examines GPT-4’s performance
in legal NER and RE. Additionally, Rajpoot and
Parikh (2023) investigates LLMs for financial RE
in the ICL setting. Wadhwa et al. (2023) evalu-
ates GPT-3 and Flan-T5 on standard relation ex-
traction tasks and reports that GPT-3 achieves near
SOTA performance in the few-shot setting. Xu et al.
(2023) experiments with GPT-3.5 to investigate if
in-context learning and data generation enhance
the model’s performance on the few-shot RE. Li
et al. (2023a) investigates the capabilities of LLMs
on zero-shot RE. Wan et al. (2023) propose a new
framework for RE using LLM in the ICL setting
which utilizes task-aware example retrieval and in-
corporates gold label-induced reasoning logic into
the demonstrations. Mo et al. (2024) presents a new
example retrieval technique which utilizes both the
correct/positive examples and the wrong/negative

examples and evaluates it on NER and RE tasks.

There are a few works that address IE tasks
other than NER or RE. He et al. (2023) proposes
a new framework to perform IE from visually rich
documents in the ICL setting. Peng et al. (2023)
demonstrates how agricultural information, which
includes entities, attributes, and descriptions, can
be extracted from unstructured data using LLM in
the zero-shot setting. Gao et al. (2023) assesses
the LLM’s generalizing capability to unseen infor-
mation types and tasks in the ICL setting using
the fine-grained IE benchmark dataset. Guo et al.
(2024) proposes a framework for unified informa-
tion extraction in the ICL setting utilizing diverse
demonstrations.

Compared to NER and RE, event extraction in
the ICL setting has been less investigated. Sun
et al. (2024) evaluates the ChatGPT’s capability
of extracting pharmacovigilance events in the ICL
setting and reports that it performs reasonably well
when used with appropriate demonstration selec-
tion strategies. Further investigation is needed to
confirm this finding, as the evaluation was con-
ducted a specific task in a single domain (i.e., med-
ical) using a single dataset. Our work addresses
this gap by investigating event extraction in the ICL
setting in a distinct domain (the legal one) using a
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different dataset.

3 Method

We introduce a new information extraction ap-
proach using prompt chaining. Prompt chaining is
a concept introduced by Wu et al. (2022). It is a
method that divides a complex task into multiple
smaller steps and prompts an LLM in each step;
the output from an earlier prompt becomes an input
for the following prompt.

Huang et al. (2023) suggests that using a dy-
namic prompt containing the reduced number of
examples relevant to each input text improves ex-
traction accuracy. Their method for generating
dynamic prompts involves training a BERT classi-
fier. Unlike them, we investigate using the prompt
chaining technique to generate a dynamic prompt
without training or fine-tuning a model. We divide
the IE task into two steps: (1) text classification, to
understand which types are likely to be present in
the underlying text, and (2) IE using prompts just
for the likely types. Both steps are implemented
using ICL and a vanilla LLM (i.e., not fine-tuned
for the task). Figure 1 depicts our overall approach.

3.1 Few-shot Text Classification

We prompt a LLM to classify an input text based
on the information that is contained in it, such as
the types of entities or events that are mentioned.
In this work, we perform text classification only
based on the event types. This is because entities
are included in the examples chosen based on the
event types they participate in.1

Figure 2 shows the prompt for the text classifica-
tion task (the first component of our method). The
prompt consists of three parts: task instruction, for-
mat instruction, and example. The task instruction
states the system’s role and provides the full list
of information types. The format instruction speci-
fies the output format with a brief demonstration.
The example demonstrates how the classification
should be done using the chain-of-thought tech-
nique.

Text classification is implemented with GPT-
3.52 in a three-shot setting. k value (for k-shot
learning) was tuned on the development partition.
The temperature is set to 0 and the maximum token

1Texts containing the same event types typically feature
similar types of entities.

2The model used in this work is gpt-3.5-turbo-0125.
https://platform.openai.com/docs/models/
gpt-3-5-turbo

Figure 2: The prompt for classification of events con-
tained in text.

size for the generation is set to 4096. The model’s
context size is 16,385 tokens.

3.2 Few-Shot Information Extraction

We create a prompt for the information extraction
task based on the text classification result. Depend-
ing on the information type that the text contains,
the examples to be included in the prompt are de-
cided. Suppose our task is to extract A, B, and C
events from a given text. If the text classification
output suggests that only an A event is present in
the text, then we select k (1 or 5 in this work) ex-
amples that are relevant to the A event from an
example pool. If there are more than k relevant ex-
amples available, we randomly select k from the set
of relevant ones. The selected examples are added
to the prompt for the information extraction task.
An example sample in the actual output format can
be found in Appendix A.

Once the prompt is completed with these exam-
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Figure 3: The prompt for information extraction, con-
taining only the examples of entities/events identified
during the text classification step.

ples, we use it to ask a LLM to extract the infor-
mation from the given text. Figure 3 shows the
complete prompt. The prompt consists of instruc-
tions and examples. The instructions explain the
task and provide the full list of information types to
be extracted. The instructions are accompanied by
examples chosen based on the classification output.
The example demonstrates how the task should
be completed while specifying the desired output
format at the same time.

In this work, information extraction is done with
GPT-43 and GPT-4o mini4 in one-shot and five-shot
settings. For both models, the temperature is set
to 0, and the maximum token limit for generation
is set to 4096. The context size for both models is
128,000 tokens.

4 Task and Evaluation

We evaluate our approach on the entity and event
extraction tasks from the legal will dataset intro-
duced by Kwak et al. (2023)5. We chose to do
our evaluation on this legal task because wills con-
tain highly diverse types of entities and events, and

3The model used in this work is gpt-4-1106-preview.
https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

4The model used in this work is
gpt-4o-mini-2024-07-18. https://platform.openai.
com/docs/models/gpt-4o-mini

5The dataset is licensed under CC BY-NC 4.0. Our use of
the dataset is consistent with their intended use.

because the number of entity and event types is
relatively large (see next subsection). Extracting
many types of entities and events using the LLM
in a standard few-shot setting can be challenging
because the prompt should provide examples for
all the entity and event types. These characteris-
tics of the legal domain make it a good candidate
for our approach, which focuses on (1) selecting
examples with the same information type without
depending on semantic similarity and (2) including
only selected examples in the prompt.

4.1 Dataset and Task
We used the legal will dataset introduced by Kwak
et al. (2023) for the evaluation. The dataset con-
sists of wills from two US states: Tennessee and
Idaho. The extractions from Tennessee wills are
in-domain data while the ones from Idaho wills are
out-of-domain (OOD) data. Tennessee and Idaho
are considered different domains from the legal
perspective since they have different probate codes
(Kwak et al., 2023). The dataset contains 457 in-
domain datapoints (will text segments, usually sen-
tences) and 108 OOD datapoints. Among the 457
in-domain datapoints, 203 datapoints were used as
an example pool and 145 datapoints were used as a
development partition. The rest of the in-domain
datapoints (109) and all of the OOD datapoints
(108) were used as test partitions.

The dataset contains the annotations of 26 types
of entities, 18 types of relations, and 20 types of
events extracted from 45 wills. Our work focuses
on extracting 25 types of entities (i.e., 26 entity
types minus "Trigger") and 20 types of events.6 In
entity extraction, we identify key entities in wills,
such as testator, beneficiary, executor, and asset. In
event extraction, we capture key events in wills,
which include will creation, signing will, bequest,
nominations, and attestation. The full list of entities
and events extracted in this work can be found in
Appendix B. A detailed explanation of the entities
and the events can be found in Kwak et al. (2023).

We prompt GPT-4 and GPT-4o mini to extract
the entities and the events from given will text seg-
ments and output the result in JSON format. An
example of entity and event extraction is shown
as the Result in Figure 1. Although the prompt
chaining technique improves example selection for

6Our primary interest lies in evaluating our approach on
event extraction. Entity extraction is necessary for this purpose
as entities function as arguments of events. We did not include
relation extraction in our evaluation because it is less pertinent
to our purpose.
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Dataset Setting Model Entity Event
Precision Recall F1 Precision Recall F1

In domain

1-shot
Ceiling 76.69 (0.98) 59.58 (1.85) 67.05 (1.36) 58.42 (0.14) 48.98 (0.72) 53.28 (0.36)

Prompt Chaining 76.85 (0.85) 60.08 (0.06) 67.44 (0.29) 55.06 (2.09) 45.80 (1.65) 50.00 (1.78)
Full prompt 77.67 (0.39) 60.79 (0.92) 68.20 (0.67) 57.07 (2.34) 46.56 (2.55) 51.28 (2.48)

5-shot
Ceiling 84.38 (0.64) 70.92 (1.32) 77.06 (1.04) 73.05 (0.91) 65.14 (0.36) 68.87 (0.42)

Prompt Chaining 83.49 (1.46) 70.42 (1.71) 76.40 (1.59) 71.95 (1.51) 62.72 (2.21) 67.02 (1.88)
Full prompt 82.09 (0.84) 65.71 (0.28) 72.99 (0.49) 70.51 (1.56) 57.51 (1.72) 63.34 (1.57)

OOD

1-shot
Ceiling 65.43 (1.55) 47.12 (0.92) 54.78 (1.01) 45.40 (1.30) 32.72 (0.58) 38.02 (0.75)

Prompt Chaining 64.00 (0.58) 45.76 (0.66) 53.36 (0.64) 42.96 (0.88) 30.67 (0.88) 35.78 (0.88)
Full prompt 67.58 (0.94) 49.35 (0.81) 57.04 (0.81) 45.42 (0.32) 31.08 (0.50) 36.90 (0.46)

5-shot
Ceiling 71.64 (0.08) 53.95 (0.56) 61.55 (0.39) 50.77 (2.13) 36.41 (0.77) 42.40 (1.17)

Prompt Chaining 69.20 (1.28) 52.59 (0.78) 59.76 (0.93) 50.53 (0.69) 38.26 (0.95) 43.55 (0.87)
Full prompt 68.68 (1.02) 47.18 (0.98) 55.93 (0.86) 46.68 (0.77) 30.97 (0.63) 37.24 (0.69)

Table 1: GPT-4’s results for the entity and event extraction tasks. The table shows the average scores from three-
iteration experiments, with the standard deviation in parentheses. Overall, GPT-4 performs better in the 5-shot
setting than a 1-shot setting. The model achieves the best F1 scores with the prompt chaining approach in both the
in-domain dataset and the OOD dataset for both tasks. The results from the ceiling model (italicized) are given only
to show the theoretical upper bound of our approach; they were not considered when determining the best scores
because they were obtained from the ideal setting where the text classification is 100% correct.

a given input, our approach is still affected by the
randomness within each example pool. To mitigate
this, we run our experiment three times under the
same settings and report the average scores from
the three iterations, with standard deviations shown
in parentheses.

4.2 Evaluator

We use an automatic scoring script that compares
the LLM’s outputs with the gold data. The auto-
matic evaluator compares each entity and event in
the LLM’s output with the one in the gold data
and finds matching pairs. Any entities or events
that match more than 70% with the gold data are
considered to be correct in this work. As several
previous works have pointed out (Wadhwa et al.,
2023; Polat et al.), the open-ended nature of outputs
from LLMs makes it hard to evaluate them with
the predefined standards. One solution to this is to
manually review the outputs, but its cost would be
too high. As an alternative, we have tested our auto-
matic evaluator with varying thresholds (60–100%)
for matching. The threshold is heuristically set at
70% as it best aligned with the human reviewer’s
judgments during manual evaluation. A more de-
tailed explanation of the evaluation can be found in
Appendix C.

4.3 Benchmark Models

We compare our approach against two models:
a ceiling model and a strong baseline called full
prompt model. The ceiling model presents the re-
sults from the ideal setting where the text classi-

fication result is 100% correct. In this case, the
examples in the IE prompt were chosen based on
the type of events present in the gold data. This
model suggests a theoretical upper bound for our
approach. The full prompt model shows the re-
sults from the setting where the prompt contains
the examples for all the major event types.

5 Results
5.1 Text Classification Task

In the three-shot setting, the accuracy scores for
the text classification task, the first component of
our method, are 96.74 for the in-domain data and
93.21 for the OOD dataset respectively. The result
from the text classification task suggests that GPT-
3.5 performs the text classification task well in a
few-shot setting.

5.2 Information Extraction Task

5.2.1 GPT-4
Table 1 presents GPT-4’s results for the entity and
event extraction tasks. This is the second com-
ponent of our method, which produces the final
output. The table shows the average scores from
three-iteration experiments, with the standard de-
viation in parentheses. The scores suggest that
GPT-4 performs better in the 5-shot setting than
in the 1-shot setting for both the in-domain test
dataset and the OOD dataset. Overall, the model
shows the best performance with the prompt chain-
ing approach as suggested by the highest F1 scores
within each category. In the in-domain dataset, the
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Dataset Setting Model Entity Event
Precision Recall F1 Precision Recall F1

In domain

1-shot
Ceiling 80.71 (0.96) 60.48 (0.97) 69.14 (0.95) 65.30 (0.74) 52.16 (0.65) 57.99 (0.38)

Prompt Chaining 80.71 (1.34) 60.13 (1.32) 68.92 (1.32) 67.25 (1.96) 55.98 (2.52) 61.09 (2.28)
Full prompt 80.62 (1.21) 62.56 (1.38) 70.45 (1.34) 71.49 (3.08) 53.82 (3.67) 61.40 (3.53)

5-shot
Ceiling 84.18 (0.57) 69.36 (0.48) 76.05 (0.52) 77.96 (3.02) 66.41 (2.04) 71.71 (2.29)

Prompt Chaining 85.21 (0.41) 70.31 (0.76) 77.05 (0.57) 77.42 (1.00) 65.01 (1.30) 70.67 (1.18)
Full prompt 82.78 (0.52) 69.45 (1.01) 75.53 (0.73) 75.34 (1.90) 62.47 (0.95) 68.30 (1.17)

OOD

1-shot
Ceiling 68.68 (2.06) 43.17 (1.28) 53.01 (1.57) 50.09 (0.12) 28.72 (0.52) 36.50 (0.45)

Prompt Chaining 68.37 (1.18) 40.74 (0.79) 51.06 (0.95) 48.17 (1.12) 27.38 (1.26) 34.91 (1.30)
Full prompt 69.29 (1.82) 45.75 (1.01) 55.11 (1.31) 49.88 (2.08) 25.85 (1.40) 34.05 (1.70)

5-shot
Ceiling 74.28 (1.51) 50.46 (0.87) 60.08 (0.70) 58.23 (2.11) 33.44 (1.16) 42.48 (1.43)

Prompt Chaining 72.69 (0.66) 49.40 (0.33) 58.82 (0.16) 57.23 (2.77) 33.33 (1.63) 42.13 (2.03)
Full prompt 70.48 (1.73) 49.43 (1.35) 58.11 (1.52) 49.70 (2.03) 27.08 (1.76) 35.04 (1.88)

Table 2: GPT-4o mini’s results of the entity and event extraction tasks. The table shows the average scores from
three-iteration experiments, with the standard deviation in parentheses. As with GPT-4, GPT-4o mini performs
better in a 5-shot setting than the 1-shot setting. The model achieves the best F1 scores with the prompt chaining
approach in both the in-domain dataset and the OOD dataset for both tasks. As mentioned earlier, results from
the ceiling model (italicized) are given only to show the theoretical upper bound of our approach; they were not
considered when determining the best scores because they were obtained from the ideal setting where the text
classification is 100% correct.

F1 score from the prompt chaining approach is
3.41 percentage points higher than the one from
the full prompt approach for the entity extraction
(76.40% vs. 72.99%). For event extraction, the
score difference is 3.68 percentage points (67.02%
vs. 63.34%). The score difference is even larger
in the OOD dataset (3.83 percentage points for the
entity extraction and 6.31 percentage points for
the event extraction). In both cases, the F1 scores
achieved with the prompt chaining approach are
higher than the ones achieved with the full prompt
approach (59.76% vs. 55.93% for entity extraction
and 43.55% vs. 37.24% for event extraction).

5.2.2 GPT-4o mini

Table 2 presents GPT-4o mini’s results of the entity
and event extraction tasks. As explained earlier,
it shows the average scores from three-iteration
experiments, with the standard deviation in paren-
theses. The scores indicate that GPT-4o mini per-
forms better in the 5-shot setting than in the 1-
shot setting for both the in-domain test dataset and
the OOD dataset, similar to the trends observed
for GPT-4. GPT-4o mini performed the best with
the prompt chaining approach as suggested by the
highest F1 scores within each category. In the in-
domain dataset, the F1 score for entity extraction
with prompt chaining is 1.52 percentage points
higher than with the full prompt approach (77.05%
vs. 75.53%), which aligns with the performance
improvements seen for GPT-4. Similarly, for event
extraction, the prompt chaining approach outper-

forms the full prompt method by 2.37 percentage
points (70.67% vs. 68.30%). The OOD dataset
shows a smaller score difference for entity extrac-
tion (0.71 percentage points) but a larger one for
event extraction (7.09 percentage points). Overall,
the F1 scores with the prompt chaining approach
exceed those of the full prompt method, consistent
with the findings for GPT-4, with scores of 58.82%
vs. 58.11% for entity extraction and 42.13% vs.
35.04% for event extraction.

6 Discussion

6.1 Prompt Chaining vs. Full Prompt

As suggested by the higher F1 scores, both GPT-4
and GPT-4o mini perform better with the prompt
chaining approach than in the full prompt approach
in the 5-shot setting. However, in the OOD dataset,
GPT-4o mini achieves a marginally higher recall
score with the full prompt approach than it does
with the prompt chaining approach for the entity
extraction task (49.43% vs. 49.40%). It is also
noticeable that for GPT-4, the difference in scores
between the prompt chaining approach and the full
prompt approach is smaller in precision compared
to recall. Specifically, for entity extraction, the
precision difference is 1.4 percentage points in the
in-domain dataset and 0.52 percentage points in the
out-of-domain dataset, while the recall difference is
4.71 percentage points in the in-domain dataset and
5.41 percentage points in the out-of-domain dataset.
For event extraction, the precision difference is
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1.44 percentage points in the in-domain dataset and
3.85 percentage points in the out-of-domain dataset,
whereas the recall difference is 5.21 percentage
points in the in-domain dataset and 7.28 percentage
points in the out-of-domain dataset.

This tendency suggests that for GPT-4, the
prompt chaining technique is more effective at re-
ducing false negatives than reducing false positives.
Providing examples specifically relevant to the in-
put text helps the model focus on the targeted in-
formation, leading to fewer false negatives. In con-
trast, using a variety of example types (as in the
full prompt approach) helps the model differentiate
between relevant and irrelevant information, which
reduces false positives. However, this pattern was
not observed with GPT-4o mini, suggesting that
this effect may be specific to the GPT-4 model.

Whether or not the tendency is present, the
prompt chaining approach generally proves more
effective than the full prompt approach when a suf-
ficient number of examples is provided for each
information type (e.g., in a 5-shot setting). This is
supported by the fact that both GPT-4 and GPT-4o
mini achieve higher F1 scores for entity and event
extraction in both the in-domain and out-of-domain
datasets when using the prompt chaining approach
in the 5-shot setting.

6.2 1-Shot vs. 5-Shot

As previously noted, in the 1-shot setting, the mod-
els occasionally perform better with the full prompt
approach compared to the prompt chaining ap-
proach. This is likely because the number of ex-
amples included in the prompt often becomes too
small when using the prompt chaining approach in
the 1-shot setting. On average, across the test and
OOD datasets, the prompt chaining model includes
1.43 examples in the prompt, compared to 10 ex-
amples for the full prompt model. Considering the
complexity of the task and the output format, 1.43
examples are not sufficient for the model to learn
the details. The model occasionally makes format-
ting mistakes with the prompt-chaining approach
in the 1-shot setting. This suggests that the model
struggles to grasp the details of the output format
from a few examples given.

In the 5-shot setting, at least 5 examples7 are

7When there is no major event included in the given input,
it is classified as containing the ‘Etc.’ event and the examples
for the ‘Etc.’ event type (which also does not contain any
major event) are added. This is to prevent cases where no
example is added to the prompt.

added to the prompt even in the prompt chaining
scenario. As there are sufficient number of exam-
ples from which the model can learn the details of
the task and the output format, the model does not
show any formatting errors in the 5-shot setting.

Based on this observation, the prompt chaining
approach should be used in the few-shot setting
(e.g., 5-shot) rather than in the 1-shot setting to
secure a sufficient number of examples, especially
if the task and the output format are complex.

6.3 Ceiling vs. Prompt Chaining
The ceiling model offers the theoretical upper
bound scores for the prompt chaining approach
where the text classification is perfectly done. How-
ever, contrary to expectations, there are a few
cases where the prompt chaining model outper-
forms the ceiling model. In the 5-shot setting,
GPT-4 achieves a higher F1 score with the prompt
chaining model compared to the ceiling model for
event extraction in the OOD dataset (43.55% vs.
42.40%). Similarly in the 5-shot setting, GPT-4o
mini obtains a higher F1 score with the prompt
chaining model compared to the ceiling model for
entity extraction in the test dataset (77.05% vs.
76.05%).

This can be explained by two factors: the high
accuracy score for the text classification task in
the test dataset (96.74%) and the randomness of
the examples within the example pool for each
information type. First, the accuracy of the text
classification for the test dataset is very high: there
are few cases where the classification results differ
between the ceiling model and the prompt chain-
ing model. This high accuracy likely stems from
the formal language used in wills. This formality,
aimed at ensuring clarity and legal precision, makes
it easier for the model to classify these documents.
Thus, the ceiling model offers little benefit over the
prompt chaining model in the test dataset.

In addition, the randomness of examples within
the example pool for each information type can
contribute to the variability of the models’ perfor-
mance. The examples in the prompt are chosen
based on the text classification result, but it does
not guarantee consistent quality in the examples.
To be precise, what is chosen is which information
type’s example pool is to be used, not the examples
themselves. Once it is decided which information
type’s example pool is to be used, examples for
the prompt are randomly selected from within the
pool. The quality of each example varies within
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the example pool. Some examples contain rich
information while others do not. Therefore, it is
possible that the examples’ randomness can affect
the models’ performance. If the prompt chaining
model is randomly given examples with rich infor-
mation while the ceiling model is randomly given
examples that contain less information, it is possi-
ble that the prompt chaining model could exceed
the ceiling model.

6.4 Performance Decrease in Out-of-Domain
The performance of the LLMs (both GPT-4 and
GPT-4o-mini) shows a marked decline on out-of-
domain (OOD) data. For the entity extraction task,
F1 scores in the in-domain setting range from 67.05
to 77.06, while in the OOD setting, they drop to a
range of 51.06 to 61.55. Similarly, for the event ex-
traction task, F1 scores range from 50.00 to 71.71
in-domain, but fall to 34.05 to 43.55 in the OOD
scenario. This trend is consistent across all three
models tested (ceiling, prompt-chaining, and full-
prompt), with no approach showing a significantly
larger drop in performance. This suggests that the
performance degradation is more likely due to do-
main differences rather than any specific fault of
the models themselves.

The error analysis of the OOD partition suggests
that the performance decline is at least partially
due to differences in formality between the two
domains (i.e., Tennessee wills and Idaho wills).
Idaho operates under a different probate code than
Tennessee, and the template for drafting wills also
varies. Idaho wills often include clauses that are
uncommon in Tennessee wills. For example, dec-
larations of marital status and/or children are fre-
quently included at the beginning of Idaho wills,
whereas such declarations rarely appear in Ten-
nessee wills. Another example is the inclusion
of no-contest clauses, which prevent beneficiaries
from contesting the will. These clauses are com-
mon in Idaho wills but infrequent in Tennessee.
This variation in formality leads to high error rates,
as there are few relevant examples available for
such cases.

6.5 Cost-Efficiency of Prompt Chaining
The prompt chaining approach not only improves
the overall performance of the model, but also pro-
vides cost benefits. By using only examples that
are relevant to information contained in the input
text, it allows the prompt to have smaller tokens
than with the full prompt approach has. As the

API services for the LLM bill their clients based
on token number, reducing the number of tokens in
the prompt offers benefits in terms of lower cost.

For example, in our work, the average number of
tokens per example is 468.89, and each input text
contains an average of 1.43 information types. For
the full prompt approach, we use the examples for
the 10 major event types8. With a quick calculation,
we conclude that the input for the prompt chaining
approach contains 4018.39 (468.89×10−468.89×
1.43 = 4018.39) fewer tokens compared to the full
prompt approach, making the input processing cost
6.99 times cheaper (10/1.43 = 6.99) in our case. As
demonstrated by this example, the prompt chaining
approach offers cost benefits while also improving
the model’s overall performance on the task.

7 Conclusion

This work introduces a new prompt chaining tech-
nique for information extraction. The key idea of
this approach is to split the information extraction
into two steps: (1) text classification to understand
which entity/event types are likely to be present,
and (2) information extraction for the identified
types. Both steps are implemented using an LLM
with in-context learning. By classifying each input
text based on the information type present in it first,
we can complete the prompt for the information
extraction task with the examples that are relevant
to each input text. With the completed prompt, we
ask a LLM to conduct the information extraction
task. We evaluate this technique on entity and event
extraction tasks in the legal domain. The evaluation
results demonstrate that the prompt chaining tech-
nique improves the model’s overall performance.
The prompt chaining approach also provides cost
benefits by reducing the number of tokens in the
prompt. The code used in this work can be found
at: https://github.com/ml4ai/pc4wills/

8 Limitations

The prompt chaining technique introduced in our
work can be adapted to various IE tasks and used
in different domains. However, we evaluated the
technique with only a few models (i.e., GPT-4 and

8The 10 major event types include 9 event types listed
in the text classification prompt plus the ‘Etc.’ event type.
Any event type that either (1) does not occur independently
of other event types (e.g., ‘Death’ event type does not occur
on its own; it always accompanies other event type as it is
used as a condition for another event.) or (2) has less than 50
occurrences across all the datasets falls under ‘Etc.’ category.
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GPT-4o-mini) and a single dataset. Our findings
need to be confirmed with further evaluation on
different models and/or datasets. Even though the
prompt chaining technique helps select better ex-
amples for the given input, our approach is still
prone to the randomness of the examples within
each example pool as discussed in the section 6.3.
Using a semantic similarity-based technique for
ICL example selection in conjunction with ours
might mitigate this issue, as they are complemen-
tary to each other. Further investigation is needed
to confirm this hypothesis.
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A Example for the Information
Extraction Task

{
"text": "II (A) I give , devise and

bequeath all my property , real ,
personal and mixed , of whatever
kind and nature and wheresoever
situated , to my wife , [Person
-2], if she survives me.",

"entities ": [
{

"id": "e1",
"texts": [

"all my property , real ,
personal and mixed ,
of whatever kind and
nature and

wheresoever situated
"

],
"type": "Asset"

},
{

"id": "e2",
"texts": [

"if she survives me"
],
"type": "Condition"

},
{

"id": "e3",
"texts": [

"my",
"I",
"me"

],
"type": "Testator"

},
{

"id": "e4",
"texts": [

"my wife",
"[Person -2]",
"she"

],
"type": "Beneficiary"

}
],
"events ": [

{
"id": "v1",
"type": "Bequest",
"Asset": [

"e1"
],
"Condition ": [

"e2"
],
"Testator ": [

"e3"
],
"Beneficiary ": [

"e4"
]

}
]

}

B Data Taxonomy

Below is a list of the entities and events extracted
during our task. Each entity is accompanied by
a description, while each event includes both a
description and its associated arguments. The de-
scriptions in this list were sourced from Kwak et al.
(2023).

• Entities

– Testator: a person who makes a will
– Beneficiary: a person or an entity (e.g.,

organization) that receives something
from a will

– Executor: a person who executes a will
(=personal representative)

– Witness: a person witnessing a will
– Trustee: a person who manages a trust
– Guardian: a person who has a legal right

and responsibility of taking care of some-
one who cannot takes care of themselves
(usually a minor or an legally incompe-
tent person)

– Conservator: a person who handles the
financial and personal affairs who cannot
handles such affairs by themselves (usu-
ally a minor or an legally incompetent
person)

– Notary Public: a person who is autho-
rized by state government to witness the
signing of important documents and ad-
minister oaths

– Non-Beneficiary: a person who is ex-
cluded from being beneficiary

– State: any US state names
– County: any US county names
– Date: any dates
– Time: any expression denoting a particu-

lar point in time
– Condition: a condition under which an

event (e.g., will execution, bequest, etc.)
occurs

– Asset: any money, personal property, or
real estate owned by a testator

– Bond: any bonds (usually probate bonds,
which is a type of bond ordered and re-
quired by a court before they will appoint
a person or entity as the personal repre-
sentative of an estate)

– Debt: any debts
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– Expense: any expenses
– Tax: any taxes
– Trust: a fiduciary arrangement that al-

lows a trustee to hold assets on behalf of
a beneficiary

– Duty: any duty directed by a testator
to fiduciaries (e.g., executors, trustees,
guardians, or conservators)

– Right: any rights authorized by a testator
to fiduciaries (e.g., executors, trustees,
guardians, or conservators)

– Will: a legal document containing a per-
son’s wishes regarding the disposal of
one’s asset after death

– Codicil: a testamentary or supplementary
document that modifies or revokes a will
or part of a will

– Affidavit: a legal statement sworn and
signed by a testator and witnesses to con-
firm the validity of a will (usually at-
tached to a will)

• Events

– Will Creation: an event in which a testa-
tor creates a will

* Testator

* Will

* Condition
– Sign Will: an event in which a testator or

a witness signs a will

* Testator

* Will

* Date

* Condition
– Attestation: an event in which a witness

attests the validity of a will

* Witness

* Attested events (e.g., Sign Will)
– Revocation: an event in which a testator

revokes a will or a codicil

* Testator

* Will

* Codicil
– Codicil: an event in which a codicil is

made

* Testator

* Codicil

* Time

– Bequest: an event in which a testator be-
queath asset to a beneficiary

* Testator

* Asset

* Beneficiary

* Condition
– Nomination: an event in which a testator

nominates a fiduciary

* Testator

* Executor

* Trustee

* Guardian

* Conservator

* Condition
– Disqualification: an event in which a ben-

eficiary or a fiduciary is disqualified

* Executor

* Beneficiary
– Renunciation: an event in which a fidu-

ciary renounces

* Executor
– Death: an event in which any entity (e.g.,

testator, beneficiary, executor, etc.) dies

* Testator

* Beneficiary

* Executor
– Probate: an event in which a will or any

part of the will is probated

* Will

* Debt

* Expense

* Tax

* Expense

* Condition

* Time
– Direction: an event in which a testator

gives direction to someone (usually a
fiduciary)

* Testator

* Executor

* Duty

* Directed events (e.g., Excuse)
– Authorization: an event in which a testa-

tor authorizes a fiduciary to a right

* Testator

* Executor

* Right

* Condition
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– Excuse: an event in which a testator ex-
cuses a fiduciary from a duty

* Testator

* Executor

* Duty

* Bond
– Give: an event in which a testator gives

a compensation to a fiduciary

* Testator

* Executor

* Asset

* Time

* Condition
– Notarization: an event in which an affi-

davit is notarized by a notary public

* Notary Public

* Date
– Non Probate Instrument Creation: an

event in which a non probate instrument
(e.g., trust) is created

* Testator

* Asset

* Trust

* Condition
– Birth: an event in which a beneficiary is

born

* Beneficiary

* Date
– Residual: an event in which asset be-

comes residuary estate

* Asset

* Condition
– Removal: an event in which a beneficiary

is removed from a will

* Beneficiary

* Condition

C Description of Evaluation

The evaluator compares LLM’s outputs against
gold data, utilizing advanced similarity metrics for
both entities and events. It comprises several key
components:

1. Optimal matching: It is essential to match
predicted entities and events with those in
the gold data, as data contains multiple en-
tities and events. The evaluator implements
a greedy approach to identify optimal pair-
ings between the predicted and the gold data.

It operates at both the list level (for entity
matching) and the dictionary level (for event
matching).

2. Similarity Computation: The evaluator imple-
ments two distinct approaches: a) For enti-
ties: A weighted combination of type match-
ing and text similarity. b) For events: A set-
based comparison of key-value pairs, exclud-
ing the ’id’ field. Similarity is calculated as
the ratio of common values to total unique
values across both dictionaries. True positives
(TP), false positives (FP), and false negatives
(FN) for both entities and events are calculated
based on similarity thresholds.

3. Metrics Calculation: The evaluator computes
precision, recall, and F1 score based on the
TP, FP, and FN counts calculated earlier.

The evaluator employs a similarity threshold to
determine whether the predicted output matches
the gold data. The threshold in this work is heuris-
tically set at 70% as it best aligned with the human
reviewer’s judgments. Below are the examples that
received a similarity score of over 70%:

• Entity:

– Gold data: my will (type: Will)
– Predicted output: this my will (type:

Will)
– Similarity score: 73.68%

• Event:

– Gold data:
{‘id’: ‘v1’,
‘type’: ‘Authorization’,
‘Condition’: [‘e1’],
‘Executor’: [‘e2’],
‘Testator’: [‘e3’],
‘Right’: [‘e4’]}

– Predicted output:
{‘id’: ‘v1’,
‘type’: ’Authorization’,
‘Right’: [‘e1’, ‘e4’],
‘Executor’: [‘e2’],
‘Testator’: [‘e3’]}

– Similarity score: 75%

In both cases, the difference between the gold
data and the predicted output is not significant. For
the entity, the only variation is the addition of "this"
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before "my will", which is not necessarily incorrect.
In the case of the event, the predicted output catego-
rized one entity (e1) differently, but this distinction
does not significantly impact the overall results.

The examples below are the ones that received a
similarity score of less than 70%:

• Entity:

– Gold data: Idaho (type: County)
– Predicted output: Buhl, Idaho (type:

County)
– Similarity score: 62.5%

• Event:

– Gold data:
{‘id’: ‘v4’,
‘type’: ‘Probate’,
‘Tax’: [‘e2’],
‘Expense’: [‘e3’, ‘e14’],
‘Debt’: [‘e12’],
‘Condition’: [‘e10’]}

– Predicted output:
{‘id’: ‘v2’,
‘type’: ’Probate’,
‘Expense’: [‘e3’, ‘e14’],
‘Debt’: [‘e12’],
‘Condition’: [‘e4’]}

– Similarity score: 66.67%

The difference between the gold data and the
predicted output is more prominent in these cases.
For example, it is evident that "Buhl, Idaho" is
an incorrect extraction for county. It is also clear
that the event from the predicted output misses a
key argument (‘Tax’) and incorrectly identifies a
condition (‘e4’ instead of ‘e10’).

The code and additional details can be found at:
https://github.com/ml4ai/pc4wills/
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