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Abstract
Conversational search systems enable informa-
tion retrieval via natural language interactions,
with the goal of maximizing users’ informa-
tion gain over multiple dialogue turns. The
increasing prevalence of conversational inter-
faces adopting this search paradigm challenges
traditional information retrieval approaches,
stressing the importance of better understand-
ing the engineering process of developing these
systems. We undertook a systematic literature
review to investigate the links between theo-
retical studies and technical implementations
of conversational search systems. Our review
identifies real-world application scenarios, sys-
tem architectures, and functional components.
We consolidate our results by presenting a lay-
ered architecture framework and explaining the
core functions of conversational search systems.
Furthermore, we reflect on our findings in light
of the rapid progress in large language models,
discussing their capabilities, limitations, and
directions for future research.

1 Introduction

Accessing information has always been one of the
primary functions of computer systems. Early sys-
tems relied on command-line interfaces with a spe-
cific syntax for data retrieval. As search systems
evolved, database query languages enabled more
complex queries but required technical knowledge.
Then, free-text search engines allowed users to en-
ter keywords in natural language, with information
typically displayed as a result page listing relevant
items (Höchstötter and Lewandowski, 2009). In
recent years, the evolution of search systems has
continued in the direction of human-like dialogues.

Conversational search has emerged as a novel
search paradigm, marking a shift from traditional
search engines to interactive dialogues with in-
telligent agents (Radlinski and Craswell, 2017;
Zhang et al., 2018). Many people have grown ac-
customed to using conversational interfaces like

chatbots and voice assistants (Klopfenstein et al.,
2017). The widespread usage of dialogue sys-
tems has changed how humans expect to interact
with computers (McTear et al., 2016). Although
modern conversational agents have impressive skill
sets, their information-seeking capabilities are rel-
atively limited and often confined to answering
simple questions. As a consequence, there is a
growing research interest in developing conver-
sational search interfaces that go beyond simple
query-response interactions by supporting more
complex mixed-initiative dialogues, which is fur-
ther fueled by the surging popularity of large lan-
guage models (LLMs) and their integration into
many kinds of search applications.

Even though the topic of conversational search
is relatively new, its fundamental concepts can
be traced back to early works from the natural
language processing (NLP) and information re-
trieval fields. So far, this emerging topic has been
approached from different angles. While some
researchers focus on theories and conceptual as-
pects (Azzopardi et al., 2018), others conduct dia-
logue analyses and build prototypes to ground ab-
stract models in empirical studies (Vakulenko et al.,
2021a). Yet, despite the ample literature about re-
quired properties, many proposed systems are too
complex to implement. This apparent gap high-
lights the need for a more holistic inspection that
connects theoretical requirements with realizable
functional components.

We conducted a systematic literature review
investigating different aspects of conversational
search systems (CSSs) to address this research gap.
The three main contributions are as follows:
(1) We identify the conceptual system properties
and suitable application scenarios of CSSs.
(2) We consolidate architectures from the literature
into a layered architecture framework and elaborate
on the core functional components of CSSs.
(3) We discuss the manifold implications for aug-
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menting CSSs with LLMs, highlighting their po-
tential capabilities, limitations, and risks.

2 Related Work

In the related research literature on systems for con-
versational information-seeking, three categories
are usually distinguished: search, recommenda-
tion, and question-answering (QA) (Zamani et al.,
2023). As the name suggests, CSSs actively involve
users in the search process. Through multi-turn di-
alogues, users enter queries, locate information,
examine results, or refine their search goals. In
contrast to search systems, recommender systems
usually rely on data about user preferences and past
interaction histories to help with decision-making
by providing personalized recommendations. QA
systems have been an active area of research for
many decades. Given a text corpus or knowledge
base and a dialogue history, conversational QA
systems aim to find answers to natural language
questions (Vakulenko et al., 2021b). It is worth
noting that the boundaries between conversational
search, recommender, and QA systems are blurred
and overlap. Although surveys exist on the two
latter system categories (Jannach et al., 2021; Zaib
et al., 2022), our literature review is dedicated to
search-oriented conversational interfaces.

Despite the growing body of research on conver-
sational search, related work, such as surveys or
systematic literature reviews, remains scarce. The
few studies we found tend to have a narrow topic
focus on certain application domains or challenges.
For example, the survey from Adatrao et al. (2023)
gives an overview of conversational search applica-
tions in biomedicine. In a different study, Keyvan
and Huang (2022) address the challenge of dealing
with ambiguous queries. Another literature study
from Gerritse et al. (2020) investigates problematic
biases in personalized content that conversational
search agents can exhibit. Yet another work by
Kiesel et al. (2021) is a comprehensive survey on
meta-information in search-oriented conversations.

To the best of our knowledge, we are the first
to provide a system-centric review across the de-
velopment process, ranging from conceptualizing
core functions to implementing architectural com-
ponents. Unlike the mentioned studies, we do not
look into specific challenges or domains within
conversational search but take on a broad engineer-
ing perspective. We summarize valuable insights
regarding the design and development of CSSs for

several application use cases. Additionally, we ad-
dress the recent interest surrounding LLMs and
their potential implications for engineering CSSs.

3 Method

We conducted our systematic review based on the
guidelines from Kitchenham et al. (2004). Our
study aims to shed light on the complex engineer-
ing process behind CSSs from initial system re-
quirements to technical implementations by focus-
ing on three key aspects: (1) definitions and pro-
posed application scenarios to conceptualize the
functional requirements of CSSs, (2) architectural
elements suggested in the literature to effectively
support these required system properties, and (3)
core functions of CSSs discussed in the academic
literature along with their implementations.

To obtain relevant publications, we devised a
search string for querying six academic databases,
as presented in Table 2 of Appendix A. The pub-
lication period was restricted to the time window
between 2012 and 2022, yielding 212 candidate
papers that predated the emergence of primarily
LLM-based dialogue systems like ChatGPT (Ope-
nAI, 2022). Two researchers screened the papers
for relevance, selecting a final set of 51 papers. Ad-
ditionally, they performed forward and backward
snowballing to include recent papers from 2023
and 2024, mainly focusing on LLMs for CSSs.

4 Results

4.1 Definitions and Application Scenarios
The concept of conversational search is not uni-
formly defined in the literature. We found three
main categories of definitions. System-oriented
definitions describe conversational search referring
to architectural components (Sa and Yuan, 2020;
Vakulenko et al., 2021a). Dialogue-oriented def-
initions emphasize the specifics of the dialogue
interaction (Radlinski and Craswell, 2017; Kiesel
et al., 2021). Task-oriented definitions state tasks
the system must complete (Zhang et al., 2018; Trip-
pas et al., 2020). Despite focusing on different
aspects, the analyzed definitions point out simi-
lar qualities to distinguish CSSs from traditional
search approaches. These qualities are often re-
lated to the theoretical framework of Radlinski and
Craswell (2017), which provides a structure and
set of characteristics for designing and evaluating
CSSs. In summary, we identified four reoccurring
system properties from the analyzed papers. Firstly,
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mixed-initiative interaction lets both user and sys-
tem collaboratively steer the dialogue. Secondly,
mutual understanding involves the system reveal-
ing its capabilities and helping users express their
needs. Thirdly, context awareness and memory
refers to the system’s ability to gather information
from its surroundings and conversation history to
adapt dynamically. Lastly, continuous refinement
denotes improving retrieval performance through
direct feedback or learning from past interactions.

Search Modality. These system properties open
up a wide range of use cases, but the suitability
of conversational search depends on the search
modality and search task. CSSs can support text-
based, speech-based, or hybrid interaction modal-
ities. Aliannejadi et al. (2021) analyze various
modality types and discuss their impact on the
user’s information gain during conversations. The
authors mention examples like voice interfaces as
speech-only options for service hotlines, text-based
systems that can be integrated into messaging plat-
forms or web search engines, and multimodal sys-
tems, such as virtual assistants or smart speakers
with screens to display visual information. Con-
trary to text-based interfaces, spoken CSSs work
without screens and are highly accessible because
they do not require any technical expertise. Yet,
conveying search results solely through speech out-
put can overwhelm users (Deldjoo et al., 2021).
Moreover, two studies conducted by Xing et al.
(2022) and Sa and Yuan (2020) indicate that differ-
ent modalities influence the search behavior con-
cerning the frequency of query reformulation or
how long search results are examined. Although
the majority of CSSs in the literature are predomi-
nantly uni-modal and text-based, Liao et al. (2021)
note a growing trend towards multimodal systems.

The modality and the nature of the search task
determine the appropriateness of conversational
interaction. A conventional data lookup with a
graphical user interface may be more efficient in
scenarios where the information need can be easily
expressed. Concerning more ambiguous scenarios
where the search goal is multi-faceted, and the data
structure complex, a free-form conversation with
iterative clarifications, reasoning steps, and feed-
back loops becomes applicable for conversational
search (Radlinski and Craswell, 2017). In sup-
port of this, Ren et al. (2021b) and Schneider et al.
(2023a) argue that dialogue-based search is partic-
ularly effective for exploratory search goals that

involve progressively narrowing down information
items from unfamiliar information spaces (White
and Roth, 2009). Other tasks for which the useful-
ness of conversational search was highlighted are
sequential QA, learning about a new topic, asking
for personal recommendations, or making plans
(Anand et al., 2020).

Application Scenarios. In our analysis of conver-
sational search scenarios, we identified several real-
world application domains that have been explored.
While business and health were the most popular
domains, we observed a significant diversification
in the last years, including aerospace, gastronomy,
law, news media, public services, or tourism (Liao
et al., 2021). For example, several researchers have
studied product search in e-commerce scenarios for
eliciting user preferences across multiple dialogue
turns (Bi et al., 2019; Xiao et al., 2021). A study
from Bickmore et al. (2016) proposed a CSS to sup-
port people with low health and computer literacy
to find information about clinical trials for which
they may be eligible. In the domain of news media,
Schneider et al. (2023b) demonstrate the integra-
tion of knowledge graphs with conversational inter-
faces to enhance exploratory search of newspaper
articles. They present a knowledge-driven dialogue
system and, through a large-scale user study with
54 participants, evaluate its effectiveness and derive
design implications regarding functional improve-
ments. Liu et al. (2021) compared conversational
versus traditional search in a legal case retrieval
scenario, showing that users achieve higher satis-
faction and success in the conversational approach,
especially when they lack sufficient domain knowl-
edge. We find that the analyzed domain-specific
systems often help overcome the absence of prior
background knowledge, facilitating users in initiat-
ing the search process. Alternatively, these systems
can provide assistance when the interface’s modal-
ity is restricted and does not support conventional
search methods.

4.2 Architecture Framework

Once the application scenario and desired system
requirements are defined, the subsequent steps in
the engineering process are to transform theoreti-
cal properties into technical implementations. This
refers to functional components and their integra-
tion as part of the system architecture. We identi-
fied over 20 system architectures from the litera-
ture and consolidated reoccurring elements into the
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Figure 1: Architectural framework of conversational search systems.

generalized CSS architecture displayed in Figure 1.
The proposed architecture adopts a layered architec-
ture pattern, where each of the six layers performs
a specific role within the CSS. The layers contain
modules and functional components specifically
designed for information-seeking purposes. For
example, the conversational interface layer estab-
lishes the interaction channel between the system
and the user. It receives user requests and presents
search results depending on the modality. The three
layers of natural language understanding, dialogue
management, and natural language generation deal
with processing input utterances, handling conver-
sation logic, and producing responses as output. In
CSSs, the correct understanding and meaningful
pre-processing of user queries are essential to max-
imize the information gain. The search layer, in
conjunction with the knowledge layer, performs
search operations within the information space,
ensuring access to various data structures. Pos-
sible data sources are corpora with unstructured
text documents, application programming inter-
faces (APIs), or structured knowledge bases like
knowledge graphs (Schneider et al., 2022). Data
items can be stored in various databases, such as
relational, graph, or vector databases, each with
distinct benefits and drawbacks based on the data
characteristics and application needs.

Modules group functional components and thus
represent a specific functionality inside the lay-
ers. There is a separation of concerns among the
modules, which deal only with logic pertinent to
their respective layer. For instance, the query pre-
processing module is a functionality from the lan-
guage understanding layer, which enhances user
queries through reformulation, clarification, sug-
gestion, or other functions. The components per-
form specific tasks on the lowest abstraction level

using NLP techniques. Implementing a component
usually requires training NLP models that receive
an input and classify, retrieve, or generate textual
data, in some instances also structured data. Com-
ponents can be implemented independently, requir-
ing knowledge only of how they are connected to
other components. While the displayed architec-
ture encompasses all components encountered in
the literature, implementations of a concrete CSS
usually employ only a subset of these components.
For example, reacting to user feedback is an essen-
tial function often mentioned in theoretical frame-
works, but only a few studies implement it as part
of an actual system (Bi et al., 2019; Wang and
Ai, 2021). Since most architectures focus only on
specific functional components like query sugges-
tions or generating clarifying questions, there is a
discrepancy between theoretical frameworks and
practical implementations. Section 4.3 provides
a more detailed overview of the various conver-
sational search-specific core functions from the
architectural components.

In line with common architectural patterns for
dialogue systems, our proposed architecture fol-
lows a layered structure, separating functionality
into different modules. We found that most ana-
lyzed implementations from the literature connect
modules in a pipeline-based approach (Rojas Bara-
hona et al., 2019; Mele et al., 2021; Alessio et al.,
2023, inter alia). However, we observed a growing
number of research works aiming to develop end-
to-end approaches with transformer-based neural
networks instead of classic NLP pipelines (Xiao
et al., 2021; Ferreira et al., 2022). While end-to-end
learning enables training a single model to repre-
sent target modules without the usual intermediate
steps found in pipeline designs, these systems still
depend on multiple task-specific modules and do
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Functions Example Studies Datasets Models Access
Query classification Aliannejadi et al. (2020) TREC CAsT BERT ♦

Voskarides et al. (2020) TREC CAsT, QuAC BERT ✓
Query reformulation Zhang et al. (2021) TREC CAsT HWE, T5 ✓

Yu et al. (2020) TREC CAsT GPT-2 ✓
Query clarification Zamani et al. (2020) Bing search logs BiLSTM ×

Bi et al. (2021) Qulac BERT ♦
Query suggestion Rosset et al. (2020) Bing search logs BERT, GPT-2 ×

Mustar et al. (2022) TREC Session, MARCO, AOL logs BERT, BART, T5 ♦
Candidate retrieval Xiong et al. (2020) TREC DL, NQ, TriviaQA ANCE ✓

Lin et al. (2021) TREC CAst, CANARD, MARCO BERT ♦
Candidate re-ranking Kumar and Callan (2020) TREC CAsT BERT ♦

Mele et al. (2021) TREC CAsT, ConvQ BERT ✓
Knowledge-based
response generation

Zhang et al. (2020) WikiTableQuestions T5, GPT-2 ♦
Ren et al. (2021a) SaaC PPG ✓

Table 1: Example studies, datasets, and implementations of the seven core functions in conversational search.
Legend: ✓ = dataset(s) and system; ♦ = dataset only; × = not available.

not achieve a genuine end-to-end design, where
only one model would handle all functionalities.
To date, even the most advanced LLMs fail to inte-
grate all functions without encountering issues, as
we will discuss in more depth later on.

An example of a pipeline-based architecture is
the open-source framework called Macaw from
Zamani and Craswell (2020). It consists of three
modules implemented in a generic form with re-
placeable NLP models. One module is responsible
for query pre-processing with co-reference reso-
lution and query reformulation or expansion, an-
other for ranking documents with a retrieval model,
and a third module for response generation. Two
system proposals from Zhang et al. (2021) and
Mele et al. (2021) have similar architectural com-
ponents but additionally adopt a neural passage
re-ranker for re-ordering results of the first-stage
retrieval using a BERT model (Nogueira and Cho,
2019). Concerning end-to-end approaches, Xiao
et al. (2021) introduce a CSS for online shopping,
consisting of a sequence-to-sequence transformer
for dialogue state tracking and a multi-head atten-
tion mechanism to match user queries to products.
Comparable architectures from Ren et al. (2021a)
and Ferreira et al. (2022) that aim to implement
conversational search sub-tasks in an end-to-end
manner also include transformers, such as BERT
and T5, for passage re-ranking and response gener-
ation models.

Our presented architecture framework captures
the fundamental aspects of CSSs in the research lit-
erature, and although there might be architectural
adaptations to suit specific application scenarios
with varying interface modalities and data struc-
tures, the body of six layers remains unchanged.
The architecture offers flexibility in adding, remov-

ing, or replacing components within the modules.

4.3 Conversational Search Functions

This section elaborates on the seven core func-
tions of CSSs mentioned in the architecture frame-
work. Implementing these functions using NLP
techniques is the most concrete step in the engi-
neering process. Therefore, we review example
studies that implement commonly used machine
learning models (see Table 1) and list the most pop-
ular training and evaluation datasets in Table 3 of
Appendix A. Despite being essential for conversa-
tional systems, some components like intent detec-
tion are not explicitly explained here as they are
not specific to CSSs. While not all functions may
be present in a given system or are combined, these
main functions have been widely utilized and are
treated as individual sub-tasks in the broader fields
of conversational search and information retrieval.
The order of paragraphs for each function roughly
follows the processing steps needed to generate an
output given an input turn in the conversation.

Query Classification. As part of the initial query
pre-processing module, classifying the given query
can benefit many subsequent system components.
In conversational search scenarios, user requests
may not be self-explanatory and ambiguous due
to a lack of context. Researchers have approached
this problem by classifying what type of question
is being asked (Kia et al., 2020), determining the
search domain of interest (Frummet et al., 2019;
Hamzei et al., 2020), or deciding whether a (past)
query is relevant in the context of the ongoing di-
alogue (Aliannejadi et al., 2020; Voskarides et al.,
2020). Other system components can adapt accord-
ing to classified queries, such as querying domain-
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specific sources, discarding irrelevant utterances,
or selecting relevant past utterances. The often-
used TREC Conversational Assistant Track (CAsT)
datasets contain many sessions where a user in-
quires about two subjects and later asks questions
to compare the two. Classification can be used to
select the previous relevant utterances.

Query Reformulation. Since a CSS is pro-
cessing dialogue turns, it has to deal with many
subtleties and challenges. Conversational search
primarily deals with ambiguity and co-reference
issues (Keyvan and Huang, 2022). Reformulating,
also called rewriting, a query to an unambiguous
and explicit form is often needed for effective
information retrieval and to incorporate contextual
information of an ongoing conversation. Numer-
ous approaches incorporate transformer-based
language models for this task (Ferreira et al.,
2022). Either as a classifier to determine what
terms have to be incorporated into the rewritten
query (Mele et al., 2021), a sequence-to-sequence
approach trained on query – rewrite target
pairs (Zhang et al., 2021) or in a weakly-
supervised fashion using LLMs (Yu et al., 2020).
The following is a simple example of rewriting:

User: Who is the director of Citizen Kane?
System: Orson Welles is the director.
User: Does he have children?
Rewrite: Does��he Orson Welles have children?

Query Clarification. When the system cannot
resolve or interpret a query, it can take the initiative
and ask the user for clarification. CSSs that can
show initiative, such as proactively asking ques-
tions, are referred to as mixed-initiative systems.
Different approaches for clarifying questions have
been investigated, including template filling, se-
quence editing models, sequence-to-sequence mod-
els, and combinations of these methods. Template
filling can be as straightforward as “Did you mean
X?” for a misspelling or co-reference issue. Tem-
plates can cover many clarifying questions, but
their specificity level is something to consider (Za-
mani et al., 2020). Sequence editing models are
related to query rewriting; they choose a clarifica-
tion question and rewrite it with information from
the ongoing dialogue state (Zamani et al., 2023).
Sequence-to-sequence approaches train models
with unclear query – clarifying question pairs to
predict fitting questions.

Asking a clarifying question is not always the
best course of action. Systems have to ensure a

user’s patience or tolerance is not running out by
asking too many questions (Bi et al., 2021). Con-
trolling this ‘risk’ and the system’s information
need is a delicate balance. Current approaches
implement functions that try to approximate the in-
formation gain and tolerance of a user (Salle et al.,
2021; Wang and Ai, 2022). If the system wants
to ask a clarifying question, it uses this function
to decide whether it should proceed. This can be
done for numerous reasons. Braslavski et al. (2017)
provide a taxonomy of six clarification categories.
Their categorical taxonomy is created from analyz-
ing community question-answering websites but
can be applied more generally.

Query Suggestion. CSSs can help users while
they are still in their conversational turn by suggest-
ing relevant queries or even (partial) answers while
the interaction is ongoing (Aliannejadi et al., 2021;
Keyvan and Huang, 2022). Search engines are a
good example of this, where auto-complete is heav-
ily used. Suggesting queries can possibly mitigate
issues addressed by the previously mentioned sys-
tem functions. If the system incorporates dialogue
state information in the suggestions, it can provide
unambiguous versions of an unclear query. Gen-
erating query suggestions is done in many ways,
but all must deal with the query, dialogue state,
and ranking-generated suggestions. An often-used
approach is training a model to determine what to
copy or generate from the dialogue state and input
query to maximize the chance of a user picking the
suggestion (Dehghani et al., 2017; Mustar et al.,
2022). The generated queries can be ranked by the
same or a separate model (Rosset et al., 2020).

Candidate Retrieval. Candidate retrieval fetches
possibly relevant data items by producing a struc-
tured database query given the (pre-processed) user
query or retrieving information from unstructured
text collections. The latter approach falls into two
general categories: sparse retrieval and dense re-
trieval (Gao et al., 2023). Sparse retrieval ranks
documents with methods such as BM25 (Robert-
son and Zaragoza, 2009). These use sparse vectors
encoding term occurrences in queries and docu-
ments, which can be used for retrieval directly, to
perform pre-filtering of results (Vakulenko et al.,
2021b; Zhang et al., 2021), or to represent model
features (e.g., for re-ranking) (Cho et al., 2021). Al-
though computationally efficient, the purely lexical
approach of these methods limits them in dealing
with synonyms, word order, and spelling mistakes.
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Dense retrieval addresses these issues, which
is often implemented as a dual encoder architec-
ture, where one neural model encodes a document
into a dense vector and another the (processed)
query (Lin et al., 2021). These models are trained
by jointly training these two encoders on labeled
query – relevant document pairs. There are varia-
tions with additional encoding strategies, but the
main idea stays the same (Ferreira et al., 2022).

Candidate Re-Ranking. Once the system has a
set of possibly relevant candidate results for the
current turn or utterance, the next step is to rank
this set in order of informativeness. There are many
approaches to re-ranking, with the most dominant
one being some model that either classifies, scores,
or re-orders a given input set (Ferreira et al., 2022).
These models are either fine-tuned on explicitly
labeled query – relevant item pairs (Zhang et al.,
2021; Mele et al., 2021) or use some distance mea-
sure between (part of) the embedded query and
(part of) the relevant document. These are the main
building blocks of most implementations, but they
can be combined into more elaborate setups. Ku-
mar and Callan (2020), for instance, suggest multi-
view re-ranking, where the system creates different
embeddings of the input query. These views in-
clude information from dialogue history, relevant
terms from the retrieved items, and the rewritten
query, which get fused into the final ranking.

Knowledge-Based Response Generation. The
final step of a turn in the conversational system is to
present the response to the user in the form of natu-
ral language. As with information retrieval, natural
language generation is a dedicated research field.
As such, many distinct approaches and methods
within CSSs exist. These are generally grouped
according to three categories: the information type,
generation method, and information source.

Information type refers to the response’s struc-
ture based on the retrieved document(s) or infor-
mation need. These include short answer, long
document retrieval, abstractive summarization or
structured entities (Zamani et al., 2023). For in-
stance, a short factual question often does not re-
quire a large response (“In what year did X hap-
pen?”). In contrast, a query for an explanation
might involve summarizing a relevant passage.

Different generation methods are used for these
different answer types and can serve as a grouping
of approaches. Some general methods include;
template filling (Zhang et al., 2018), sequence-

to-sequence methods (Ferreira et al., 2022) and
weakly supervised approaches (Baheti et al., 2020).
More elaborate approaches have a model choos-
ing from where to copy a token in generating the
response: a vocabulary, the input query, or the re-
trieved passage (Ren et al., 2021a,b).

Generation is also dependent on the information
source being queried. Conversational search is gen-
erally done over a corpus of free text but can also be
done over a knowledge graph (Kacupaj et al., 2022;
Dutt et al., 2022) or other (semi-)structured infor-
mation (Zhang et al., 2020). The source influences
the choice of generation technique; verbalizing a
sub-graph from a knowledge graph is considerably
different from summarizing a text passage.

There are also hybrid methods that fuse informa-
tion sources and generation methods. The most in-
fluential contribution in this area has been retrieval-
augmented generation (Lewis et al., 2020; Shuster
et al., 2021). These hybrid approaches try to bal-
ance the expressiveness and veracity of responses.

5 Discussion and Future Directions

The results from our review give insights into the
engineering behind CSSs from abstract properties
to realizable functional components. Against this
background, our findings unveil a disruptive trend
of adopting larger language models to integrate
end-to-end functional components. Researchers
have emphasized the benefits of streamlined NLP,
reduced error propagation, and data-driven devel-
opment. Hence, rather than reflecting on the numer-
ous general challenges in the evaluation of CSSs,
like Penha and Hauff (2020), we direct our focus
toward discussing how LLMs can augment CSSs
and the implications it has on their future evolution.

While most studies fine-tune language models
(e.g., BERT or T5) on downstream tasks, there has
been a recent surge of interest in using LLMs. By
scaling up models to billions of parameters and
training them on corpora with trillions of tokens,
LLMs have demonstrated emergent capabilities
and prowess in multi-task learning (Radford et al.,
2019). A significant advantage of LLMs is prompt-
based (or in-context) learning. Through carefully
defined prompts, LLMs can perform multiple tasks
without specific training or tuning (Liu et al., 2023).
Furthermore, there has been a growing interest in
optimizing LLMs for dialogue interactions by pre-
training on conversations, instruction fine-tuning,
and reinforcement learning from human feedback

7
79



(Thoppilan et al., 2022). The strengths of LLMs,
such as their language understanding and ability
to generate context-aware responses, make them
highly complementary elements for CSSs.

Opportunities for Conversational Search. A
rapidly growing body of new studies concentrates
on advancing conversational search functions with
LLMs. For instance, addressing the challenge
of better understanding user queries, Anand et al.
(2023) introduce a query formulation framework
to replace multi-component pipelines with a single
LLM. This model initially generates several ma-
chine intents for a user query, followed by options
to accept, edit, or expand these intents until they
align with the user’s query intent. With a quali-
tative feasibility study, the authors show that the
LLM-generated rewrites can improve the down-
stream retrieval performance. In related work, Mao
et al. (2023) investigate different prompting and
aggregation methods for performing few-shot con-
versational query reformulation with LLMs. They
demonstrate that their approach outperforms state-
of-the-art baselines by testing a GPT-3 model on
CAsT’19 and ’20 datasets. Another study from
Chen et al. (2023) introduces a retrieval-based
query rewriting approach, where an LLM leverages
external knowledge from graphs with historical
user-entity interactions and collaborative filtering.
Ye et al. (2023) also demonstrate the potential of
LLMs for query rewriting, showing that rewrites
can significantly enhance retrieval performance in
conversational search. Furthermore, LLMs can aug-
ment CSSs through semantic parsing and convert a
natural language question into a structured database
query. For example, Schneider et al. (2024a) eval-
uate how well different-sized LLMs perform in
generating knowledge graph queries for conversa-
tional QA based on dialogues by comparing vari-
ous prompting and fine-tuning techniques. Aside
from query rewriting and semantic parsing, LLMs
can also be effective for classifying query intents
(Srinivasan et al., 2022) or generating clarification
questions (Kuhn et al., 2023).

In addition to the natural language understanding
layer, LLMs can augment the layers of dialogue
management, search, and natural language gener-
ation. For example, Friedman et al. (2023) devel-
oped a system for conversational video search and
recommendation powered by several LLMs based
on the LaMDA model (Thoppilan et al., 2022).
While one LLM is used as a dialogue manage-

ment module, a second LLM acts as a re-ranker
module. This LLM also generates explanations
for its decisions. The authors discuss how a third
LLM can be instructed to act as a user simulator
for generating synthetic data for training and eval-
uation. Also focusing on synthetic data genera-
tion, a paper from Huang et al. (2023) introduces a
framework called CONVERSER that uses LLMs to
generate conversational queries given a passage in
a retrieval corpus for training dense retrievers. This
can significantly benefit conversational search by
reducing the need for extensive and expensive data
collection while maintaining high retrieval accu-
racy. Concerning knowledge-based text generation,
LLMs have also proven to be effective for verbaliz-
ing semantic triples retrieved from graph-structured
data, with performance improvements achievable
through few-shot prompting, post-processing, and
fine-tuning techniques (Schneider et al., 2024b).
Another noteworthy approach from Sekulic et al.
(2024) employed LLMs in conversational search
for answer rewriting, proposing two strategies by
either providing inline definitions of important enti-
ties or offering users the opportunity to learn more
about entities. Human-based evaluations indicated
a preference for the answers with inline definitions.

Challenges and Risks. Even though LLMs show
great potential for conversational search, they have
known shortcomings that must be considered. First,
the sheer size of these models requires signifi-
cant computational resources. Multiple graphical
processing units are often necessary for enabling
fast inference, a critical factor for conversational
search applications that require responses in near
real-time. The research community has been ac-
tively exploring solutions such as model distilla-
tion, model quantization, or low-rank adaptation to
address these issues. Distillation involves com-
pressing LLMs into smaller and more efficient
versions (Shridhar et al., 2023). Model quantiza-
tion is a technique where the floating point preci-
sion of model parameters is decreased, leading to
smaller memory requirements and faster computa-
tions without significant performance loss (Xiao
et al., 2023). Low-rank adaptation fine-tunes only
a subset of the model’s parameters rather than up-
dating the entire parameter space (Hu et al., 2022).

Other major issues related to LLMs are halluci-
nating or omitting important information and a lack
of transparency regarding the source from which
the output was generated (Dou et al., 2022; Ji et al.,
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2023; Xu et al., 2024). To mitigate these risks,
scholars have looked into approaches to ground the
generated outputs in trustworthy data sources and
mechanisms to curate generated output. For exam-
ple, Peng et al. (2023) introduce a framework for
augmenting LLMs by first incorporating retrieved
evidence from external knowledge as input con-
text and then using LLM-generated feedback as in-
structions to revise responses. Through validation
with two information-seeking tasks, the authors
show that their approach reduces hallucinations
while preserving fluency and usefulness. Another
knowledge-enhancement method from Yang et al.
(2023) fine-tunes a smaller LLM (Llama-7B) to
learn domain-specific knowledge. This model is
consulted to generate expert opinions that are used
to enrich the prompt context of a bigger, general
LLM (GPT-4) to improve its domain-specific QA
capabilities. For a comprehensive survey of over 30
hallucination mitigation techniques, readers are re-
ferred to Tonmoy et al. (2024). Regardless, it must
be noted that LLMs are nondeterministic by nature,
making it challenging to ensure consistent and per-
sistent knowledge during searches due to the inher-
ent randomness in their text generation methods
(Krishna et al., 2022; Mitchell et al., 2023).

Finally, there are efforts to develop software
tools that address the reliability and safety of
generated LLM output by adding programmable
guardrails as well as logical control patterns. Pop-
ular tools that aid the development of LLM-based
CSSs include NeMo (NVIDIA, 2023), Guidance
(Microsoft, 2022), and LangChain (Chase, 2022).
Other tools like DeepEval (Ip, 2024) can evalu-
ate model bias, which is crucial since LLMs in
conversational search can increase selective expo-
sure and opinion polarization by fostering confir-
matory querying behaviors (Sharma et al., 2024).
In summary, ongoing research shows the potential
of LLMs to advance the engineering of dialogue-
based search systems with various approaches to
mitigate their reliability issues. However, it is un-
likely that LLMs will replace CSSs as a single
end-to-end monolith in the foreseeable future. In-
stead, they are more likely to augment the modular
structure of the proposed architecture framework.

6 Conclusion

We conducted a comprehensive review of engi-
neering CSSs, establishing connections between
theoretical application scenarios and technical im-

plementations. Based on our analysis of existing
architectures, we introduced a layered architec-
ture framework and explained its functional core
components. While it is essential to acknowledge
that the field of conversational search is rapidly
evolving, and complete coverage is unattainable,
our framework provides a generalized architecture
based on previously validated systems. The frame-
work does not claim to be exhaustive but rather
serves as a foundational starting point for design-
ing and developing CSSs. Lastly, we discussed
recent work on the capabilities and challenges of
augmenting CSSs with LLMs. We outline where
they fit into our proposed framework, which core
functions they have been used for, and highlight
promising directions for future research.
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A Appendix

The Appendix provides supplementary material for our study, including a list of the six queried academic
databases along with the applied search string (Table 2), as well as an overview of commonly used datasets
for CSSs (Table 3).

Search String
“conversational search” OR
“information-seeking dialogue” OR
“conversational information retrieval” OR
“conversational information-seeking” OR
“information-seeking conversation"
Database Number of Papers Database Link
ACL Anthology 48 https://aclanthology.org
ACM Digital Library 101 https://dl.acm.org
IEEE Xplore 5 https://ieeexplore.ieee.org/Xplore
ScienceDirect 3 https://www.sciencedirect.com
Scopus 46 https://www.scopus.com
Web of Science 9 https://www.webofscience.com/wos/

Table 2: Search string and number of retrieved candidate papers per database.

Dataset Size Source Lang.
Amazon Reviews (Ni et al., 2019) 9M products Amazon product catalog en
CANARD (Elgohary et al., 2019) 40K questions QuAC dataset en
CodeSearchNet (Husain et al., 2019) 2M code queries GitHub repositories en
ConvQ (Christmann et al., 2019) 11K QA dialogues Wikipedia en
DuConv (Wu et al., 2019) 30K dialogues MTime.com zh
MRQA (Fisch et al., 2019) 550K QA pairs 18 existing QA datasets en
MS MARCO (Nguyen et al., 2016) 1M QA pairs Bing search engine en
MSDialog (Qu et al., 2018) 2K QA dialogues Microsoft Community forum en
Natural Questions (Kwiatkowski et al., 2019) 320K QA pairs Google search engine en
QuAC (Choi et al., 2018) 14K QA dialogues Wikipedia en
Qulac (Aliannejadi et al., 2019) 10K QA pairs TREC Web Track en
SaaC (Ren et al., 2021a) 748 QA pairs TREC CAR, MS MARCO, WaPo news en
TREC CAR (Dietz et al., 2017) 30M passages Wikipedia en
TREC CAsT (Dalton et al., 2020) 38M passages TREC CAR, MS MARCO en
TriviaQA (Joshi et al., 2017) 650K QA pairs Wikipedia, quiz and trivia websites en
WikiTableQuestions (Pasupat and Liang, 2015) 22K QA pairs Wikipedia en

Table 3: Commonly used datasets in the literature on conversational search systems.
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