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Abstract

In this paper, we investigate the use of N-gram
models and Large Pre-trained Multilingual
models for Language Identification (LID)
across 11 South African languages. For N-
gram models, this study shows that effective
data size selection remains crucial for estab-
lishing effective frequency distributions of the
target languages, that efficiently model each
language, thus, improving language ranking.
For pre-trained multilingual models, we con-
duct extensive experiments covering a diverse
set of massively pre-trained multilingual (PLM)
models – mBERT, RemBERT, XLM-r, and
Afri-centric multilingual models – AfriBERTa,
Afro-XLMr, AfroLM, and Serengeti. We fur-
ther compare these models with available large-
scale Language Identification tools: Compact
Language Detector v3 (CLD V3), AfroLID,
GlotLID, and OpenLID to highlight the impor-
tance of focused-based LID. From these, we
show that Serengeti is a superior model across
models: N-grams to Transformers on average.
Moreover, we propose a lightweight BERT-
based LID model (za_BERT_lid) trained with
NHCLT + Vukzenzele corpus, which performs
on par with our best-performing Afri-centric
models.

1 Introduction

Automatic language identification (LID) is the task
of determining the underlying natural language
used in a written or spoken corpus (McNamee,
2005). This is a challenging problem, especially
for languages with insufficient training examples
and closely related languages, particularly low-
resourced languages (Haas and Derczynski, 2021).
For South African languages, building quality LID
technologies is significantly important for sourcing
internet data, which has served as a de-facto repos-
itory for many low-resourced languages, especially
from public domains such as news websites (Mari-
vate and Sefara, 2020; Adelani et al., 2021; Dione

et al., 2023; Adelani et al., 2023; Lastrucci et al.,
2023).

Statistical approaches for automatic LID such
as N-grams (Dube and Suleman, 2019), and more
classical machine learning models such as Logistic
Regression, Naive Bayes, Random Forest, Boost-
ing machines, Support Vector Machines, and Clus-
tering techniques (e.g K Nearest Neighbors) have
been proposed (Haas and Derczynski, 2021). More-
over, contemporary neural-based architectures such
as deep neural networks and convolutional neural
networks have also been tested. In all cases, not
enough work for the South African languages is
reported.

On the other hand, recent algorithmic advance-
ments such as transformer architectures have made
a significant impact on the Natural Language Pro-
cessing landscape (Devlin et al., 2018; Conneau
et al., 2019). With this sudden shift in perspective,
many works have proposed automatic LID using
large pre-trained multilingual models, derived from
attention mechanisms (Vaswani et al., 2017). Large
pre-trained multilingual models are transformer-
based architectures simultaneously trained on mul-
tiple languages (hence multi-lingual) using various
techniques such as token (s) masking training tech-
nique, where tokens from a given sentence example
are hidden and the objective of the training trans-
former is to predict the hidden word (s).

In this work, we make use of the recently re-
leased Vuk’zenzele crawled corpus (Lastrucci et al.,
2023) and the NCHLT dataset (Eiselen and Put-
tkammer, 2014) to develop and experiment on
automatic language identification models on 10
low-resourced South African languages: North-
ern Sesotho (nso), Setswana (tsn), Sesotho (sot),
isiZulu (zul), isiXhosa (xho), isiSwati (ssw), isiN-
debele (nbl), Tshivenda (ven), Xitsonga (tso), and
Afrikaans (af). Additionally, we included the high-
resource South African English (eng) to ensure
representation of all 11 official languages in South
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Africa. We conduct extensive experiments on N-
gram models, large pre-trained multilingual models
– XLM-r, mBERT, and Afri-centric multilingual
models – AfriBERTa, Afro-XLMr, AfroLM, and
Serengeti. We shed light on the limitations and
robustness of N-gram-based approaches and the
significant improvement boost of pre-trained mul-
tilingual models, especially, for those pre-exposed
to low-resourced South African languages during
pre-training.

2 Related Work

Large pre-trained multilingual models have shown
astonishing state-of-the-art results on various Natu-
ral Language Processing (NLP) tasks such as Ma-
chine Translation, Question Answering, and Senti-
ment Analyses (Stickland et al., 2021; Yang et al.,
2019; Adebara et al., 2023b). A precursor of these
tasks is the crawling of large volumes of inter-
net data and categorizing the data into different
languages (i.e. language identification) for pre-
training. For language identification, many works
have used pre-trained multilingual models to ex-
pand monolingual datasets using the internet.

Jauhiainen et al. (2021) conducted a comparative
study between adaptive Naive Bayes, HeLI2.0, mul-
tilingual BERT, and XLM-r models for Dravidian
language identification in a code-switched context
(i.e. a conventional modus operandi for commu-
nication on the internet). Caswell et al. (2020)
developed a transformer-based LID model aside
from basic filtering techniques such as tunable-
precision-based filtering using a created wordlist,
TF-IDF filtering, and a percent-threshold filtering
threshold proposed in their study to filter noisy
web-crawled content. Although they were able
to collect corpora for over 212 languages, their
set-up for their best-performing transformer model
was unclear. Similar to our work, Kumar et al.
(2023) conducted a comparative study on Distil-
BERT, ALBERT, and XLM-r and showed that a
lightweight version of DistilBERT delivers com-
parable results to resource-intense models. Ade-
bara et al. (2022), on the other hand, implemented
a massive transformer-based LID model with 12
attention layers and heads. They then trained this
model on 512 languages with close to 2 million sen-
tences across 14 language families (South African
languages included). Their model achieved over 95
% F1 score on a left-out test sets, outperforming
available LID tools: CLD version 2, Langid, Fast-

Corpora No. Sent Voc Unq. Voc Train Dev Test
Vuk 33K 690K 132K 3395 - 728
NCHLT + Vuk 74K 16M 258K 6790 - 1454

Table 1: Corpora statistics for Vuk and NCHLT

text, etc. Kargaran et al. (2023) created a language
identifier that covers a whopping 1600 low-high-
resourced African languages. Due to the unavail-
ability of resources utilized in previous studies,
our research concentrated exclusively on 11 South
African languages, with only 3 language families
- Sotho-Tswana, Nguni, and Creole. Furthermore,
we will only consider a comparison of diverse pre-
trained multilingual models (E.g mBERT, XLMr,
AfriBERTa, Afro-XLMr, Serengeti, e.t.c) and two
lightweight BERT-based models – DistilBERT, and
za−BERT−lid model.

3 Methodology

The methodology employed in this study uses
language-identifiable monolingual corpora from
reliable sources as training examples for language
identification and compares various pre-trained
multilingual models for the task of discriminating
between languages.

3.1 Corpora

Text corpora for the 11 South African languages
were acquired from two sources: Vuk’zenzele
(Vuk) (Lastrucci et al., 2023) and National Cen-
tre for Human Language Technology (NCHLT)
corpora (Eiselen and Puttkammer, 2014). Table
1, describes the number of sentences (No. Sent),
vocabulary (Voc) sizes, unique vocabulary sizes
(Unq. Voc), and the train size per language, devel-
opment set size, and test size per language splits
for corpora Vuk and NCHLT. We ensure consis-
tent train and test examples across all languages,
by ensuring that all train, and test examples for
each language are equal. Therefore, we only had
varying development sizes. Additionally, we only
considered sentences in the range of 3-50 tokens
and did not use the rest of the corpus. Figure 1, and
2, describe the sentence length distribution for Vuk,
and NCHLT corpora respectively.

3.2 Pre-processing

The dataset is observed to contain links, digits and
therefore our pre-processing included the removal
of URLs, digits, punctuations, and followed by
lower-casing all sentences using Python regular
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Figure 1: Sentence length distribution of Vuk corpora.
The x-axis denotes the number of tokens (words) in the
sentences.
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Figure 2: Sentence length distribution of NCHLT +
Vuk corpora. The x-axis denotes the number of tokens
(words) in the sentences.

expressions. Special characters such as š, found in
Northern Sotho were left intact.

3.3 Language detection algorithms

3.3.1 N-grams

An N-gram is a sequence of consecutive charac-
ters from text (Dube and Suleman, 2019). This
study explored character Bi-grams (2 consecutive
characters), Tri-grams (3 consecutive characters),
and Quad-grams (4 consecutive characters) mod-
els. We build each model for each language from
the training dataset (Vuk, NCHLT, and Vuk +
NCHLT). Furthermore, we experimented with vari-
ous data sizes to investigate the impact of the num-
ber of training examples on N-gram models and
this showed a performance ceiling, where an in-
crease in training examples does not significantly

impact the quality of the models (shown in Figure
3). Each model is made up of a list of tuples of
characters-frequency pair ordered in descending
order.
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Figure 3: Data size variation performance on Vuk test
data.

To discriminate between languages, the models
use a ranking function. The ranking function cal-
culates the distance of the frequency distributions
of the input examples from the existing N-gram
model’s frequency distributions (with k=50 as the
number of ordered N-grams to consider from the
trained N-grams). The frequency distribution is
calculated as the number of occurrences of each
observed N-gram divided by the total number of
N-grams from the corpus and taking the log of
that ratio. For a given input example (in North-
ern Sotho) "Ke ya go thopa sefoka" translation -
"I am going to win the trophy", the model first
extracts the character N-grams (e.g. 2 characters
if the observed model is Bi-gram) – Bi-gram Out-
put: [’ke’, ’ya’, ’a−’, ’go’, ’th’, ’ho’, ’op’, ’pa’,
’se’, ’ef’, ’fo’, ’ok’, ’e−’, ’−y’, ’−g’, ’o−’, ’−t’,
’−s’] sorted in reverse, and then the frequency dis-
tribution from the existing trained models (looking
only at 50 top N-grams per language) for all the
languages are compared with the new frequency
distribution of the input sentence and the one with
the closest similarity is considered the language
of the input example. Figure 4, 5, and 6 presents
heatmaps depicting the probability scores gener-
ated by the ranking function exclusively for all test
examples, correctly predicted sentences, and incor-
rectly predicted examples, during the test phase
respectively. The heatmaps reveal that the con-
centration of scores ranges between 0.04 and 0.06,
which could be further used to drive a model’s out-
come improving the confidence in predictions. This
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observation suggests that ranking functions play a
crucial role in N-gram-based models, warranting
further investigation.

N-grams experimental setup We experimented
with Bi (2), Tri (3), and Quad (4) consecutive char-
acter sequences to build our models. Additionally,
we combined all 3 and called it N-grams combined.

3.3.2 Naive Bayes Classifier
Naive Bayes have been the default standard for
various LID tasks such as code-switching detec-
tion, dialect discrimination, word-level language
detection, and e.t.c. (Dube and Suleman, 2019;
Jauhiainen et al., 2019). In this study, we experi-
mented with the multinomial Naive Bayes Classi-
fier (NBC) implementation from Python’s scikit-
learn. With NBC, we were able to extract discrim-
inating features per language, supporting model
prediction (Figure 8), and significantly improved
on N-gram models (see confusion matrix in Figure
9). This highlighted important feature correlation,
especially for related languages, which explains
why it is challenging to discriminate among closely
related languages. Moreover, this highlights the
importance of lexicon-driven approaches for lan-
guage filtering mentioned in Caswell et al. (2020)
as alternative measures to mitigate these ambigui-
ties.

Naive Bayes Classifier experimental setup We
experimented with a TF-IDF vectorizer to gener-
ate input features. For this, we used the charac-
ter bi-gram, tri-gram, quad-gram, and the 3 types
combined as consecutive subwords to generate TF-
IDF features. We also generated word level in-
put features using CountVectorizer. We used a
multinomial version of the Naive Bayes classi-
fier with mostly default parameters from scikit-
learn (except the alpha parameter where we tested
α = 0.0001, 1.0, where α = 1.0 performed bet-
ter). Finally, we trained Support Vector Machine
(SVM), K Nearest Neighbor (KNN), and Logistic
Regression with the same input features and their
scikit-learn default parameters to compare perfor-
mance outcomes with NBC.

3.3.3 Pre-trained Multilingual Models
This study explored a diverse set of massively
pre-trained multilingual models: mBERT, XLM-
r, RemBERT, and their Afri-centric counterparts:
AfriBERTa, Afro-XLMr, AfroLM, and Serengeti
due to their enhanced text processing capabilities
and their ability to handle low-resourced languages

with complex linguistic nuances (Devlin et al.,
2018; Conneau et al., 2019; Ogueji et al., 2021;
Alabi et al., 2022; Dossou et al., 2022; Adebara
et al., 2023a).

Large pre-trained multilingual models exper-
imental setup Following setups in (Adelani et al.,
2023; Dione et al., 2023), we used a batch size of
16, a learning rate of 2e−5, 20 epochs, save step of
10000, and sequences cut-off of 200 for all models.
We ran our experiments five times with different
seeds { 1,., 5} and reported the average results.

4 Results

4.1 Baselines

Table 2, shows results for baseline models Bi-gram,
Tri-gram, Quad-gram, N-gram combined (N-gram
Comb) – which uses bi-, tri-, and quad- -grams
combined, and Naive Bayes Classifier (NBC) with
the same character N-grams. Naive Bayes with
word-level features outperform the rest of the base-
line models. Interestingly, for NBC, increasing
the character spans improves the performance of
the classifier. Figure 10, 11, 12, 13, 14, and 15
depicts the impact of increasing the data size on
models NBC, Support Vector Machine (SVM), and
Logistic Regression (Log Reg) on various training
features – uni-grams, bi-grams, tri-grams, quad-
grams, N-grams combined, and word-level features
derived using TF-IDF respectively. NBC, SVM,
and Log Reg show improved performance with
the change in input features while the training size
shows gradual improvement in accuracy. KNN was
also tried, however, the model showed abysmal per-
formance across all features except for Bi-gram
input features and was therefore omitted from the
plots.

In the N-gram class, the Quad-gram ranking
outperforms the rest of the N-gram-based models.
Figure 17, depicts the impact of sentence length
on N-gram models performance. This shows that
the group of N-gram models struggles to classify
shorter sentences, while NBC performs slightly
better with them (Figure 18). This may be due to
shorter sentences not carrying enough signal in-
formation for N-grams to discriminate across all
languages as mentioned in Haas and Derczynski
(2021). Additionally, N-gram-based models depict
inconsistent performance across languages, where
improved performance is achieved for select lan-
guages and for a specific N-gram type (E.g Bigram
– eng, ven, af, e.t.c, Tri-gram – eng, tso, nso, e.t.c),
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Figure 4: Score heatmap for all pre-
dictions using N-gram
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Figure 5: Score heatmap for cor-
rectly predicted examples using N-
gram
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Figure 6: Score heatmap for incor-
rectly predicted examples using N-
gram
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Figure 9: Accuracy of Naive Bayes Classifier.

while other languages underperform (e.g zul, isiN-
debele (nbl)) (see Figure 19). Furthermore, the
complexity of LID is exacerbated by closely related

Baseline Acc Prec Rec F1
Vuk
Bi-gram 72.7 73.5 72.6 72.3
Tri-gram 87.9 88.4 87.9 88.1
Quad-gram 88.4 88.9 88.4 88.5
N-gram (Comb) 87.8 88.3 87.8 88.0
NBC (word-level) 94.5 95.2 94.5 94.6
NBC (2) 90.2 90.7 90.2 90.4
NBC (3) 93.4 93.8 93.4 93.5
NBC (4) 94.4 94.8 94.4 94.5
NBC (Comb) 94.0 94.5 94.0 94.1
K NN (2) 85.0 85.0 85.0 85.0
Log Reg (4) 94.0 95.0 94.0 94.0
SVM (4 & 2-4) 94.0 95.0 94.0 94.0

Table 2: Baseline performance evaluation using Accu-
racy (Acc), F1 score (F1), Precision (Prec), and Recall
(Rec). K Nearest Neighbor (K NN), Logistic Regression
(LR), and Support Vector Machine (SVM) are reported
with best feature inputs bi-gram (2), quad-grams (4),
and combinations (2-4) respectively.

languages (see confusion matrix in Figs. 20–23).
While varying dataset size, and character N-gram
choices slightly improve performance on distin-
guishing among closely related languages (Figure
3), it does not add any significant improvement
on a per-language basis (see Figure 19), where
languages such as isuZulu (zul) are showing no
further improvement. For this, we explore large
pre-trained multilingual models for automatic LID
in the next subsection.

4.2 Pre-trained Multilingual Models

Table 3 reports the accuracy (Acc), precision (Prec),
recall (Rec), and F1 score (F1) of pre-trained mul-
tilingual models: mBERT, XLM-r, RemBERT;
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Figure 10: Unigram
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Figure 11: Bi-gram
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Figure 12: Tri-gram
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Figure 13: Quad-gram
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Figure 14: N-grams Comb
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Figure 15: Word-level
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Figure 17: Box diagram depicting sentence length of
correctly predicted and incorrectly predicted sentences.
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Figure 19: Accuracy score per language using N-grams
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Figure 20: Bi-gram Confusion matrix on Vuk test data
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Figure 21: Tri-gram Confusion matrix on Vuk test data
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Figure 22: Quad-gram Confusion matrix on Vuk test
data
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Figure 23: Accuracy of N-gram type (Bi-gram, Tri-
gram, Quad-gram) combined

Afri-centric pre-trained models: AfriBERTa, Afro-
XLMr, AfroLM, and Serengeti; publicly available

LID tools covering South African languages: Com-
pact Language Detector (CLD) version 3 (V3),
AfroLID (Adebara et al., 2022), GlotLID (Kar-
garan et al., 2023), and OpenLID (Burchell et al.,
2023); and our proposed lightweight BERT-based
architectures: za-BERT-lid, and DistilBERT.

Pre-trained-multilingual models show impres-
sive results for this task, with over 90% average
accuracy. Serengeti outperforms the rest of the
models with an average accuracy of 98 %, while
mBERT is the least-performing model with an aver-
age accuracy of 96 % (≈ 2 points difference). Most
importantly, the group of Afri-centric models out-
performs the largely pre-trained multilingual mod-
els with the best model (XLMr-large) in this cate-
gory performing slightly worse than the lowest per-
forming model (AfroLM) in the Afri-centric group.
Moreover, our proposed za-BERT-lid, and Distil-
BERT perform on par with the best-performing
model (≈ 2 points difference) despite them being
much smaller in size.

On the other hand, available LID tools show im-
pressive and incremental results. For these models,
GlotLID outperforms the rest of the sampled mod-
els in this study. This may be due to GlotLID being
trained on Vuk data, giving the model an unfair
advantage over others. Despite this, analyses of
the predictions show that the compared models are
not completely wrong, as they often struggle with
closely related languages such as Sotho-Tswana
language family {nso, sot, tsn}, and Nguni lan-
guages {xho, zul, ssw, and nbl}. Perhaps to remedy
this, the training of LID models should prioritize
precision as a metric of evaluation. Noticeably,
but not alarming, the LID tools also predict un-
related languages from their training list, which
perhaps highlights the need for a more focused
approach rather than including many languages at
once. However, we feel this claim needs further jus-
tification and we will consider this in future work.

4.3 Cross-domain evaluation

We also wanted to test our model on cross-domain
datasets to inspect their generalization capabilities.
We simulated this by training with Vuk data and
tested it on NCHLT, and vice versa. Table 4 reports
the performance of pre-trained models for exam-
ining the cross-domain evaluation theory. This ta-
ble shows that the performance of the multilingual
models trained with Vuk and tested with NCHLT
dropped by approximately (4%-5%) across all mod-
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Model Acc Prec Rec F1
PLM
mBERT 96.7 96.7 96.6 96.7
XLMr-base 97.1 97.1 97.1 97.1
XLMr-large 97.3 97.3 97.3 97.3
RemBERT 97.1 97.1 97.1 97.1
Afri-centric
AfriBERTa 97.6 97.6 97.6 97.6
Afro-XLMr-base 97.7 97.8 97.7 97.7
Afro-XLMr-large 98.0 98.0 98.0 98.0
AfroLM 97.4 97.5 97.4 97.4
Serengeti 98.3 98.3 98.3 98.3
LID Tools
CLD V3 40.2 33.6 40.2 35.7
AfroLID 66.1 72.1 66.1 64.2
OpenLID 80.8 71.7 80.8 75.0
GlotLID 97.5 98.3 97.5 97.9
Lightweight
za-BERT-lid 96.8 96.8 96.8 96.8
DistilBERT 96.2 96.2 96.2 96.2

Table 3: Performance evaluation scores of pre-
trained multilingual models, available LID tools, and
lightweight BERT-based models averaged over 5 runs
per metric.

els. In contrast, training with NCHLT and testing
with Vuk showed performance improvements. This
could be due to NCHLT having more training exam-
ples, and a large vocabulary (see Table 1) allowing
the model to learn more nuanced representations.
Notably, larger models show better performance
over smaller models for this task.

5 Discussions

Ensuring the development of robust LID detection
systems remains a critical research area with impli-
cations on many NLP tasks. Importantly, the avail-
ability of reliable LID systems ensures accurate
reporting on the state of low-resourced languages
(Kreutzer et al., 2022).

On the side of model performance, baseline tech-
niques such as Naive Bayes, Support vector Ma-
chines, and Logistic Regression seem to be per-
forming quite well on the task of sentence-level lan-
guage identification. We recommend these models
for further research for high-level LID, compared
to large pre-trained multi-lingual models which
require specialized computing resources such as
GPUs, to accelerate training. However, we deem
such trade-offs to require more research, especially

Model Vuk Test NCHLT Test
Vuk Trained
mBERT - 91.0
XLMr-base - 91.4
XLMr-large - 92.2
RemBERT - 92.3
AfriBERTa - 92.1
Afro-XLMr-base - 93.6
Afro-XLMr-large - 94.1
AfroLM - 91.8
Serengeti - 94.9
za-BERT-lid - 91.3
DistilBERT - 90.9
NCHLT Trained
XLMr-base 95.6 93.2
Afro-XLMr-base 96.3 93.6
Serengeti 97.7 94.8

Table 4: Cross-domain evaluation of models trained
with Vuk and tested with NCHLT and vice-versa. Re-
ported in F1 score averaged over five runs

in complex LID subtasks such as code-switching,
or similar language discrimination.

We also, highlight the importance of evaluation
metric selection as we have observed that most of
the LID tools explored in this study are not com-
pletely wrong, but rather have challenges discrimi-
nating among closely related languages. Therefore,
we recommend precision as an evaluation metric
for LID to be further investigated.

6 Conclusion

Language Identification remains a critical study
area for the widespread inclusion of many low-
resourced languages into the booming technology
space. In this study, we experimented with sta-
tistical approaches, traditional machine learning
techniques, the recent advanced pre-trained multi-
lingual models, as well as LID tools publicly avail-
able (covering a wide range of African languages)
on the task of LID for 11 South African language
discrimination. We were able to shed light on the
approaches showing promising results in the South
African language context and made suggestions
for future directions. Concretely, we showed that
the Naive Bayes algorithm performs surprisingly
well for LID and warrants further exploration and
exploitation, especially given its cheap-compute
advantage. Finally, we compared publicly avail-
able pre-trained models and showed that context-
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exposed models have an edge over other context-
oblivious multilingual models, where context refers
to the language. We released our models on Hug-
gingFace and code with datasets on GitHub.

7 Limitations

In this study, we did not explore any use of word
embeddings for language identification. Word em-
beddings played in crucial role in the development
of language technologies, and it would have been
interesting to experiment with them. However,
such resources are not readily available for many
low-resourced languages.

Aside from experimenting and getting results for
other traditional models such as Logistic regres-
sion, K Nearest Neighbor, and Support Vector Ma-
chines, it would have been interesting to develop
and experiment with deep neural networks such as
multi-layered perceptions, and convolutional neu-
ral networks. As universal approximators, these
models tend to produce desirable results, with the
caveat of requiring time for hyper-parameter tun-
ing.

This study did not extensively explore the impact
k (used 50 for this study), which is the count of the
N-grams list used to calculate the ranking. How-
ever, we aim to explore this extensively in future
works.

It is known that LID techniques tend to overfit
to domain data, and therefore it would have been
interesting to create free-text data created by hu-
mans and test the generalization capabilities of the
developed models on human-generated text.

Recent studies have focused on resource-
conscience alternatives for either compute effi-
ciency, parameter reduction, etc. It would have
been interesting if this work would have explored
the recently active approaches focusing on smaller
models utilizing parameter transfer, and adapta-
tions (Kumar et al., 2023). However, these tech-
niques require intense hyper-parameter selection
and tuning, and slightly longer training times,
which was not in the scope of this study.

Finally, we aim to incorporate BANTUBERT 1,
and zaBANTUBERT 2 models trained with mono-
lingual South African corpora in our future work.

1https://huggingface.co/dsfsi/BantuBERTa
2https://huggingface.co/dsfsi/zabantu-xlm-roberta
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