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Abstract

This study assesses the ability of machine learn-
ing to classify verses from Buddhist texts into
two categories: Therigatha and Theragatha, at-
tributed to female and male authors, respec-
tively. It highlights the difficulties in data pre-
processing and the use of Transformer-based
models on Devanagari script due to limited vo-
cabulary, demonstrating that simple statistical
models can be equally effective. The research
suggests areas for future exploration, provides
the dataset for further study, and acknowledges
existing limitations and challenges.

1 Introduction

The term "gāthā" (gatha) denotes a poetic meter
primarily employed in legends and folklore, yet
it is notably absent from the Vedas (Mukherjee,
1998). Gathas are popular in Maharashtra, In-
dia, where locals are familiar with the gathas of
Tukaram (Tukaram, 2014). However, the earliest
known reference to gathas appears in the Avesta, a
Zoroastrian scripture compiled during the Sasanian
Empire (224-651 BCE) (Hintze, 2002). The lan-
guages in which these ancient gathas were written
have since become extinct. Consequently, interpret-
ing them is challenging and necessitates reliance on
extant languages that exhibit similar, yet distinctly
different, structures.

This study examines two collections from the
Buddhist canonical literature: Theragathapali and
Therigathapali, which are, respectively, the line-
wise utterances attributed to male and female saints.
This literature is written in Pali, a language believed
to be a mixture of Prakrit languages, closely related
to the vernacular of the common people during the
time of Siddhartha Gautama Buddha (circa 600
BCE).

The authorship of some gathas is debatable. Ku-
mara (2016) observes that in Pali literature, au-
thorship details are occasionally provided at the

beginning or end of the texts. However, not all au-
thors considered it essential to include such infor-
mation. In examining the authorship of the Theri-
gatha, Findly (1999) suggests that the authorship
of some verses may be doubtful, indicating that
while some verses are traditionally attributed to the
female saints themselves, others may have been
composed or recited by different individuals, in-
cluding the possibility of later attribution by com-
pilers. This uncertainty in authorship challenges
the straightforward attribution of these texts to the
female saints they are associated with.

Nevertheless, studies demonstrate that the Theri
gathas differ from the Thera gathas. Blackstone
(2013) argues that the Theri gathas focus more
on themes of overcoming suffering, societal con-
straints, and personal liberation. A study by Mar-
ques et al. (2021) confirms the uniqueness of topics
in Therigatha.

Typically, a gatha is a two-line verse, although
variations include verses comprising three or four
lines. Figure 1 provides a sample two-line gatha in
Devanagari script.

Figure 1: Sample Gatha in Devanagari Script.

Banerjee (2017) suggests that translations of
gathas influences the perception of these ancient
texts. For example, the gatha from Figure 1 is
translated by Bhikkhu (1998) as "Whoever wants
to do later what he should have done first, falls
away from the easeful state and later burns with re-
morse", while one of the contributors of this study
translates the second line as "He destroys pleasure
producing points and regrets later".

The abundance of Transformer-based models
(Vaswani et al., 2017) and their proficiency across
various domains (Fisher et al., 2023; Phatak et al.,
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2024; Neveditsin et al., 2024), particularly in clas-
sification tasks (Munikar et al., 2019; Kheiri and
Karimi, 2023; Hartmann et al., 2023; Zielinski
et al., 2023; Zaczynska et al., 2024), inspired us to
conduct a study on their performance in classify-
ing verses from low-resource Pali texts. While we
acknowledge the debates around the authorship of
some Therigatha verses, we deliberately avoid this
discussion in our study due to the lack of definitive
evidence regarding authorship. Consequently, we
treat Therigatha verses as authored by female au-
thors and Theragatha verses as authored by male
authors.

The goal of this study is to determine whether
Transformer-based models can outperform tradi-
tional machine learning models in the binary clas-
sification of the verses. We hypothesize that
Transformer-based models, even when pretrained
on languages other than Pali, can still identify pat-
terns specific to each class. Additionally, we aim to
assess the performance difference of these models
when using Devanagari script versus Roman script.
Through this investigation, we aim to highlight the
challenges associated with this task and suggest
directions for future research.

2 Related Work

Research on poetry classification in the Pali lan-
guage using machine learning is scarce, however,
insights can be drawn from related areas, includ-
ing poetry classification in other languages, text
classification in low-resource settings, and compu-
tational analysis of Pali texts.

One of the earliest studies in poetry classifica-
tion is by Kao and Jurafsky (2012), who use lo-
gistic regression to examine stylistic and content
features that distinguish professional poets from
amateurs. The authors extract features related to
diction, sound devices, affect, and imagery to iden-
tify elements contributing to poetic sophistication.
Similarly, Pal and Patel (2020) classify Hindi po-
ems using machine learning, providing insights into
poetry classification in an Indo-Aryan language
closely related to Pali. The authors employ classi-
cal models, such as Naïve Bayes, Random Forest,
and SVM, achieving a maximum accuracy of 64%
with Naïve Bayes, highlighting the challenges of
poetry classification due to the morphological rich-
ness and varied sentence structures.

In the context of text classification for low-
resource languages, recent research suggests that

cross-lingual models, such as XLM (Lample and
Conneau, 2019), may sometimes offer performance
gains compared to classic machine learning mod-
els like SVM or Naïve Bayes. For instance, Li
et al. (2020) introduce a model called AgglutiFiT,
fine-tuned from a cross-lingual pre-trained model
(XLM-R), which significantly outperforms strong
baselines in terms of accuracy.

Additionally, Alekseev et al. (2024) benchmark
multilabel topic classification in the Kyrgyz lan-
guage, evaluating several baseline models, includ-
ing classical approaches and neural models like
XLM-RoBERTa. Their findings indicate that the
multilingual model XLM-RoBERTa outperforms
classical models in terms of F1 score. How-
ever, transformer-based models do not always
surpass traditional machine learning models for
low-resource languages. For example, Lalthang-
mawii and Singh (2023) found that the SVM model
achieved the highest accuracy (75%) on a sentiment
classification task for the Mizo language, perform-
ing similarly to the XLM-RoBERTa model using a
transfer learning approach.

Another method for handling low-resource lan-
guages is leveraging machine translation. Recent
work by Kumar et al. (2024) provides valuable in-
sights into sentiment classification for low-resource
Indian languages using machine-translated datasets.
The results highlight the potential of datasets trans-
lated with tools like Google Translate and indicate
that models such as LSTM can effectively preserve
sentiment by accounting for sequential patterns.

Focusing specifically on Pali texts, Zigmond
(2021) conduct a computational analysis of the
Pali Canon. The author uses computational text
mining to examine various volumes of the Canon,
extracting linguistic and thematic insights. By em-
ploying techniques such as k-means clustering and
Principal Component Analysis, they reveal differ-
ences between older texts (Vinaya and Suttas) and
later ones (Abhidhamma). The research also under-
scores the complexity of Pali language processing,
including multiple word declensions, elisions, and
compound formations.

3 Dataset

The dataset utilized in this study comprises the
Thera and Theri gatha texts from the Khuddaka-
nikaya volume of the Sutta-pitaka, which is the
third part of the Buddhist canonical literature, Tip-
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Figure 2: ROC curves for Roman script classification. Left: results for ‘M’ class (Theragatha); right: ‘F’ class
(Therigatha). Multiple models are compared, with AUC scores indicating performance.

itaka1. Each gatha is categorized into chapters
based on the number of verses attributed to each
author: single verses are compiled in the chapter
named Ekaka-nipaat, meaning ‘collection of ones’,
while chapters such as Dukanipaat—‘collection of
twos’—contain texts with two verses from a single
author, and so forth. The Theragatha consists of
1,288 verses spread across 21 chapters, whereas the
Therigatha contains 524 verses distributed over 16
chapters, with all verses sequentially labeled within
their respective compendiums.

To study the potential impact of script on the
training of the classifier, both the Devanagari and
Roman versions were used. The manual prepro-
cessing involved several steps:

1. Punctuation Handling: We agreed on ap-
proaches to interpret punctuation marks, con-
sidering variations in their usage across differ-
ent scripts.

2. Text Completion: This addresses instances of
"peyaala" (or "pe"), which indicate a repeti-
tion of words or lines from previous parts of
the text. Due to the lack of suitable computa-
tional linguistic tools for this task, matching
the context of peyaala to find the appropri-
ate text from earlier sections was conducted
manually.

3. Word Separation: Ancient Indian languages
feature notable word compounding and club-
bing. Unlike Sanskrit, where the rules for
word combination are relatively rigid, Pali al-
lows more flexibility. This necessitates greater
care in separating compounded words into
their individual components. Due to the chal-

1Digital version available here: https://tipitaka.org/

lenges in separating these combined words,
we decided to work with the combined forms
as they appear in the text.

After the manual preprocessing of the text, we
encountered discrepancies in the counts of dis-
tinct words when tokenizing the verses by spaces.
Assuming a one-to-one correspondence between
tokens in the Devanagari and Roman scripts, a
dictionary-based test was applied to identify these
discrepancies. The test revealed several transliter-
ation nuances. For instance, some symbols such
as and in Devanagari are represented by two
UTF-8 code points, which leads to confusion with
symbols and , respectively. Another challenge
was caused by complex compounding rules; for
example, space-based tokenization ambiguously
mapped the symbol to either ‘muni’ or ‘munin’,
depending on the neighboring tokens (a one-to-
many case). Similarly, both symbols and
map to ‘ti’ in the Romanized script (a many-to-one
case). These cases demonstrate that space-based to-
kenization may not adequately capture the nuances
of these complex verses. For this study, we decided
to exclude three nuanced verses from the Theri
gathas and sixteen nuanced verses from the Thera
gathas where we were unable to easily resolve the
inconsistencies. This resulted in 1793 verses in our
dataset2. Table 1 presents the statistics on word
distribution among the scripts.

4 Experiments and Results

The overall task can be defined as a binary classifi-
cation problem with two categories: ‘M’ for Thera-
gathas and ‘F’ for Therigathas. The dataset, divided

2https://github.com/neveditsin/pali

https://tipitaka.org/
https://github.com/neveditsin/pali
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Statistic Dev. Rom.
Total Distinct Words 8787 8789
Female Unique Words 3145 3143
Male Unique Words 6548 6547
Only Female Words 2239 2242
Only Male Words 5642 5646
Common Words 906 901

Table 1: Word Distribution in Devanagari (Dev.) and
Roman (Rom.) Texts.

by script type into Devanagari and Roman subsets,
was split into training (75%) and test (25%) sets.
Considering the dataset’s imbalance, we report key
metrics such as ROC-AUC, Matthews Correlation
Coefficient (MCC), as well as precision, recall, F1-
scores, and average precision (AP) for both classes.
We deliberately avoided sampling to address the
imbalance due to the dataset’s small size. However,
by providing a comprehensive set of metrics, we
aim to give a detailed comparison of the models’
performance across different aspects.

First, we applied traditional machine learning
models: Multinomial Naïve Bayes, Logistic Re-
gression, Random Forest Classifier (RFC), Support
Vector Classifier (SVC), Gradient Boost Classi-
fier (GBC), and K-Nearest Neighbors Classifier
(KNN), on the Roman script to classify gathas.
Space tokenization and a TF-IDF matrix were used
for all models except for the Multinomial Naïve
Bayes, which served as a baseline model using sim-
ple count vectorization. The Multinomial Naïve
Bayes assumes conditional independence of tokens
and positional independence of features. Naïve
Bayes can be optimal under certain circumstances,
such as when the conditional independence as-
sumption holds (Zhang, 2004). To assess whether
transformer-based models could improve specific
aspects of classification, such as precision and re-
call, we experimented with fine-tuning the follow-
ing models: XLM (Lample and Conneau, 2019),
XLM pre-trained additionally on our training cor-
pus, T5-base (Raffel et al., 2023), and Electra-small
(Clark et al., 2020). Figure 2 presents the classifi-
cation results for the Roman script.

Similar experiments with the Devanagari script
revealed that while transformer-based models un-
derperformed relative to their counterparts in Ro-
man script, the performance disparities among tra-
ditional models were minimal, as depicted in Fig-
ure 3. Additionally, our trials with a byte-level T5
(Xue et al., 2022) model yielded substantially lower
performance (AUC 0.58 for Devanagari), which we
attribute to its inability to effectively handle script-
specific complexities, leading to its exclusion from

our study.
When investigating why transformer-based mod-

els exhibit inferior performance compared to clas-
sic machine learning algorithms, we analyzed the
number of tokens generated by tokenizers for both
Devanagari and Roman scripts in the test subsets.
Table 2 presents the counts of unique tokens from
the tokenizers applied to the test set. Our analy-
sis revealed a strong correlation between the num-
ber of tokens and classification outcomes. This
suggests that the underperformance of transformer-
based models on the Devanagari script is attributed
to significant information loss during tokenization
with certain tokenizers.

ByT5 OpenHathi T5 XLM Electra
Devanagari Tokens 54 1200 6 1208 60
Roman Tokens 44 - 748 1909 1313

Table 2: Unique Tokens in Test Subsets by Model

To address this issue, we opted to fine-tune
OpenHathi-7B (Sarvam, 2024), a model based one
Llama-2 (Hugo Touvron, 2023), specifically de-
veloped for Indo-Aryan languages. We utilized
Low-Rank Adaptation (LoRA) (Hu et al., 2021) to
adjust the model’s parameters, using the last token
for classification purposes. Notably, even after fine-
tuning, the OpenHathi model did not outperform
the simpler XLM model.

Table 3 provides detailed classification results
for the best performing models compared to Multi-
nomial Naïve Bayes. Notably, OpenHathi exhib-
ited the highest recall for the minority class among
the evaluated models. However, a paired bootstrap
test (Berg-Kirkpatrick et al., 2012) with 105 iter-
ations indicated that this increase in recall is not
statistically significant (p = 0.08).

Script Class Precision Recall F1 AP AUC MCC
Multinomial Naïve Bayes

Devanagari M 0.85 0.92 0.88 0.94 0.88 0.56F 0.75 0.60 0.67 0.78
Roman M 0.85 0.92 0.88 0.94 0.88 0.56F 0.75 0.60 0.67 0.78

SVC
Devanagari M 0.86 0.88 0.87 0.95 0.89 0.53F 0.68 0.64 0.66 0.80
Roman M 0.86 0.88 0.87 0.95 0.89 0.53F 0.68 0.64 0.66 0.80

XLM
Devanagari M 0.80 0.91 0.85 0.89 0.78 0.42F 0.68 0.45 0.54 0.64
Roman M 0.79 0.93 0.86 0.92 0.83 0.40F 0.71 0.39 0.50 0.67

XLM with Pre-Training
Devanagari M 0.77 0.99 0.87 0.93 0.86 0.45F 0.95 0.28 0.44 0.75
Roman M 0.78 0.97 0.87 0.93 0.86 0.44F 0.83 0.35 0.49 0.75

OpenHathi-7B
Devanagari M 0.85 0.68 0.76 0.86 0.76 0.36F 0.47 0.70 0.57 0.63

Table 3: Detailed Results for Selected Models.
Appendix A lists the hyperparameters used for
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Figure 3: ROC curves for Devanagari script classification. Left: results for ‘M’ class (Theragatha); right: ‘F’ class
(Therigatha). Multiple models are compared, with AUC scores indicating performance.

model training. Hyperparameters not listed are set
to their default values in the scikit-learn library
for classic machine learning models and in the
Hugging Face Transformers library for transformer-
based models.

Our attempt to employ the SHAP framework
(Lundberg and Lee, 2017) on the best-performing
models to explain their discrimination decisions
did not reveal any specific features that contribute
significantly to either of the classes.

5 Discussion and Further Research

The study highlights persistent challenges in us-
ing original, non-Romanized scripts with modern
transformer-based models for classification tasks,
primarily due to inadequate token coverage in the
models’ vocabularies. Previous studies, such as the
one by Maronikolakis et al. (2021), showed that the
compatibility of tokenizations is crucial in multilin-
gual language models, discussing the importance
of vocabulary size. More recently, Ali et al. (2024)
confirmed that the choice of tokenizer significantly
impacts a model’s downstream performance. They
suggest that tokenizers not tailored to handle a vari-
ety of scripts can lead to inefficient tokenization, di-
rectly affecting model performance, and that larger
vocabulary sizes are required for multilingual to-
kenizers compared to those designed for English
only.

Although Romanized versions of the scripts en-
abled the use of a broader range of models, these
models still did not surpass the performance of
traditional machine learning algorithms. This out-
come suggests that the employed models failed
to identify any class-specific patterns within the

dataset, likely because these models lacked suffi-
ciently relevant data during their pretraining stages.
Notably, additional pre-training of the XLM model
improved the AUC on the classification task, and
a paired bootstrap test with 105 iterations con-
firmed the statistical significance of this improve-
ment (p < 0.05).

Extended research is necessary for the author-
ship attribution task. Our next step is to identify
Therigathas that are consistently misclassified by
the majority of models and perform a detailed anal-
ysis of these cases. This includes annotating and
analyzing specific gathas whose authorship is dis-
puted by scholars. Statistical sampling to iden-
tify whether the differences between the Theri and
Thera gathas are significant may help reveal if there
are substantial distinctions between the two classes
of gathas from a machine learning perspective. Ad-
ditionally, compiling an extensive Pali corpus to
pre-train a transformer model would enable us to
experiment with its discriminatory abilities and its
capability to generate novel gathas.

6 Limitations

First, our dataset is small and imbalanced, with
only slightly over 10% of words shared between
the Thera and Theri gathas. This low overlap might
explain why classical machine learning algorithms
were able to effectively discriminate between the
classes, primarily by relying on words unique to
specific classes.

The second limitation pertains to the existing
transformer models, which often lack the compre-
hensive vocabulary necessary for thorough evalua-
tion.
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A Training hyperparameters

A.1 Hyperparameters for Devanagari Script

Model Hyperparameters Values
Classic Machine Learning Models

MultinomialNB Vectorizer: CountVectorizer binary = False
tokenizer = lambda x: x.split()
token_pattern = None

LogisticRegression random_state 0
RandomForestClassifier random_state 0
SVC (Support Vector Classifier) probability True

random_state 0
GradientBoostingClassifier random_state 0
KNeighborsClassifier n_neighbors 3

TfidfVectorizer Parameters
All models using TfidfVectorizer use_idf True

binary False
tokenizer lambda x: x.split()
token_pattern None

Transformer-Based Models
XLM-Roberta (plain and fine-tuned) num_train_epochs 10

per_device_train_batch_size 16
evaluation_strategy steps
save_steps 100
logging_steps 100
learning_rate 2e-5
warmup_steps 500
weight_decay 0.01
seed 0

Electra num_train_epochs 20
per_device_train_batch_size 16
evaluation_strategy steps
save_steps 100
logging_steps 100
seed 0

T5 (T5-base) num_train_epochs 10
per_device_train_batch_size 16
evaluation_strategy steps
save_steps 50
logging_steps 50
learning_rate 2e-5
warmup_steps 500
weight_decay 0.01
seed 0

byT5 (byT5-base) num_train_epochs 5
per_device_train_batch_size 8
evaluation_strategy steps
save_steps 50
logging_steps 10
learning_rate 2e-5
warmup_steps 50
weight_decay 0.01
seed 0

OpenHathi (QLoRA, Sequence Classification) lora_r 128
lora_alpha 256
lora_dropout 0.1
bias none
max_length 512
per_device_train_batch_size 8
gradient_accumulation_steps 4
warmup_steps 100
max_steps 2000
learning_rate 4e-5
fp16 True
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A.2 Hyperparameters for Roman Script

Model Hyperparameters Values
Classic Machine Learning Models

MultinomialNB Vectorizer: CountVectorizer binary = False
tokenizer = lambda x: x.split()
token_pattern = None

LogisticRegression random_state 0
RandomForestClassifier random_state 0
SVC (Support Vector Classifier) probability True

random_state 0
GradientBoostingClassifier random_state 0
KNeighborsClassifier n_neighbors 3

TfidfVectorizer Parameters (used in some classic models)
All models using TfidfVectorizer use_idf True

binary False
tokenizer lambda x: x.split()
token_pattern None

Transformer-Based Models
XLM-Roberta (plain and fine-tuned) num_train_epochs 10

per_device_train_batch_size 16
evaluation_strategy steps
save_steps 100
logging_steps 100
learning_rate 2e-5
warmup_steps 500
weight_decay 0.01
seed 0

Electra num_train_epochs 20
per_device_train_batch_size 16
evaluation_strategy steps
save_steps 100
logging_steps 100
seed 0

T5 (T5-base) num_train_epochs 10
per_device_train_batch_size 16
evaluation_strategy steps
save_steps 50
logging_steps 50
learning_rate 2e-5
warmup_steps 500
weight_decay 0.01
seed 0

byT5 num_train_epochs 5
per_device_train_batch_size 8
evaluation_strategy steps
save_steps 50
logging_steps 10
learning_rate 2e-5
warmup_steps 50
weight_decay 0.01
seed 0
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