@inproceedings{piper-etal-2024-social,
title = "The Social Lives of Literary Characters: Combining citizen science and language models to understand narrative social networks",
author = "Piper, Andrew and
Xu, Michael and
Ruths, Derek",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
{\"O}hman, Emily and
Miyagawa, So and
Alnajjar, Khalid and
Bizzoni, Yuri},
booktitle = "Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities",
month = nov,
year = "2024",
address = "Miami, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4dh-1.45",
doi = "10.18653/v1/2024.nlp4dh-1.45",
pages = "472--482",
abstract = "Characters and their interactions are central to the fabric of narratives, playing a crucial role in developing readers{'} social cognition. In this paper, we introduce a novel annotation framework that distinguishes between five types of character interactions, including bilateral and unilateral classifications. Leveraging the crowd-sourcing framework of citizen science, we collect a large dataset of manual annotations (N=13,395). Using this data, we explore how genre and audience factors influence social network structures in a sample of contemporary books. Our findings demonstrate that fictional narratives tend to favor more embodied interactions and exhibit denser and less modular social networks. Our work not only enhances the understanding of narrative social networks but also showcases the potential of integrating citizen science with NLP methodologies for large-scale narrative analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="piper-etal-2024-social">
<titleInfo>
<title>The Social Lives of Literary Characters: Combining citizen science and language models to understand narrative social networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Piper</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="family">Ruths</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Öhman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">So</namePart>
<namePart type="family">Miyagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Characters and their interactions are central to the fabric of narratives, playing a crucial role in developing readers’ social cognition. In this paper, we introduce a novel annotation framework that distinguishes between five types of character interactions, including bilateral and unilateral classifications. Leveraging the crowd-sourcing framework of citizen science, we collect a large dataset of manual annotations (N=13,395). Using this data, we explore how genre and audience factors influence social network structures in a sample of contemporary books. Our findings demonstrate that fictional narratives tend to favor more embodied interactions and exhibit denser and less modular social networks. Our work not only enhances the understanding of narrative social networks but also showcases the potential of integrating citizen science with NLP methodologies for large-scale narrative analysis.</abstract>
<identifier type="citekey">piper-etal-2024-social</identifier>
<identifier type="doi">10.18653/v1/2024.nlp4dh-1.45</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4dh-1.45</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>472</start>
<end>482</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Social Lives of Literary Characters: Combining citizen science and language models to understand narrative social networks
%A Piper, Andrew
%A Xu, Michael
%A Ruths, Derek
%Y Hämäläinen, Mika
%Y Öhman, Emily
%Y Miyagawa, So
%Y Alnajjar, Khalid
%Y Bizzoni, Yuri
%S Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, USA
%F piper-etal-2024-social
%X Characters and their interactions are central to the fabric of narratives, playing a crucial role in developing readers’ social cognition. In this paper, we introduce a novel annotation framework that distinguishes between five types of character interactions, including bilateral and unilateral classifications. Leveraging the crowd-sourcing framework of citizen science, we collect a large dataset of manual annotations (N=13,395). Using this data, we explore how genre and audience factors influence social network structures in a sample of contemporary books. Our findings demonstrate that fictional narratives tend to favor more embodied interactions and exhibit denser and less modular social networks. Our work not only enhances the understanding of narrative social networks but also showcases the potential of integrating citizen science with NLP methodologies for large-scale narrative analysis.
%R 10.18653/v1/2024.nlp4dh-1.45
%U https://aclanthology.org/2024.nlp4dh-1.45
%U https://doi.org/10.18653/v1/2024.nlp4dh-1.45
%P 472-482
Markdown (Informal)
[The Social Lives of Literary Characters: Combining citizen science and language models to understand narrative social networks](https://aclanthology.org/2024.nlp4dh-1.45) (Piper et al., NLP4DH 2024)
ACL