@inproceedings{senger-etal-2024-deep,
title = "Deep Learning-based Computational Job Market Analysis: A Survey on Skill Extraction and Classification from Job Postings",
author = "Senger, Elena and
Zhang, Mike and
van der Goot, Rob and
Plank, Barbara",
editor = "Hruschka, Estevam and
Lake, Thom and
Otani, Naoki and
Mitchell, Tom",
booktitle = "Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4hr-1.1",
pages = "1--15",
abstract = "Recent years have brought significant advances to Natural Language Processing (NLP), which enabled fast progress in the field of computational job market analysis. Core tasks in this application domain are skill extraction and classification from job postings. Because of its quick growth and its interdisciplinary nature, there is no exhaustive assessment of this field. This survey aims to fill this gap by providing a comprehensive overview of deep learning methodologies, datasets, and terminologies specific to NLP-driven skill extraction. Our comprehensive cataloging of publicly available datasets addresses the lack of consolidated information on dataset creation and characteristics. Finally, the focus on terminology addresses the current lack of consistent definitions for important concepts, such as hard and soft skills, and terms relating to skill extraction and classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="senger-etal-2024-deep">
<titleInfo>
<title>Deep Learning-based Computational Job Market Analysis: A Survey on Skill Extraction and Classification from Job Postings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Senger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Estevam</namePart>
<namePart type="family">Hruschka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thom</namePart>
<namePart type="family">Lake</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoki</namePart>
<namePart type="family">Otani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Mitchell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent years have brought significant advances to Natural Language Processing (NLP), which enabled fast progress in the field of computational job market analysis. Core tasks in this application domain are skill extraction and classification from job postings. Because of its quick growth and its interdisciplinary nature, there is no exhaustive assessment of this field. This survey aims to fill this gap by providing a comprehensive overview of deep learning methodologies, datasets, and terminologies specific to NLP-driven skill extraction. Our comprehensive cataloging of publicly available datasets addresses the lack of consolidated information on dataset creation and characteristics. Finally, the focus on terminology addresses the current lack of consistent definitions for important concepts, such as hard and soft skills, and terms relating to skill extraction and classification.</abstract>
<identifier type="citekey">senger-etal-2024-deep</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4hr-1.1</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1</start>
<end>15</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Learning-based Computational Job Market Analysis: A Survey on Skill Extraction and Classification from Job Postings
%A Senger, Elena
%A Zhang, Mike
%A van der Goot, Rob
%A Plank, Barbara
%Y Hruschka, Estevam
%Y Lake, Thom
%Y Otani, Naoki
%Y Mitchell, Tom
%S Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F senger-etal-2024-deep
%X Recent years have brought significant advances to Natural Language Processing (NLP), which enabled fast progress in the field of computational job market analysis. Core tasks in this application domain are skill extraction and classification from job postings. Because of its quick growth and its interdisciplinary nature, there is no exhaustive assessment of this field. This survey aims to fill this gap by providing a comprehensive overview of deep learning methodologies, datasets, and terminologies specific to NLP-driven skill extraction. Our comprehensive cataloging of publicly available datasets addresses the lack of consolidated information on dataset creation and characteristics. Finally, the focus on terminology addresses the current lack of consistent definitions for important concepts, such as hard and soft skills, and terms relating to skill extraction and classification.
%U https://aclanthology.org/2024.nlp4hr-1.1
%P 1-15
Markdown (Informal)
[Deep Learning-based Computational Job Market Analysis: A Survey on Skill Extraction and Classification from Job Postings](https://aclanthology.org/2024.nlp4hr-1.1) (Senger et al., NLP4HR-WS 2024)
ACL