@inproceedings{le-etal-2024-analyzing,
title = "Analyzing Byte-Pair Encoding on Monophonic and Polyphonic Symbolic Music: A Focus on Musical Phrase Segmentation",
author = "Le, Dinh-Viet-Toan and
Bigo, Louis and
Keller, Mikaela",
editor = "Kruspe, Anna and
Oramas, Sergio and
Epure, Elena V. and
Sordo, Mohamed and
Weck, Benno and
Doh, SeungHeon and
Won, Minz and
Manco, Ilaria and
Meseguer-Brocal, Gabriel",
booktitle = "Proceedings of the 3rd Workshop on NLP for Music and Audio (NLP4MusA)",
month = nov,
year = "2024",
address = "Oakland, USA",
publisher = "Association for Computational Lingustics",
url = "https://aclanthology.org/2024.nlp4musa-1.12/",
pages = "69--74",
abstract = "Byte-Pair Encoding (BPE) is an algorithm commonly used in Natural Language Processing to build a vocabulary of subwords, which has been recently applied to symbolic music. Given that symbolic music can differ significantly from text, particularly with polyphony, we investigate how BPE behaves with different types of musical content. This study provides a qualitative analysis of BPE`s behavior across various instrumentations and evaluates its impact on a musical phrase segmentation task for both monophonic and polyphonic music. Our findings show that the BPE training process is highly dependent on the instrumentation and that BPE {\textquotedblleft}supertokens{\textquotedblright} succeed in capturing abstract musical content. In a musical phrase segmentation task, BPE notably improves performance in a polyphonic setting, but enhances performance in monophonic tunes only within a specific range of BPE merges."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-etal-2024-analyzing">
<titleInfo>
<title>Analyzing Byte-Pair Encoding on Monophonic and Polyphonic Symbolic Music: A Focus on Musical Phrase Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dinh-Viet-Toan</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louis</namePart>
<namePart type="family">Bigo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikaela</namePart>
<namePart type="family">Keller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on NLP for Music and Audio (NLP4MusA)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kruspe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergio</namePart>
<namePart type="family">Oramas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Epure</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Sordo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benno</namePart>
<namePart type="family">Weck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SeungHeon</namePart>
<namePart type="family">Doh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minz</namePart>
<namePart type="family">Won</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilaria</namePart>
<namePart type="family">Manco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Meseguer-Brocal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Lingustics</publisher>
<place>
<placeTerm type="text">Oakland, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Byte-Pair Encoding (BPE) is an algorithm commonly used in Natural Language Processing to build a vocabulary of subwords, which has been recently applied to symbolic music. Given that symbolic music can differ significantly from text, particularly with polyphony, we investigate how BPE behaves with different types of musical content. This study provides a qualitative analysis of BPE‘s behavior across various instrumentations and evaluates its impact on a musical phrase segmentation task for both monophonic and polyphonic music. Our findings show that the BPE training process is highly dependent on the instrumentation and that BPE “supertokens” succeed in capturing abstract musical content. In a musical phrase segmentation task, BPE notably improves performance in a polyphonic setting, but enhances performance in monophonic tunes only within a specific range of BPE merges.</abstract>
<identifier type="citekey">le-etal-2024-analyzing</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4musa-1.12/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>69</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing Byte-Pair Encoding on Monophonic and Polyphonic Symbolic Music: A Focus on Musical Phrase Segmentation
%A Le, Dinh-Viet-Toan
%A Bigo, Louis
%A Keller, Mikaela
%Y Kruspe, Anna
%Y Oramas, Sergio
%Y Epure, Elena V.
%Y Sordo, Mohamed
%Y Weck, Benno
%Y Doh, SeungHeon
%Y Won, Minz
%Y Manco, Ilaria
%Y Meseguer-Brocal, Gabriel
%S Proceedings of the 3rd Workshop on NLP for Music and Audio (NLP4MusA)
%D 2024
%8 November
%I Association for Computational Lingustics
%C Oakland, USA
%F le-etal-2024-analyzing
%X Byte-Pair Encoding (BPE) is an algorithm commonly used in Natural Language Processing to build a vocabulary of subwords, which has been recently applied to symbolic music. Given that symbolic music can differ significantly from text, particularly with polyphony, we investigate how BPE behaves with different types of musical content. This study provides a qualitative analysis of BPE‘s behavior across various instrumentations and evaluates its impact on a musical phrase segmentation task for both monophonic and polyphonic music. Our findings show that the BPE training process is highly dependent on the instrumentation and that BPE “supertokens” succeed in capturing abstract musical content. In a musical phrase segmentation task, BPE notably improves performance in a polyphonic setting, but enhances performance in monophonic tunes only within a specific range of BPE merges.
%U https://aclanthology.org/2024.nlp4musa-1.12/
%P 69-74
Markdown (Informal)
[Analyzing Byte-Pair Encoding on Monophonic and Polyphonic Symbolic Music: A Focus on Musical Phrase Segmentation](https://aclanthology.org/2024.nlp4musa-1.12/) (Le et al., NLP4MusA 2024)
ACL