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Abstract

While NLP research into hate speech detec-
tion has grown exponentially in the last three
decades, there has been minimal uptake or en-
gagement from policy makers and non-profit
organisations. We argue the absence of eth-
ical frameworks have contributed to this rift
between current practice and best practice. By
adopting appropriate ethical frameworks, NLP
researchers may enable the social impact po-
tential of hate speech research. This position
paper is informed by reviewing forty-eight hate
speech detection systems associated with thirty-
seven publications from different venues.

1 Introduction

Social impact is a conceptual model used to de-
termine the practice and science of social good
factoring: 1) social good domains (including di-
versity and inclusion; environmental justice and
sustainability; and peace and collaboration); 2) un-
conventional systems of change; and 3) innovative
technologies (Mor Barak, 2020). Indeed, one area
of natural language processing (NLP) which seam-
lessly unites all three elements of social impact is
hate speech detection (Hovy and Spruit, 2016). In
the last three decades, we have seen an exponen-
tial growth into hate speech research with rapid
developments in the last decade alone as a result
of methodological advancement in NLP (Tontodi-
mamma et al., 2021).

The main contribution of NLP research in com-
bating hate speech is through the development of
hate speech detection training data sets. This is
because hate speech detection is often treated as a
text classification task and the development of hate
speech detection systems follow a similar work-
flow: a) data set collection and preparation; b) fea-
ture engineering; c) model training; and lastly d)
model evaluation (Kowsari et al., 2019). A system-
atic review of hate speech literature has identified

over sixty-nine hate speech detection systems (Ja-
han and Oussalah, 2023). However, these systems
pose a number of ethical challenges and risks to the
vulnerable communities they are meant to protect
(Vidgen and Derczynski, 2020).

As an area of research enquiry, hate speech re-
search is highly productive. For example, the flag-
ship publisher of computational linguistics and nat-
ural language processing research, ACL Anthology,
returned 6,570 results for ‘hate speech’ as of June
2024. This number pales in comparison to the stag-
gering 116,000 publications indexed by Google
Scholar. While hate speech research has been pur-
ported as a valuable resource in policing anti-social
behaviour online (Rawat et al., 2024), some re-
searchers are beginning to question the social bene-
fits of proposed NLP solutions in combating hate
speech (Parker and Ruths, 2023).

The efforts of NLP researchers are rarely used to
combat hate speech. In a review of hate speech poli-
cies, the key players in this space were non-profit
organisations, social media platforms, and govern-
ment agencies (Parker and Ruths, 2023). Hate
speech detection research rarely appear in policy
documents. As an example, the most cited hate
speech publication had 2,861 citations on Google
Scholar (Davidson et al., 2017), but only twice
in Overton - a database of policy documents and
working papers for 188 countries. The absence of
NLP research suggest that methodological innova-
tions are of are incongruent with legal and ethical
concerns of this social issue (Jin et al., 2021).

NLP researchers do not seem to be concerned
that their hate speech systems are not being widely
applied or implemented. This is because the pri-
mary concern in hate speech research is poor model
performance which is often attributed noisy train-
ing data (Arango et al., 2022). Laaksonen et al.
(2020) critiqued the ‘datafication’ of hate speech
research has become an unnecessary distraction
for NLP researchers in combating this social issue.
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This is a well-attested issue in NLP research for
positive social impact (Diddee et al., 2022)

As a relatively new field of academic enquiry
(Nadkarni et al., 2011), there remains a paradig-
matic rift between current practice and evidence-
based best practice. Hovy and Spruit (2016) ex-
pressed their concerns on the negative social im-
pacts of NLP research. This is because NLP re-
search was previously immune from research ethics
as NLP approaches did not directly involve human
subjects. NLP researchers are increasingly aware
they are not immune from ethical dilemmas. As an
example, recent work have identified racial bias in
hate speech systems (Davidson et al., 2019).

If NLP researchers wish to enable the intended
positive social impact of hate speech detection sys-
tems, then there must be a re-orientation of how
the problem of hate speech detection is conceived
from a methods-based problem towards collabora-
tive solution (Parker and Ruths, 2023). This view is
shared by the broader field of NLP for social good
whereby the needs of users and communities are
centred over the methods (Mukhija et al., 2021).
One proposed approach is to determine the respon-
sibility of NLP solutions and system to consider its
broader impact on target users and communities.

1.1 Responsible Innovation in AI
As strands of AI, including NLP, become more
intertwined with society, researchers must con-
sciously reflect on the broader ethical implications
of their solutions and systems. The ACM Code of
Ethics exists to support computing professionals
(Gotterbarn et al., 2018). However, the perceived
opacity in AI research (i.e., poor transparency, ex-
plainability, and accountability) led to the recent
development of a proposed deliberative framework
on responsible innovation (Buhmann and Fieseler,
2021). The proposed dimensions of the deliberative
framework include:

• Responsibility to Prevent Harm: AI re-
searchers are required to implement risk man-
agement strategies in preventing potentially
negative outcomes for humans, society, and
the environment.

• Obligation to ‘do good’: AI researchers and
systems are required to improve the conditions
for humans, society, and the environment.

• Responsibility to Govern: AI researchers are
stewards of responsible AI systems.

The conceptual model was influenced by
the Principlist approaches in biomedical ethics

(Beauchamp and Childress, 2001). In a similar
vein the Principlist principles are used to guide
medical professionals in cases of conflict or con-
fusion, the framework was developed to address
some of the challenges in AI research at a systemic
level. The first dimension corresponds with the
Principlist principles of respect for autonomy and
non-maleficence, while the second dimension cor-
responds with beneficence and justice.

When we evaluate existing hate speech research
against the proposed deliberative framework, we
begin to see where the existing hate speech systems
may fall short in terms of social benefits. For exam-
ple, known biases in hate speech detection systems
(e.g., Davidson et al. 2019) may further exacerbate
inequities of target groups and communities. Addi-
tionally, socially or culturally agnostic hate speech
systems may offer limited value when applied with-
out considering the sociocultural context of target
groups and communities (Wong, 2024).

1.2 Responsible NLP

Building on the proposed deliberative framework
for responsible innovation in AI (Buhmann and
Fieseler, 2021), Behera et al. (2023) proposed
a conceptual model entitled Responsible Natural
Language Processing (RNLP) to determine the so-
cial benefits of NLP systems throughout its oper-
ational life-cycle. The conceptual model was de-
veloped from semi-structured interviews with NLP
researchers in the health, finance, and retail and
e-commerce industries to understand the efficacy
of the framework. The NLP researchers found the
RNLP a suitable tool for ethical decision making at
the structural level.

Principle 1: Human-Centred Values NLP sys-
tems should respect individual autonomy, diversity,
and uphold human rights. NLP systems should
not be used to replace cognitive functions (i.e., rea-
soning, learning, problem solving, perception, and
rationality). This also means the perspectives of
target communities should be included in the de-
velopment of the system (i.e., data collection, an-
notation, deployment). An example of this may
involve co-creating NLP informed solutions with
target communities (Pillai et al., 2023).

Principle 2: Transparency NLP systems should
include responsible disclosures especially if a sys-
tem may have substantial influence on individu-
als (Behera et al., 2023). Within a hate speech
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detection context, disclosures should include a de-
tailed descriptions of the research design including
decision-making processes and possible biases or
data quality issues. NLP researchers are encour-
aged to provide data statements profiling partici-
pants or annotators and their affiliation to a target
group (Bender and Friedman, 2018).

Principle 3: Well-being NLP systems should be
used to benefit humans, society, and the environ-
ment; more importantly, there should be no nega-
tive impacts to humans, society, or the environment.
These benefits should be explicitly defined and jus-
tified. An example of this may involve contextu-
alising the research using the Researcher Impact
Framework which highlights key achievements in
the generation of knowledge, the development of
individuals and collaborations, supporting the re-
search community, and supporting broader society
(De Moura Rocha Lima and Bowman, 2022).

Principle 4: Privacy and Security NLP systems
should uphold and respect the private rights of indi-
viduals. Individuals should not be identified within
the system and the system is stored securely. Where
appropriate, anonymisation, confidentialisation, or
homomorphic encryption should be applied. An
example of this may include publishing numerical
identifiers of social media posts and not the content
without consent (Williams et al., 2017).

Principle 5: Reliability NLP systems should
operate in a consistent manner (i.e., precise, de-
pendable, and repeatable) in accordance with the
intended purpose. An example of this may include
publishing code and training data securely as well
as relevant model evaluation metrics (Resnik and
Lin, 2010). NLP systems should not pose safety
risks to individuals.

Principle 6: Fairness NLP systems should be
inclusive and accessible (i.e., user-centric) of
marginalised or vulnerable communities. Further-
more, NLP systems should not perpetuate exist-
ing prejudice towards marginalised and vulnerable
communities. An example of this may include ad-
ditional assessments for social bias (Tan and Celis,
2019). Systems should be deployed on no-code
or low-code development platforms as target com-
munities may not have the capability to deploy the
system from the source code. Within the context
of hate speech detection research, this principle
is correlated with Principle 2: Transparency and
Principle 8: Accountability.

Principle 7: Interrogation There should be ef-
fective and accessible methods that enable individ-
uals to challenge NLP systems. Shared tasks is a
useful approach to determine the limitations of the
system (Parra Escartín et al., 2017).

Principle 8: Accountability There should be
human oversight over the development and deploy-
ment of NLP systems throughout various phases of
the NLP system life-cycle. Evidence of this princi-
ple may include participatory design process with
stakeholders (Schafer et al., 2023); and ethics or
internal review board approval obtained.

1.3 Summary

As target communities continue to experience on-
line hate despite these opaque strategies (Burnap
and Williams, 2016), NLP researchers may still
play a significant role in unleashing the social im-
pact potential of NLP research - to enable equitable
digital inclusion and to close the ‘digital divide’
(Norris, 2001). The introduction of the deliberative
framework for responsible innovation in AI (Buh-
mann and Fieseler, 2021) and the Responsible NLP
(RNLP) conceptual model (Behera et al., 2023) pro-
vide a useful tool to understand the current state of
hate speech detection systems. The main contribu-
tion of this position paper is a systematic review
of existing hate speech detection systems to deter-
mine possible areas of improvement with the aim
to enable positive social benefits for target groups
or communities. We posit the low social impact of
hate speech detection research, as evident from the
lack of engagement from key stakeholders (Parker
and Ruths, 2023), may stem from the lack of eth-
ical decision making in the development of these
NLP systems.

2 Analysis

We retroactively apply the RNLP conceptual model
to evaluate the ethical and responsible performance
of hate speech systems. Each system is rated on a
three-point scale: where there is no evidence (not
met), some evidence (partially met), and good ev-
idence (met). While the RNLP evaluates an NLP
system in its entirety, we restrict our analysis to the
training data sets used to train these systems. As
part of our systematic review, we only refer to pub-
licly available publications (or in some instances,
pre-prints) and associated data or metadata reposi-
tory for evidence when evaluating each system.
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RNLP Met Partially Met Not Met
P1 4.2% 68.8% 27.1%
P2 6.3% 58.3% 35.4%
P3 0.0% 33.3% 66.7%
P4 39.6% 43.8% 16.7%
P5 81.3% 18.8% 0.0%
P6 2.1% 33.3% 64.6%
P7 52.1% 35.4% 12.5%
P8 0.0% 4.2% 95.8%

Table 1: Summary table of the systematic review.

2.1 Data

Even though there are hundreds (possibly thou-
sands) of hate speech detection systems, we have
included forty-eight hate speech detection systems
which were also reviewed as part of Jahan and
Oussalah (2023). The list of systems with limited
corpus information are presented in the Appendix
in Table 2. For a technical summary of the sample,
refer to Tables 11 and 12 in Jahan and Oussalah
(2023). The systems are associated with thirty-
eight publications published between 2016-2020.
Furthermore, these hate speech data sets span mul-
tiple language conditions.

3 Results

A summary of the results from our systematic eval-
uation is presented in Table 1. The evaluation for
each hate speech detection system is presented in
Table 3 of the Appendix. We do not provide a rank-
ing of the systems in our analysis as the purpose
of the systematic review is not to determine the
ethical robustness of individual systems. Some sys-
tems associated with one publication may appear
to have duplicate results as they were developed
with a similar methodology.

Most systems (68.8%) partially met Principle 1:
Well-being (P1) by explicitly stating the contribu-
tion of the system; however, almost a third (27.1%)
of systems did not. Over half (56.3%) of the sys-
tems partially met Principle 2: Human-Centred
Values (P2) by recruiting manual annotators from
relevant sociocultural or linguistic backgrounds;
while a third (35.4%) relied on anonymous crowd-
sourcing platforms. Only a third (33.3%) of sys-
tems met Principle 3: Fairness (P3) provided a
discussion on possible biases, limitations, or data
quality issues. The remaining systems did not in-
clude a discussion of limitations at all.

Nineteen systems (39.6%) met Principle 4: Pri-

vacy and Security (P4) and twenty-one systems
(43.8%) partially met this principle. The systems
which met this principle published de-identified
data with a small number stored securely with ap-
proval required. Eight systems (16.7%) did not
meet this principle which raises both ethical and
legal concerns. Thirty-nine systems (81.3%) met
Principle 5: Reliability (P5) while nine systems
(18.8%) partially met this principle. Thirty-one
systems (64.6%) did not meet Principle 6: Fair-
ness (P6) as there were no responsible disclosures.
The remaining systems (33.3%) partially met this
principle with limited information about the an-
notators. Over half (52.1%) of the systems met
Principle 7: Interrogation (P7). Lastly, the major-
ity (95.8%) of systems did not meet Principle 8:
Accountability (P8).

4 Discussion

While the systematic review provides useful in-
sights of hate speech detection systems from a
structural perspective, it does not provide insights
into systemic issues. We therefore organise our
discussion using the deliberative framework on re-
sponsible innovation in AI (Buhmann and Fieseler,
2021) to determine the broader ethical implications
of the sample of hate speech detection systems as
highlighted from our systematic review.

Responsibility to Prevent Harm The principles
associated with this dimension are Principle 2:
Human-Centred Values and Principle 6: Trans-
parency. Based on the systematic review, the sam-
ple of systems performed poorly for this dimen-
sion. Evidence for Principle 2: Human-Centred
Values was largely determined by the annotation
process of which heavily relied on anonymous
crowd-sourcing when labelling the training data
sets. Anonymous crowd-sourcing decreases the
reliability of the annotated data (Roß et al., 2016).
Manual annotators who may not affiliate with a
target group may over generalise linguistic features
(i.e., slurs) as hate speech. This dimension requires
researchers to implement risk management strate-
gies in preventing negative outcomes for humans,
society, and the environment. Only Chung et al.
(2019) co-created the detection system alongside
target groups and communities. Even though the
use of crowd-sourced annotators may seem innocu-
ous from a research design perspective, there is a
growing body of evidence that content moderators
(in this case manual annotators) are unnecessarily
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exposed to secondary trauma from harmful content
with limited mental health support (Spence et al.,
2024). This means annotators, whether recruited
from within a target group/community or anony-
mously, may experience harm through the system
development process. In terms of evidence for Prin-
ciple 6: Transparency, only one system provided
both disclosures and detailed profiles of annotators
(Alfina et al., 2017). For example, poor documen-
tation may reinforce existing biases against target
communities (Arango et al., 2022).

Obligation to ‘do good’ The principles associ-
ated with this dimension are Principle 1: Well-
being and Principle 4: Privacy and Security. The
evidence for Principle 1: Well-being was largely
determined by the aims and research questions.
There was little discussion on the suitability of
these systems or the role of target communities
or the role of annotators in combating online hate
speech. Only two systems, both associated with
Chung et al. (2019), had clear contributions to tar-
get communities. While this dimension requires
researchers to improve the conditions for humans,
society, and the environment, the contributions for
most systems were largely methodological and the
social benefits were negligible. This reinforces the
belief that methodological innovations are incon-
gruent with the social or ethical concerns (Jin et al.,
2021). In terms of evidence for Principle 4: Pri-
vacy and Security, this was largely determined by
data management practices. The systems which
met this principle published de-identified data with
a small number stored securely with approval from
the researchers required. It is important to note that
identifiable social media data contravenes the data
use policy of most social media platforms. This
means the publication of the availability of these
data sets with limited security poses ethical and
legal issues. The social benefits of the systems de-
veloped resulting from the research should be clear
to target groups and communities.

Responsibility to Govern The remaining four
principles are associated with this dimension. The
systematic revealed a high degree of polarity in
the performance of the principles associated with
this dimension. The evidence for Principle 5: Re-
liability was largely determined by the available
documentation (i.e., journal article, conference pro-
ceeding, or pre-print). We can attribute the high
performance of systems in this principle as all asso-
ciated publications were required to undergo peer-

review. The high performance of this principle is
in direct contrasts Principle 6: Reliability which
performed poorly as a majority of systems were not
deployed beyond publishing the training data. This
meant none of the systems met this principle in its
entirety as they are not accessible to target commu-
nities. Similarly, all systems performed poorly for
Principle 8: Accountability as participatory design
approaches were non-evident and ethics and inter-
nal review board approvals were rarely obtained for
these studies. In terms of evidence for Principle
7: Interrogation, over half the systems met this
principle as the datasets were indexed in Papers
with Code or involved with shared tasks which are
both effective methods to enable robust interroga-
tion of the systems. Crucially, this is where NLP
researchers can enable positive social benefits as
this dimension requires researchers to be stewards
of responsible AI systems. Social media platforms
(such as X (Twitter) and Facebook) remove harm-
ful content using in-house detection algorithms and
content moderators (Wilson and Land, 2021). This
suggests NLP researchers may play a role in chal-
lenging these opaque systems and promote trans-
parency, explainability, and accountability of these
in-house detection algorithms which continue to
fail and expose target groups and communities to
hate speech.

5 Conclusion

While the systematic review cannot determine why
there is a lack of engagement from key stakehold-
ers of target groups and communities, the insights
on how NLP researchers can improve ethical de-
cision making in the development of hate speech
detection systems. Based on the systematic review,
NLP researchers working in the field of hate speech
detection are consistently meeting the principles
of Principle 5: Reliability, Principle 7: Interroga-
tion, and Principle 4: Privacy and Security. The
two principles which require the most attention
are Principle 8: Accountability and Principle 3:
Fairness. Some of these ethical concerns may be
addressed systemically and structurally through
the adoption of ethical frameworks (such as Buh-
mann and Fieseler 2021 or Beauchamp and Chil-
dress 2001); however, true positive social benefits
may only be achieved by working alongside tar-
get groups and communities most impacted by this
social issue.

5



Ethics Statement

The purpose of this position paper is not to take a
punitive view of hate speech detection research,
but to determine how NLP researchers can en-
able ethical research practices in this area. As
demographic bias in language models may have
unintended downstream impacts on vulnerable and
marginalised communities (Tan and Celis, 2019);
research practices of existing and former hate
speech detection systems may also perpetuate un-
intentional harms on vulnerable and marginalised
communities. Even though this position paper is
not an NLP system in itself, it does contribute to
the development of ethical research practices for
NLP systems; therefore, we will use the RNLP
(Behera et al., 2023) conceptual model to reinforce
current best practice in NLP research.

Principle 1: Well-being We use the Researcher
Impact Framework proposed by De Moura
Rocha Lima and Bowman (2022) to determine the
contributions of this position paper. This position
paper contributes to the generation of knowledge in
NLP research by evaluating current research prac-
tices in hate speech research and the steps needed
to enable best practice and ethical research prac-
tices. This position supports the development of
individuals and the research community by syn-
thesising different ethical conceptual models and
frameworks to support best practice in NLP re-
search. While this position paper does not involve
vulnerable and marginalised groups, the main con-
tribution of this position paper is to support NLP
researchers to effectively address the social issues
of broader society by encouraging researcher re-
flexivity on existing research practices.

Principle 2: Human-Centred Values This po-
sition paper is a systematic review of existing hate
speech detection systems. These are subjective rat-
ings based on the perspectives and experiences of
the authors and the ratings have not been automated.
We have not used AI assistants in research or writ-
ing as this will replace the cognitive functions of
the authors. The authors intersect communities of-
ten targeted by online hate speech which in turn
brings a unique and nuanced perspective on the
efficacy of NLP solutions in combating this social
issue. The positionality of the authors will be re-
leased following anonymous peer-review.

Principle 3: Fairness This position paper
does not perpetuate existing prejudice towards

marginalised and vulnerable communities. We are
aware that ethical research practice may differ be-
tween social, cultural, linguistic, or political affilia-
tions; therefore, we have not associated hate speech
systems and their research practices as more or less
ethical. We have focused our discussion on so-
cial benefits and enabling digital inclusion to avoid
taking a deficit approach towards hate speech detec-
tion research. We have written this paper in plain
language to ensure full accessibility of the content.

Principle 4: Privacy and Security This position
paper does not contain individually identifying in-
formation or examples of hate speech or offensive
language. All hate speech detection systems and
associated documentation which we have explicitly
referenced are available in the public domain.

Principle 5: Reliability We have identified no
potential risks of this position paper; however, we
have not included the complete evaluation of indi-
vidual systems as this may cause reputational risks
for both the developers of the individual systems
and the authors of this position paper. As this posi-
tion paper is largely a qualitative assessment of hate
speech detection systems, there are no model evalu-
ation metrics or statistics and we have not included
any experimental settings or hyper-parameters.

Principle 6: Transparency We have included
a brief description of the forty-eight hate speech
detection systems which can be located in Table
11 and Table 12 of Jahan and Oussalah (2023).
We have not involved human subjects or external
annotators in our systematic review of hate speech
detection systems.

Principle 7: Interrogation We encourage other
NLP researchers to conduct a similar systematic
review based on their own perspectives and expe-
riences. The evaluation with supporting evidence
can be made available by contacting the authors.

Principle 8: Accountability This position paper
does not include human subjects or external anno-
tators; therefore, ethics or internal review board
approval have not been sought. However, we en-
courage NLP researchers working in hate speech
detection to contact the authors to discuss the con-
tents of the position paper. We believe there is value
in taking a participatory design approach to deter-
mine the needs of NLP researchers in hate speech
detection to enable ethical research practices.
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Limitations

This position paper evaluates a sample (48) of ex-
isting hate speech detection systems. Naturally,
this is not a true reflection of all hate speech detec-
tion systems developed or available on the public
domain. We suggest elevating this position paper
to a bibliometric evaluation of hate speech detec-
tion systems to capture the evidence needed to sup-
port the claims in this position paper. Furthermore,
the qualitative evaluation in this position paper is
limited to the perspectives and experiences of the
authors; therefore, we do not expect the views ex-
pressed in this position paper can be generalised
across the NLP research community who may have
differing perspectives on best practice ethical re-
search practice which will vary depending on the
social, cultural, linguistic, or political affiliations
of individuals. This position paper uses one eth-
ical conceptual model and may benefit from the
inclusion of other ethical frameworks.
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Mandl et al., 2019 de Twitter, Facebook 4,669 Manual Multiple
Mandl et al., 2019 hi Twitter, Facebook 5,983 Manual Multiple
Sigurbergsson and Derczynski, 2020 da Multiple 3,600 Manual Multiple
Wiegand et al., 2018 de Twitter 8,541 Manual 3
Founta et al., 2018 en Twitter 80,000 CrowdFlower -
Karim et al., 2020 bn Multiple 376,226 Manual 5
Ousidhoum et al., 2019 ar Twitter 3,353 Mechanical Turk -
Ousidhoum et al., 2019 en Twitter 5,647 Mechanical Turk -
Ousidhoum et al., 2019 fr Twitter 4,014 Mechanical Turk -
Pitenis et al., 2020 el Twitter 4,779 Manual 3
Rizwan et al., 2020 ur Twitter 10,012 Manual 3
Zampieri et al., 2019 en Twitter 14,100 Figure Eight -
Basile et al., 2019 es, en Twitter 14,100 Figure Eight -
Davidson et al., 2017 en Twitter 24,802 CrowdFlower -
de Gibert et al., 2018 en Stormfront 9,916 Manual 3
ElSherief et al., 2018 en Twitter 27,330 CrowdFlower -
Gomez et al., 2020 en Twitter 149,823 Mechanical Turk -
Wulczyn et al., 2017 en Wikipedia 115,737 CrowdFlower -
Wulczyn et al., 2017 en Wikipedia 100,000 CrowdFlower -
Wulczyn et al., 2017 en Wikipedia 160,000 CrowdFlower -
Chung et al., 2019 en, fr, it Facebook 17,119 Manual 20
Chung et al., 2019 en, fr, it Facebook 1,288 Manual 40

Table 2: List of hate speech detection systems surveyed as part of the current systematic evaluation.
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Citation P1 P2 P3 P4 P5 P6 P7 P8
Albadi et al., 2018 1 1 0 2 2 0 0 0
Andrusyak et al., 2018 1 0 0 0 2 0 0 0
Bretschneider, 2016 1 2 0 1 2 1 0 0
Ibrohim and Budi, 2018 1 1 0 1 2 0 0 0
Alakrot et al., 2018 1 1 1 0 1 1 0 0
Alfina et al., 2017 1 0 1 0 2 2 0 0
Gao and Huang, 2017 0 1 0 0 2 0 1 0
Mubarak et al., 2017 0 1 0 1 2 0 1 0
Mubarak et al., 2017 0 1 0 1 2 0 1 0
Jha and Mamidi, 2017 0 1 1 2 2 1 1 0
Jha and Mamidi, 2017 0 1 1 2 2 1 1 0
Mulki et al., 2019 0 1 1 0 2 1 1 0
Bohra et al., 2018 1 0 0 2 2 0 1 0
Ibrohim and Budi, 2019 1 1 0 1 2 0 1 0
Qian et al., 2019 1 0 0 1 2 0 1 0
Qian et al., 2019 1 0 0 1 2 0 1 0
Rezvan et al., 2018 1 1 0 2 1 0 1 0
Ribeiro et al., 2018 1 0 0 2 2 0 1 0
Roß et al., 2016 1 1 0 1 2 0 1 0
Waseem, 2016 1 1 0 2 2 0 1 0
Waseem and Hovy, 2016 1 1 0 2 2 0 1 0
Mathur et al., 2018 1 1 1 2 2 1 1 0
Sanguinetti et al., 2018 1 1 1 2 2 1 1 0
Kumar et al., 2018 0 1 0 2 1 0 2 0
Kumar et al., 2018 0 1 0 2 1 0 2 0
Mandl et al., 2019 0 1 0 0 1 0 2 0
Mandl et al., 2019 0 1 0 1 1 0 2 0
Mandl et al., 2019 0 1 0 1 1 0 2 0
Sigurbergsson and Derczynski, 2020 0 1 0 1 2 0 2 0
Wiegand et al., 2018 0 1 1 0 1 1 2 0
Founta et al., 2018 1 0 0 2 2 0 2 0
Karim et al., 2020 1 1 0 1 2 0 2 0
Ousidhoum et al., 2019 1 0 0 1 2 0 2 0
Ousidhoum et al., 2019 1 0 0 1 2 0 2 0
Ousidhoum et al., 2019 1 0 0 1 2 0 2 0
Pitenis et al., 2020 1 1 0 1 2 0 2 0
Rizwan et al., 2020 1 1 0 1 2 0 2 0
Zampieri et al., 2019 1 0 0 2 1 0 2 0
Basile et al., 2019 1 0 1 2 2 1 2 0
Davidson et al., 2017 1 1 1 0 2 1 2 0
de Gibert et al., 2018 1 1 1 1 2 1 2 0
ElSherief et al., 2018 1 0 1 2 2 1 2 0
Gomez et al., 2020 1 0 1 1 2 1 2 0
Wulczyn et al., 2017 1 0 1 2 2 1 2 0
Wulczyn et al., 2017 1 0 1 2 2 1 2 0
Wulczyn et al., 2017 1 0 1 2 2 1 2 0
Chung et al., 2019 2 2 0 1 2 0 2 1
Chung et al., 2019 2 2 0 1 2 0 2 1

Table 3: The systematic evaluation of hate speech detection systems. We have indicated for each system where
there is no evidence (0), some evidence (1), and good evidence (2) for each principle.
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