@inproceedings{wu-ebling-2024-investigating,
title = "Investigating Ableism in {LLM}s through Multi-turn Conversation",
author = "Wu, Guojun and
Ebling, Sarah",
editor = "Dementieva, Daryna and
Ignat, Oana and
Jin, Zhijing and
Mihalcea, Rada and
Piatti, Giorgio and
Tetreault, Joel and
Wilson, Steven and
Zhao, Jieyu",
booktitle = "Proceedings of the Third Workshop on NLP for Positive Impact",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4pi-1.18",
pages = "202--210",
abstract = "To reveal ableism (i.e., bias against persons with disabilities) in large language models (LLMs), we introduce a novel approach involving multi-turn conversations, enabling a comparative assessment. Initially, we prompt the LLM to elaborate short biographies, followed by a request to incorporate information about a disability. Finally, we employ several methods to identify the top words that distinguish the disability-integrated biographies from those without. This comparative setting helps us uncover how LLMs handle disability-related information and reveal underlying biases. We observe that LLMs tend to highlight disabilities in a manner that can be perceived as patronizing or as implying that overcoming challenges is unexpected due to the disability.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-ebling-2024-investigating">
<titleInfo>
<title>Investigating Ableism in LLMs through Multi-turn Conversation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guojun</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Ebling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on NLP for Positive Impact</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daryna</namePart>
<namePart type="family">Dementieva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Ignat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgio</namePart>
<namePart type="family">Piatti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To reveal ableism (i.e., bias against persons with disabilities) in large language models (LLMs), we introduce a novel approach involving multi-turn conversations, enabling a comparative assessment. Initially, we prompt the LLM to elaborate short biographies, followed by a request to incorporate information about a disability. Finally, we employ several methods to identify the top words that distinguish the disability-integrated biographies from those without. This comparative setting helps us uncover how LLMs handle disability-related information and reveal underlying biases. We observe that LLMs tend to highlight disabilities in a manner that can be perceived as patronizing or as implying that overcoming challenges is unexpected due to the disability.</abstract>
<identifier type="citekey">wu-ebling-2024-investigating</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4pi-1.18</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>202</start>
<end>210</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Ableism in LLMs through Multi-turn Conversation
%A Wu, Guojun
%A Ebling, Sarah
%Y Dementieva, Daryna
%Y Ignat, Oana
%Y Jin, Zhijing
%Y Mihalcea, Rada
%Y Piatti, Giorgio
%Y Tetreault, Joel
%Y Wilson, Steven
%Y Zhao, Jieyu
%S Proceedings of the Third Workshop on NLP for Positive Impact
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wu-ebling-2024-investigating
%X To reveal ableism (i.e., bias against persons with disabilities) in large language models (LLMs), we introduce a novel approach involving multi-turn conversations, enabling a comparative assessment. Initially, we prompt the LLM to elaborate short biographies, followed by a request to incorporate information about a disability. Finally, we employ several methods to identify the top words that distinguish the disability-integrated biographies from those without. This comparative setting helps us uncover how LLMs handle disability-related information and reveal underlying biases. We observe that LLMs tend to highlight disabilities in a manner that can be perceived as patronizing or as implying that overcoming challenges is unexpected due to the disability.
%U https://aclanthology.org/2024.nlp4pi-1.18
%P 202-210
Markdown (Informal)
[Investigating Ableism in LLMs through Multi-turn Conversation](https://aclanthology.org/2024.nlp4pi-1.18) (Wu & Ebling, NLP4PI 2024)
ACL