@inproceedings{aguirre-dredze-2024-transferring,
title = "Transferring Fairness using Multi-Task Learning with Limited Demographic Information",
author = "Aguirre, Carlos Alejandro and
Dredze, Mark",
editor = "Dementieva, Daryna and
Ignat, Oana and
Jin, Zhijing and
Mihalcea, Rada and
Piatti, Giorgio and
Tetreault, Joel and
Wilson, Steven and
Zhao, Jieyu",
booktitle = "Proceedings of the Third Workshop on NLP for Positive Impact",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4pi-1.3",
pages = "32--49",
abstract = "Training supervised machine learning systems with a fairness loss can improve prediction fairness across different demographic groups. However, doing so requires demographic annotations for training data, without which we cannot produce debiased classifiers for most tasks. Drawing inspiration from transfer learning methods, we investigate whether we can utilize demographic data from a related task to improve the fairness of a target task. We adapt a single-task fairness loss to a multi-task setting to exploit demographic labels from a related task in debiasing a target task, and demonstrate that demographic fairness objectives transfer fairness within a multi-task framework. Additionally, we show that this approach enables intersectional fairness by transferring between two datasets with different single-axis demographics. We explore different data domains to show how our loss can improve fairness domains and tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aguirre-dredze-2024-transferring">
<titleInfo>
<title>Transferring Fairness using Multi-Task Learning with Limited Demographic Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="given">Alejandro</namePart>
<namePart type="family">Aguirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on NLP for Positive Impact</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daryna</namePart>
<namePart type="family">Dementieva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Ignat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgio</namePart>
<namePart type="family">Piatti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Training supervised machine learning systems with a fairness loss can improve prediction fairness across different demographic groups. However, doing so requires demographic annotations for training data, without which we cannot produce debiased classifiers for most tasks. Drawing inspiration from transfer learning methods, we investigate whether we can utilize demographic data from a related task to improve the fairness of a target task. We adapt a single-task fairness loss to a multi-task setting to exploit demographic labels from a related task in debiasing a target task, and demonstrate that demographic fairness objectives transfer fairness within a multi-task framework. Additionally, we show that this approach enables intersectional fairness by transferring between two datasets with different single-axis demographics. We explore different data domains to show how our loss can improve fairness domains and tasks.</abstract>
<identifier type="citekey">aguirre-dredze-2024-transferring</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4pi-1.3</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>32</start>
<end>49</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transferring Fairness using Multi-Task Learning with Limited Demographic Information
%A Aguirre, Carlos Alejandro
%A Dredze, Mark
%Y Dementieva, Daryna
%Y Ignat, Oana
%Y Jin, Zhijing
%Y Mihalcea, Rada
%Y Piatti, Giorgio
%Y Tetreault, Joel
%Y Wilson, Steven
%Y Zhao, Jieyu
%S Proceedings of the Third Workshop on NLP for Positive Impact
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F aguirre-dredze-2024-transferring
%X Training supervised machine learning systems with a fairness loss can improve prediction fairness across different demographic groups. However, doing so requires demographic annotations for training data, without which we cannot produce debiased classifiers for most tasks. Drawing inspiration from transfer learning methods, we investigate whether we can utilize demographic data from a related task to improve the fairness of a target task. We adapt a single-task fairness loss to a multi-task setting to exploit demographic labels from a related task in debiasing a target task, and demonstrate that demographic fairness objectives transfer fairness within a multi-task framework. Additionally, we show that this approach enables intersectional fairness by transferring between two datasets with different single-axis demographics. We explore different data domains to show how our loss can improve fairness domains and tasks.
%U https://aclanthology.org/2024.nlp4pi-1.3
%P 32-49
Markdown (Informal)
[Transferring Fairness using Multi-Task Learning with Limited Demographic Information](https://aclanthology.org/2024.nlp4pi-1.3) (Aguirre & Dredze, NLP4PI 2024)
ACL