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Abstract

Training supervised machine learning systems
with a fairness loss can improve prediction
fairness across different demographic groups.
However, doing so requires demographic an-
notations for training data, without which we
cannot produce debiased classifiers for most
tasks. Drawing inspiration from transfer learn-
ing methods, we investigate whether we can
utilize demographic data from a related task to
improve the fairness of a target task. We adapt a
single-task fairness loss to a multi-task setting
to exploit demographic labels from a related
task in debiasing a target task, and demonstrate
that demographic fairness objectives transfer
fairness within a multi-task framework. Addi-
tionally, we show that this approach enables
intersectional fairness by transferring between
two datasets with different single-axis demo-
graphics. We explore different data domains
to show how our loss can improve fairness do-
mains and tasks.

1 Introduction

Machine learning models can have disparate perfor-
mance on specific subpopulations even when they
have relatively high performance overall, which
can mask poor performance for smaller subpop-
ulations. To alleviate disparate performance and
biased model behavior, a variety of techniques can
make for fairer AI systems, such as additional train-
ing objectives to debias models (Elazar and Gold-
berg, 2018; Ravfogel et al., 2020; Zhang et al.,
2020; Han et al., 2021; Subramanian et al., 2021;
Ravfogel et al., 2022; Chowdhury et al., 2021).
These training objectives require example meta-
data, such as author demographics, to influence the
loss toward fairer model behavior. Unfortunately,
training set demographic metadata is often unavail-
able, thus creating a barrier to training fair systems.

Transfer learning is a general strategy for learn-
ing with limited or no training labels, where an-
notations from one task are used to train a model
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Figure 1: Our approach, MTL fair, a multitask method
to utilize an auxiliary task (B) to train a fair model for a
task (A) without demographic annotations.

in a related task. Multi-task learning (MTL) uti-
lizes transfer learning to jointly train a model over
several related tasks. We draw inspiration from
MTL methods and ask, can MTL transfer demo-
graphic fairness between related tasks? Suppose
we have target labels for two tasks A and B, but
demographic labels only for task A; can we transfer
fairness learned from task A to task B? We adapt
existing MTL and fairness loss methods to achieve
the goal of demographic fairness transfer. Figure 1
shows a representation of our method to achieve
model fairness given demographic annotations for
only one task.

The success of this approach can be adapted to
address a limitation in current demographic fair-
ness methods: intersectional fairness. Intersec-
tional fairness means that fairness conditions hold
across cross-products of orthogonal attributes and
not just within a single attribute. Crenshaw (1989)
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introduced the term intersectionality in the legal
field1 to describe how anti-discrimination laws
failed to protect Black women workers, as employ-
ers avoided charges of discrimination by hiring
enough Black men and White women to satisfy the
single-identity clauses. Similarly, early work in ma-
chine learning found biases in vision models at the
intersection of gender and skin color (Buolamwini
and Gebru, 2018), where facial recognition models
performed worse for Black women. Current meth-
ods cannot enforce intersectional fairness unless
we have annotations for both attributes on the same
instances. This high bar for training data further
exacerbates data scarcity since most datasets with
demographic attributes only consider single-axis at-
tributes (e.g. race or gender alone.) Therefore, we
use our MTL approach to produce an intersection-
ally fair model for two tasks (gender and race) from
a dataset from different single-axis demographic
annotations for each task (i.e. gender or race).

Finally, we explore how the relationship between
tasks enables fairness transfer by conducting exper-
iments with different tasks in two domains (clinical
and social media) and evaluate the fairness transfer
between tasks within and across domains.

We summarize our contributions as follows:

• We transfer fairness across tasks by adapting
single-task fairness losses to multi-task set-
tings.

• We enable intersectional fairness by leverag-
ing two tasks with single-axis demographic
attributes using a multi-task fairness loss.

• We explore the relationship between task sim-
ilarity and fairness generalization.

2 Related Work

Achieving fairness without demographics is a task
that has been studied by prior work, e.g. (Dai, 2021;
Chai and Wang, 2022; Shi et al., 2024). Prior meth-
ods that transfer fairness using MTL to leverage
external datasets to ensure fairness (Oneto et al.,
2020) rely on strong assumptions of distribution
shifts, limiting their impact with real-world ap-
plications or NLP tasks (Schrouff et al., 2022a).
Other work leverage domain-shift transfer meth-
ods (Chen et al., 2022a; Schrouff et al., 2022b;
Shi et al., 2024), adversarial learning (Lahoti et al.,
2020; Liang et al., 2023), sample re-weighting (Liu

1The idea can be found in prior sources (Truth, 1851), as
described in Costanza-Chock (2020).

et al., 2021; Chai et al., 2022), or frame the problem
under privacy concerns (Chen et al., 2022b).

Another solution to debias models is to use
proxy variables or inferred demographics in set-
tings where we lack demographic data. However,
these methods are dependent on the accuracy of the
demographic inference model (Aguirre et al., 2021;
Ozdayi et al., 2021; Bharti et al., 2023) or the avail-
ability of proxy variables, e.g. names (Romanov
et al., 2019).

MTL has become the standard training setting
for Large Language Models (LLM) (Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020).
Unfortunately, studies have found that fine-tuning
LLMs often results in unfair models, even when
starting from a debiased pre-trained encoder (Lan
and Huan, 2017; Zhang et al., 2020). Instead, they
conclude that fairness requires applying debiasing
methods in fine-tuning for the task of interest, re-
quiring demographic information for each task.

In our work we use a separation-based group-
wise definition of fairness, equalized odds (Hardt
et al., 2016), that was adapted to be differentiable
and applied to training procedures inspired by the
ϵ-Differential Fairness from Foulds et al. (2020).
However, many other group-wise definitions of fair-
ness may be adapted for other tasks, e.g. equalized
opportunity (Hardt et al., 2016), and our methods
can be easily used with any of these demographic
losses in the procedure.

3 Methods

We begin by describing the learning setting shown
in Figure 1. Let us assume we desire an unbiased
model for task A for which we have input text (X)
and associated labels (Y), but no demographic at-
tributes. Instead, we have demographic data for
task B, a task related to but distinct from A. Since
there exist similarities between tasks A and B, we
wish to utilize the demographic attributes (Z) avail-
able for task B to obtain a fair classifier for task A.
Specifically, by using multi-task training to jointly
train a model with both tasks A and B, with an
added fairness loss supported by task B alone, we
hope to produce a fair model for task A.

Employing a similar idea, we generalize our ap-
proach to intersectional fairness. We want to train
classifiers for both tasks A and B, which consist of
text data and target labels. We have demographic
attributes for both A and B, but they are different
attributes for each task, e.g. task A has gender
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attributes and task B has race attributes. Since
neither task has both attributes, we are unable to
utilize an intersectional fairness loss to the tasks
individually. Therefore, we propose a multi-task
objective to combine attributes from both tasks to
obtain intersectional fairness.

This section introduces our fairness definitions
and losses, provides formal definitions of our train-
ing objectives and describes our training procedure.

3.1 Fairness Loss and Definition

We select a fairness definition that supports in-
tersectionality and that is differentiable so that
it can be included in model training. We use ϵ-
Differential Equalized Odds (ϵ-DEO), a variant of
ϵ-DF (Foulds et al., 2020), that applies the equal-
ized odds objective, with the goal of equalizing
recall and specificity rates across demographic
groups (Barocas et al., 2019) and intersectional
subgroups, and that is learnable and differentiable.
We apply equalized odds on the ϵ-DF framework
and call it ϵ-Differential Equalized Odds (ϵ-DEO).
Formally, let s1, ..., sp be discrete-valued demo-
graphic attributes, and z = s1 × s2 × ...× sp the
intersectional groups. A model M(X) satisfies ϵ-
DEO with respect to z if for all x, ŷ ∈ Range(M)
and y ∈ Range(M),

e−ϵ ≤ Pr(M(x) = ŷ|ζi, y)
Pr(M(x) = ŷ|ζj , y)

≤ eϵ, (1)

for all (ζi, ζj) ∈ z × z where Pr(ζi) > 0,
Pr(ζj) > 0; smaller ϵ is better, with ϵ = 0 for
perfect fairness. Under ϵ-DEO, perfect fairness
results from a classifier with the same recall and
specificity rates across intersectional groups of de-
mographic attributes. Utilizing the equalized odds
objective is important–as opposed to others, e.g.
demographic parity–because it avoids limitations
that arise when the labels are correlated with de-
mographic variables, which is the case in many
real-world problems and the datasets used in our
experiments, e.g. the clinical datasets used in our
paper (Hardt et al., 2016). More information about
the fairness defintions is provided in Appendix A.

The standard approach to incorporating fairness
metrics into learning objectives uses an additive
term. For example, for a deep neural network clas-
sifier M(X) with parameters θ, we obtain the sin-
gle task equation in Table 1, where ϵ(X; θ) is the
ϵ-DEO measure for the classifier, ϵt is the desired
base fairness (in our experiments 0), and λ is a

hyper-parameter that trades between prediction loss
and fairness (Foulds et al., 2020). Since the fairness
term is differentiable, the model can be trained us-
ing stochastic gradient descent on the objective via
backpropagation and automatic differentiation. A
burn-in period and stochastic approximation-based
update are adopted following Foulds et al. (2020).
One optimization challenge that emerges from in-
corporating fairness is instability due to the rep-
resentativeness of the mini-batches: a diverse set
of examples is needed on which the fairness loss
can be meaningfully measured. Following prior
work (Foulds et al., 2020), we use a stochastic
approximation-based update for ϵ(X; θ) by esti-
mating mini-batch noisy expected counts per in-
tersecting demographic group with a hyperparam-
eter ρ, Ñt = (1 − ρ)Ñt−1 + ρNt, where Ñt is
the approximated count at time t and Nt is the
actual count. Thus ρ controls the smoothness of
the approximation of the demographic counts in
mini-batches.

3.2 MTL fairness
We train a model jointly on tasks A and B with
a fairness loss applied only to task B, as seen in
Figure 1 (MTL fair.) The MTL training will op-
timize the shared model parameters (the encoder)
to exploit task similarities and improve fairness in
task A based on the fairness constraints of task B.

Assume we have a target task A with training
instances of input features xa and task labels ya,
and an auxiliary task B, with training instances of
input features xb, task labels yb and demographic
attributes zb. Adding the fairness loss with respect
to task B in a multi-task objective of a DNN-based
classifier M(X) with shared parameters θs, task
A-specific parameters θa and task B-specific pa-
rameters θb, where θ = (θs ∪ θa ∪ θb) becomes
MTL equation in Table 1, where ϵ(B; [θs ∪ θb]) is
the ϵ-DEO measure for the classifier on task B. No-
tably, ϵ(B; [θs∪θb]) is applied to both task-specific
and shared parameters.

3.3 Intersectionality
We formalize the problem of intersectional fairness
across tasks using the ϵ-DEO loss across both tasks
using MTL training with two fairness losses, one
for each task.

Assume we have a target task A, with train-
ing instances of input features xa, task labels ya,
and demographic attributes wa, and an auxiliary
task B with training instances of input features
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Fairness loss Objective

single task minθ f(X; θ)
∆
= 1

N

∑N
i=1 L(xi; θ) + λ[max(0, ϵ(X; θ)− ϵt)]

MTL
minθ f(A;B; θ)

∆
= 1

|A||B|
∑|A|

i=1

∑|B|
j=1 L(xa,i; [θs ∪ θa])

+L(xb,i; [θs ∪ θb]) + λ[max(0, ϵ(B; [θs ∪ θb])− ϵt)]

MTL
intersectional

minθ f(A;B; θ)
∆
= 1

|A||B|
∑|A|

i=1

∑|B|
j=1 L(xa,i; [θs ∪ θa]) + λ[max(0, ϵ(A; [θs ∪ θa])− ϵt)]

+L(xb,i; [θs ∪ θb]) + λ[max(0, ϵ(B; [θs ∪ θb])− ϵt)]

Table 1: Objectives for adding fairness losses in single task, MTL and MTL intersectional cases.

Data
Task Demog. Demog.

classes attributes groups
Clinical notes

In-hosp. Mort. 2 gender 2
Phenotyping 28 gender 2

Online reviews
Sentiment 3 gender + age 4
Topic 8 gender + age 4

Twitter
Sentiment 2 race 2
HateXplain 2 race 5

Table 2: Datasets used in our experiments.

xb, task labels yb and demographic attributes wb.
We seek an intersectionally fair classifier on both
tasks with respect to z = wa × wb. Adding the
fairness loss in a multi-task objective of a DNN-
based classifier M(X) with shared parameters θs,
task A-specific parameters θa and task B-specific
parameters θb, where θ = (θs∪ θa∪ θb) MTL inter-
sectional equation in Table 1, where ϵ(A; [θs ∪ θa])
and ϵ(B; [θs ∪ θb]) are the ϵ-DEO measure for the
classifier on task A and B respectively. Notably,
both losses update the shared parameters θs.

4 Data

While our method can transfer demographic fair-
ness from one task to another when only one has
demographic information, we need a dataset with
multiple demographic attributes and attributes for
each task to test intersectional fairness. We select
datasets in varied domains: clinical text records,
online reviews, and social media (Table 2.) Ap-
pendix C gives a detailed description of datasets
with in-depth dataset statistics in Table 7.

4.1 Clinical Records

We use the Multiparameter Intelligence Monitor-
ing in Intensive Care (MIMIC-III) dataset (Johnson
et al., 2016b,a; Goldberger et al., 2000), a collec-

tion of anonymized English medical records that
include clinical notes drawn from a critical care
unit at Beth Israel Deaconess Medical Center be-
tween 2001 and 2012. We select two tasks from
those defined by Zhang et al. (2020):

In-hospital Mortality. The task is to predict
whether a patient will die in the hospital based on
the textual content of all the clinical notes created
within the first 48 hours of the hospital stay.

Phenotyping.2 The task of assigning medical
conditions based on the evidence in the clinical
record. In our task, we will assign up to 25 acute
or chronic conditions from the HCUP CCS code
groups (Harutyunyan et al., 2019), labeled with
ICD-9 codes, and three extra summary-labels: any,
chronic, or acute condition. Therefore, the task is
modeled as a set of 28 binary classification tasks,
and evaluated as a multi-label problem. We use
the same pre-processing pipeline and train-dev-test
splits as Zhang et al. (2020).3

4.2 Online Reviews
We use the Trustpilot data of Hovy (2015): En-
glish language reviews of products, stores, and
services from an open review platform with a
5-point rating. For our experiments, we utilize
the sentiment (100k reviews) and topic (24k re-
views) tasks which share demographics for age –
under 35 (U35) and over 45 (O45) years old – and
gender – men and women.

Reviews sentiment. Labels assigned based on
the stars of the reviews and selected reviews that
have both age and gender labels available.

Reviews topic. Labels assigned based on the
general topic of the review, e.g. fashion, fitness,
etc. using the Trustpilot taxonomy for seller com-
panies and selected from the top 5 most popular

2In a medical record, a phenotype is a clinical condition or
characteristic.

3https://github.com/MLforHealth/HurtfulWords
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topics: Fitness & Nutrition (Fitness), Fashion Ac-
cessories (Fashion), Gaming (Gaming), Cell phone
accessories (Cell Phone) and Hotels (Hotels)), fol-
lowing Hovy (2015). We perform the same de-
mographic selection criteria as the sentiment task.
We obtain randomly stratified train-dev-test (60-20-
20%) splits ensuring equal representations for both
gender and age groups.

4.3 Social Media

Twitter sentiment. We use the Twitter sentiment
classification task introduced by Elazar and Gold-
berg (2018). Labels were assigned based on com-
mon emojis and demographic variables are based
on the dialectal corpus from Blodgett et al. (2016),
where race was assigned based on geolocation
and words used in the tweet, obtaining a binary
AAE (African-American English) and SAE (Stan-
dard American English) which we use as prox-
ies for non-Hispanic African-Americans and non-
Hispanic Caucasians.

HateXplain. A hate speech classification dataset
of Twitter and Gab posts (Mathew et al., 2021). We
use the binary version of the task which classifies
for toxicity of posts. We select the posts for which
there is a majority agreement of annotators for race
target groups, and for which we have representation
across train-dev-test splits.

For each dataset, we follow the splits provided
by Elazar and Goldberg (2018) and Mathew et al.
(2021), respectively.

5 Experiments

This section describes baselines and model training.
Table 8 in Appendix D shows all combinations of
models, training datasets, and fairness attributes.

5.1 Models

We implement our fairness objectives in an MTL
setting based on a shared language encoder
and task-specific classification heads. We use
BERT-style encoders (Devlin et al., 2019) with a
domain-specific vocabulary: SciBERT for clinical
tasks, pretrained on scientific text (Beltagy et al.,
2019), following prior work (Zhang et al., 2020;
Amir et al., 2021),4 RoBERTa for the online re-
views tasks (Liu et al., 2019) initialized with the
roberta-base checkpoint,5 and BERTweet for the

4https://huggingface.co/allenai/scibert_
scivocab_uncased

5https://huggingface.co/roberta-base

social media tasks (Nguyen et al., 2020), initialized
with the vinai/bertweet-base checkpoint.6 We
add a separate linear classification head for each
task, with a Softmax output function to allow for
multi-class classification or a Sigmoid output func-
tion for binary and multi-label classification. The
document representation for the classification head
is a mean-pooled aggregation across all subword
representations of the document taken at the top
layer of the network. The training objective is an
additive combination of the loss for each of the
individual tasks. Models were trained on Nvidia
A100 GPUs, using jiant (Phang et al., 2020), a
multi-task wrapper library.

Fairness methods require a careful tradeoff be-
tween the task loss and fairness loss (Islam et al.,
2021). To obtain the best performing model, we use
a grid search for each task, with a learning rate=
[1e−4, 1e−5, 1e−6] with Adam optimizer (Kingma
and Ba, 2014), and batch size= [16, 32, 48]. We
select the best performing model on development
data and report test data results.

5.2 Baselines

We establish baselines against which to compare
our MTL fairness transfer method.

STL-base. We train a single-task model for each
task, i.e. a fine-tuned encoder and classification
layer. These models do not include a fairness loss
since they represent the classifiers obtained when
no demographic attributes are available. We named
these models single task learning base (STL-base),
and they serve as an upper bound in task perfor-
mance when fairness is not a goal.

STL-fair. Finetuning models without fairness
losses can result in unfair classifiers (Lan and Huan,
2017; Zhang et al., 2020), which is known as
no fairness through unawareness (Barocas et al.,
2019). To determine how well we could do in
the theoretical with full demographic information,
we train single-task models with both a task loss
and fairness loss §5.2. For the models trained on
the clinical dataset and Twitter datasets, we add
a single-attribute fairness loss, with gender and
race groups respectively. For the models trained on
the online reviews datasets (sentiment and topic),
we add an intersectional fairness loss, with age
and gender attributes. This allows us to test both
single-attribute and intersectional fairness. We
call these single task models with fairness ob-

6https://huggingface.co/vinai/bertweet-base
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jectives STL-fair. We performed a grid search
on each task, with the same search spaces as be-
fore, in addition to the fair-related hyperparame-
ters λ = [.01, .05, .1], ρ = [.01, .1, .9], and burn-
in= [.5, 1] epochs, defined in §3.1.

MTL-base. We next evaluate models trained in
a multi-task setting. While MTL can lead to better
performance, it often leads to worse results com-
pared to single-task baselines due to task conflict
and other optimization challenges (Weller et al.,
2022; Gottumukkala et al., 2020). A dynamic
scheduler, which changes the rate that a task is
seen based on the current relative performance, has
been shown to improve performance in traditional
MTL setups (Gottumukkala et al., 2020). There-
fore, we first train MTL models with a dynamic
scheduler on mutually related task pairs to avoid
a domain mismatch: In-hospital Mortality &Phe-
notyping (clinical setting), reviews sentiment & re-
views topic (online reviews domain), and Twitter
sentiment & HateXplain (social media setting). We
name these models multi-task baselines MTL-base.

BLIND. We also compare our work with other
bias removal methods that do not require demo-
graphic attributes. Orgad and Belinkov (2023) pro-
pose that often classifiers make predictable mis-
takes when implicit demographic features are used
as shorcut features, a bias also known as simplicity
bias (Bell and Sagun, 2023). BLIND trains a suc-
cess classifier that takes the encoder features and
predicts the success of the model on the task. A cor-
rect prediction by the success classifier means the
model used a shallow, or simple, decision and the
sample is down-weighted. We use their algorithm
implementation7 and perform a hyperparameter
search, γ = [1, 2, 4, 8, 16], temp= [1, 2, 4, 8, 16],
as suggested by authors (Orgad and Belinkov,
2023). BLIND does not support multi-label tasks
so we do not report results for the clinical tasks.

5.3 Our Methods

We propose variations on multi-task learning with
a fairness loss in support of our proposed setup.

MTL-fair. We evaluate the fairness loss applied
to one of the two tasks for each in-domain task
pair: clinical, online reviews, and social media
domains. We call these models with an MTL ob-
jective and a fairness loss MTL-fair. To report a
fair comparison, each of the MTL-fair models is
compared with the task for which no fairness loss

7code: https://github.com/technion-cs-nlp/BLIND

was added, e.g. for the In-hospital Mortality task,
we compare the STL-base and STL-fair trained
on In-hospital Mortality data only, the MTL-base
trained on In-hospital Mortality and Phenotyping
(without fairness loss), and the MTL-fair trained
on In-hospital Mortality and Phenotyping, with a
fairness loss applied to the Phenotyping task only.
We performed a grid search with the same base
search space as in §5.2

MTL-inter. To train intersectionally fair models
on two tasks for which we have only a single axis of
demographic attributes, we use an MTL objective
with two different single-axis fairness losses. We
focus on the online reviews datasets, for which we
have sufficient demographic data to support this
experiment.8 We call these models that use MTL
with intersectionally fair losses MTL-inter.

5.4 Evaluation

We utilize established evaluation metrics for all
datasets. The clinical datasets are evaluated at the
patient level. We use the aggregation function from
Zhang et al. (2020) since clinical notes are too
long to fit in the context window of models; see
§C for more details. We report macro-averaged F1
scores for task performance and ϵ-DEO for fairness.
The best model criteria for STL-base, MTL-base
and BLIND models is their F1 validation score. We
choose STL-fair, MTL-fair & MTL-inter mod-
els with the lowest ϵ-DEO and at least 95% perfor-
mance of the STL-base models on validation.

So far, it has been assumed that there is an extra
dataset that has access to demographic attributes
within the same domain. However, due to the
scarcity of NLP datasets with access to demograph-
ics, it may not be possible to find an eligible dataset
within the same domain. To evaluate the robustness
of our method, we test the impact of domain mis-
match and task similarity on the MTL models with
fairness loss. We focus on the Twitter sentiment
task, as it allows us to pair it with a task within the
same domain (HateXplain), a similar task but in
a different domain (reviews sentiment) and other
tasks with varied domains and task similarities.

6 Results & Analysis

Table 3 reports performance and fairness scores for
within-domain MTL-fair experiments. Our base-
lines perform comparably with prior work (Zhang

8MIMIC has demographic data but is highly skewed, result-
ing in intersection groups with only a handful of individuals.
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Clinical

In-hosp Mort. Phenotyping

F1 (%) ↑ ϵ-DEO ↓ F1 (%) ↑ ϵ-DEO ↓
STL-base 62.1 0.25 53.6 0.28
STL-fair 65.1 0.22 52.9 0.26
MTL-base 65.6 0.17 53.3 0.27

MTL-fair 64.0 0.19 53.0 0.21

Twitter

HateXplain Sentiment

F1 (%) ↑ ϵ-DEO ↓ F1 (%) ↑ ϵ-DEO ↓
BLIND 70.4 1.15 77.6 0.30

STL-base 71.3 1.58 76.4 0.33
STL-fair 71.5 1.63 76.5 0.28
MTL-base 69.9 1.45 76.2 0.37

MTL-fair 70.4 0.80 75.5 0.28

Table 3: Scores of the MTL fairness loss (MTL-fair)
within-domain experiments. Best per task is bold.

et al., 2020; Hovy, 2015; Mathew et al., 2021;
Elazar and Goldberg, 2018) so we can evaluate
the use of multi-task learning methods to debias al-
gorithms with high-performing models. In contrast
to the common perception that we must trade off
fairness and performance, we observe that the per-
formance of STL-fair models is equal to or better
in 3/4 tasks compared to the STL-base model base-
lines and produces fairer models based on ϵ-DEO.
This confirms recent work suggesting that an exten-
sive grid search of hyperparameters avoids the fair-
ness vs. performance trade-off (Islam et al., 2021).

Multi-task fairness generalizes to tasks with-
out demographics. We expected the STL-fair
models to be an upper bound for fairness, and
STL-base an upper bound for performance
compared to the MTL-fair models. However, for
3/4 tasks, the MTL-fair models are fairer than
the STL-fair counterparts! In these cases, the
performance of the MTL-fair models is slightly
worse than STL-fair models but still comparable
to STL-base, obtaining models that are fairer while
maintaining model performance. This suggests that
just as multi-task learning finds representations that
are useful for training multiple tasks, multi-task
fairness learning corrects model representations
to be fairer for both tasks – sometimes finding a
fairness minimum that is fairer than it would with
access to target task demographic attributes. This
technique may be yielding more generalizable
and fair representations. Comparing to BLIND,
we observe that BLIND yields fairer models than

STL-base but less fair than STL-fair and our
method MTL-fair. This suggests that when we
have no demographic attributes, BLIND is better
than not attempting fairness, but effectively using
demographics, whether internally or in another
task, increases the fairness of the models. In all
settings, the multi-task fairness loss produced
a model that is fairer than the single-task base-
line without demographic attributes and with
comparable performance.

Multi-task enables intersectional fairness. Ta-
ble 4 shows the results for the intersectional fair-
ness experiments. The best MTL-inter model per-
forms comparably to the STL-base and is fairer
compared to the STL-fair models in both tasks.
We obtain an intersectionally fairer model com-
pared to the baselines when only one demographic
attribute is available per task. This suggests that
the single-attribute fairness losses combine to ob-
tain model representations that are beneficial to the
fairness of both protected attributes and their inter-
sectional groups. Compared to prior work, we see
fairness benefits when utilizing single-axis demo-
graphics, perhaps due to greater loss stability and
the ability of MTL setups to integrate all the losses.

Multi-task fairness generalizes across do-
mains and tasks. So far we have assumed ac-
cess to a task with demographic attributes available
within the same domain, exploiting text similarities
between the tasks to generalize the fairness across
tasks. However, given the scarcity of datasets with
demographic attributes, we may wonder whether
domain similarity is necessary to transfer fairness.
In Table 5 we show the results of the single-task
Twitter sentiment models as well as applying the
MTL fair loss across different datasets. We ob-
serve that adding a fairness loss to the MTL set-
tings helps in fairness with tasks across domains
and task similarities, except for the clinical Pheno-
typing task. This may be because the performance
of the Phenotyping task in the MTL system was
poor (possibly because of task incompatibility) and
the fairness loss might not have actually provided
any meaningful change to the model. Regardless,
on tasks where we obtain competitive performance
for both tasks, the fairness loss was able to general-
ize fairness, obtaining models that are fairer than
the single-task baselines and sometimes fairer than
applying a fairness loss to the target task, showing
evidence that our method is robust across domains,
demographic attributes, and task similarities.
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Reviews sentiment Reviews topic

F1 (%) per sub-group ↑ F1 (%) per sub-group ↑
F1 (%) ↑ ϵ-DEO ↓ F-U35 F-O45 M-U35 M-O45 F1 (%) ↑ ϵ-DEO ↓ F-U35 F-O45 M-U35 M-O45

BLIND 84.3 1.16 82.7 85.7 84.4 83.8 92.0 1.05 91.7 86.7 89.7 89.9
STL-base 84.5 0.95 87.1 83.9 83.1 84.6 91.9 1.42 90.0 85.7 90.3 88.5
STL-fair 85.6 0.77 86.4 84.8 84.6 86.3 92.1 1.04 90.9 88.7 90.2 88.1
MTL-base 84.4 0.89 86.1 84.6 82.9 84.7 91.6 1.52 91.4 85.9 89.4 89.5
MTL-fair 83.6 0.65 85.5 82.7 82.8 83.7 91.2 0.86 90.9 88.3 88.1 89.1

MTL-inter 84.1 0.58 86.0 83.7 82.4 84.7 91.6 0.82 90.6 86.6 89.4 88.9

Table 4: Scores of the intersectional experiments on the reviews datasets (MTL-inter). Best per task is bold.

Method F1 (%) ↑ ϵ-DEO ↓
BLIND 77.6 0.30

STL-base 76.4 0.33
STL-fair 76.5 0.28

MTL-fair: HateXplain 75.5 0.28
review sentiment 76.3 0.23
review topic 75.7 0.23
In-Hosp Mort. 75.8 0.25
Phenotyping 75.2 0.32

Table 5: Scores of MTL-fair for the Twitter sentiment
task paired with different domain and task annotations:
same domain, same task, and neither. Bold is best.

Why does the multi-task fairness loss work?
The results in this section suggest that the multi-
task fairness loss produces more generalizable and
fairer representations. We hypothesize that the com-
bination of (A) the regularizing effect of the fair-
ness loss, as suggested by prior work (Islam et al.,
2021), (B) shared parameters across tasks and (C)
the simultaneous learning of both tasks allows for
positive fairness transfer. First, we note that multi-
task learning alone (B & C, MTL-base) or a fair-
ness loss (A, STL-fair) may suffer in performance
or fairness (or sometimes both) compared to our
method. Further, one could have shared parameters,
B, but not train simultaneously by finetuning on
individual tasks consecutively rather than simulta-
neously, a multi-task method also known as STILT
(Weller et al., 2022; Phang et al., 2018). In Ap-
pendix B we show that when the fairness loss is ap-
plied consecutively, rather than simultaneously, the
fairness transfer effect is no longer observed. Thus,
the MTL objective plus the shared parameters are
instrumental in enabling the positive transfer of the
fairness loss from one task to another.

7 Conclusion

We explored whether MTL methods for NLP tasks
can transfer demographic fairness from one task
to another. To achieve this, we adapted single-
task fairness losses to multi-task settings to transfer
fairness across tasks. We tested our method in mul-
tiple NLP datasets in different domains: clinical
notes (Johnson et al., 2016b,a; Goldberger et al.,
2000), online reviews (Hovy, 2015) and social me-
dia (Mathew et al., 2021; Elazar and Goldberg,
2018). We found that while MTL alone and other
consecutive variations of MTL (e.g. STILTS) do
not help in fairness and may hurt performance,
MTL methods with our fairness loss are able to
debias models using the demographic attributes
from a secondary task, opening up the possibil-
ity for producing fair models for a wide range of
tasks that lack demographic data. This finding also
informs future work on MTL, suggesting adding
regularizers, e.g. fairness losses, can help in perfor-
mance deficits found in prior work (Weller et al.,
2022; Gottumukkala et al., 2020).

Additionally, we showed that MTL methods can
debias models for intersectional fairness by lever-
aging two tasks, each with different demographic
attributes, to learn a model that achieves intersec-
tional fairness on both tasks. This finding opens
up the integration of intersectional fairness losses
to new applications and settings that were previ-
ously restricted by limited access to demographic
attributes. Finally, we test the ability of the MTL
fairness loss to generalize fairness across domains
and tasks, we find that the transfer of fairness is
not dependent on domain or task similarity, but
rather related to the performance of the secondary
task. Our methods increase the range of tasks that
fairness methods can be applied to in the machine
learning and NLP community, by allowing the use
of external tasks that have demographic attributes
to obtain fairer models.
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8 Limitations

Our results suggest that our MTL methods are able
to utilize external demographic attributes to achieve
better fairness for our target task. However, the
selection criteria for the best-performing models
require access to demographic attributes for the
test set to assess the fairness of the models. A so-
lution to this would be to select the models that
are the best performing for our target task with the
lowest fairness score for the task that we do have
demographic data available. This selection crite-
ria, however, does not guarantee the most optimal
model, especially if the demographic attribute dis-
tributions or the task domains are different. Our
recommendation is to validate the fairness of the
models with access to demographic attributes when
possible.

9 Ethics Statement

We address intersectionality as intersectional group
fairness in the methods and analysis when possible
given the data availability, as they enable a practical
approach for inquiry of these models. We acknowl-
edge that there are real interlocking systems of
power that contribute to causing these disparities
in society, and that our dataset capture these. For
example, we evaluate models on the clinical do-
main using the MIMIC-III dataset: the healthcare
system has been historically biased against peo-
ple in groups in many protected attribute axis e.g.
socio-economic status, race/ethnicity, gender, and
age. The goal of our approach is to address these
biases in machine learning models so they are less
likely to exacerbate the real-life biases as they are
integrated in society.
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A Fairness Definition

ϵ-Differential Fairness is a demographic-parity
based metric, which requires that the demographic
attributes are independent of the classifier output
(Barocas et al., 2019; Foulds et al., 2020). Formally,
we assume a finite dataset of size N , with each sam-
ple consisting of three attributes: features x (in our
datasets these are text sequences), task labels y, and
demographic attributes z. Let s1, ..., sp be discrete-
valued demographic attributes, z = s1×s2×...×sp.
A model M(X) satisfies ϵ-DF with respect to z if
for all x, and ŷ ∈ Range(M),

e−ϵ ≤ Pr(M(x) = ŷ|ζi)
Pr(M(x) = ŷ|ζj)

≤ eϵ,

for all (ζi, ζj) ∈ z × z where Pr(ζi) > 0,
Pr(ζj) > 0. Smaller ϵ is better with ϵ = 0 meaning
perfect fairness (Foulds et al., 2020). Perfect fair-
ness under this definition means that the rates of
predicted labels are the same across demographic
groups, achieving independence between demo-
graphic attributes and predictions.

In short, ϵ-Differential Fairness is an
independence-based metric that measures
the biggest difference in prediction rates between
intersections of demographic attributes. However,
independence based fairness definitions, like
demographic parity and ϵ-DF, have limitations in
settings where the prevalence of the target labels is
somehow related to the demographic attributes, e.g.
breast cancer is much more common in women
than men. In these settings, independence based
definitions would require model predictions to be
independent of the demographic attributes, which
would encourage lower performance on the desired
task, e.g. either an increase in the prediction
of breast cancer for men and/or a decrease in
breast cancer for women which are both not ideal.
For these reasons, we favor a separation based
metric, like equalized odds, that avoids limitations
associated with dependence of model predictions
on demographics by requiring independence
conditioned on the target variable (Hardt et al.,
2016), i.e. that both recall and specificity rates are
equal across demographic groups.

We apply equalized odds on the ϵ-DF framework
to obtain a metric that is also differentiable, and
call it ϵ-Differential Equalized Odds (ϵ-DEO). For-
mally, let s1, ..., sp be discrete-valued demographic
attributes, and z = s1 × s2 × ...× sp the intersec-
tional groups. A model M(X) satisfies ϵ-DEO

with respect to z if for all x, ŷ ∈ Range(M) and
y ∈ Range(M),

e−ϵ ≤ Pr(M(x) = ŷ|ζi, y)
Pr(M(x) = ŷ|ζj , y)

≤ eϵ, (2)

for all (ζi, ζj) ∈ z × z where Pr(ζi) > 0,
Pr(ζj) > 0; smaller ϵ is better, with ϵ = 0 for per-
fect fairness. Perfect fairness results from a classi-
fier with the same recall and specificity rates across
intersectional groups of demographic attributes.

In our work we use a separation-based group-
wise definition of fairness, equalized odds (Hardt
et al., 2016), that was adapted to be differentiable
and applied to training procedures inspired by the
ϵ-Differential Fairness from Foulds et al. (2020).
However, many other group-wise definitions of
fairness may be adapted for other tasks, e.g. equal-
ized opportunity (Hardt et al., 2016), which en-
sures equal true positive rates (recall) across de-
mographic subgroups. There is also adversarial
fairness loss, where an adversary is added in the
training procedure to predict the demographic at-
tributes from the output of the task classifier. This
loss also achieves independence of predictions and
demographic attributes, similar to demographic par-
ity, and has found success in similar setups from
prior work (Islam et al., 2021; Zhang et al., 2020).
Our methods can be easily used with any of these
demographic losses in the procedure.

B STILT and frozen experiments

In this section we test the hypothesis of whether it
is important to have shared parameters and simulta-
neous learning when implementing the multi-task
fairness loss.

MTL. We label MTL the models that were trained
simultaneously, as described in §3.2.

STILT. We label STILT the models that were
trained consecutively. First, the model is finetuned
only for task B with the fairness loss, the task with
demographic attributes as seen in Figure 1. This
step results in a model similar to STL-fair for task
B. Second, the model is further finetuned for task A
(as seen in Figure 1), with a different classification
layer and without a fairness loss. Both steps to-
gether result in a model that has been trained with
the same data and the same number of parame-
ters as MTL-fair, however the tasks are not trained
simultaneously.

Frozen. In order to test the importance of pa-
rameter sharing, we train a variance of the model
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F1 (%) ↑ ϵ-DEO ↓
STL-base 71.3 1.58
BLIND 70.4 1.15
STL-fair 71.5 1.63

-frozen 61.8 0.69
STILT-fair 70.4 1.42

-frozen 63.4 0.60

MTL-fair 70.4 0.80

Table 6: Scores for the STILT and frozen version of
the model on HateXplain dataset.

where the shared parameters, BERT-based encoder,
are frozen during training. In this way, the num-
ber of shared parameters, θs in Table 1, is empty.
First, we train a single-task model with a fairness
loss where the encoder is frozen, we label this
STL-fair-frozen. We also train a STILT model,
where we first finetune for the task that has de-
mographic attributes (Task B) with a fairness loss
end-to-end, and then we finetune for the task with-
out demographic attributes without a fairness loss
and with the encoder frozen. The idea is that the
fairness loss will influence the encoder towards a
fairer minima that then the classification loss for
the second task will be able to exploit.

Table 6 shows the results for STILT-fair,
and the frozen versions STL-fair-frozen and
STILT-fair-frozen. First we see that the frozen
versions of the models drastically underperform
compared to the end-to-end models (∆F1 ≈ 10.)
while also being more fair. This is a clear exam-
ple of the accuracy-fairness trade-off, which is ex-
pected given the drastically smaller amount of pa-
rameters available for training for these frozen mod-
els. It is clear that these models are fairer because
they perform equally worse for all demographic
groups.

When comparing the STILT-fair to our method
MTL-fair, we see that while the performance of
the models is very similar (both scoring 70.4 F1),
the fairness is drastically better in the simultaneous
training (MTL-fair ϵ-DEO=.80) vs. consecutively
(STILT-fair ϵ-DEO=1.42). This suggests that the
MTL objective, which allows for both tasks to in-
fluence the learning, is instrumental for the fairness
loss on task B to transfer to task A.

train val test

In-Hosp Mort. 13191 2701 2445

Men 55.4 54.8 55.2
Women 44.6 45.2 44.8

Positive 13.1 13.8 11.5

Phenotyping 13839 2850 2519

Men 57.2 55.8 56.4
Women 42.8 44.2 43.6

Upper Resp. 2.6 2.5 2.6
Lower Resp. 3.5 4.0 3.7
Shock 3.8 3.6 4.2
Any Acute 70.8 69.9 70.6
Any Chronic 77.1 78.5 76.8
Any Disease 89.6 90.6 90.1

reviews sentiment 58259 19420 19420

Men Under 35 23.2 23.2 23.2
Men Over 45 34.7 34.7 34.7
Women Under 35 14.8 14.8 14.7
Women Over 45 27.3 27.3 27.3

positive 84.5 84.5 84.5
neutral 3.5 3.5 3.5
negative 12.0 12.0 12.0

reviews topic 14744 4915 4915

Men Under 35 54.0 54.0 54.0
Men Over 45 14.2 14.2 14.3
Women Under 35 21.1 21.1 21.1
Women Over 45 10.7 10.7 10.6

Fitness 39.6 39.5 39.6
Fashion 16.6 16.6 16.7
Gaming 16.0 16.0 16.0
Cell Phone 14.4 14.4 14.4
Hotels 13.4 13.4 13.4

HateXplain 5376 661 681

African 54.5 54.0 55.1
Arab 18.8 18.8 17.8
Asian 6.2 6.2 6.5
Hispanic 5.4 5.1 5.1
Caucasian 15.1 15.9 15.6

Toxic 81.3 81.2 79.7

twitter sentiment 156000 4000 8000

African American 50.0 50.0 50.0
Caucasian 50.0 50.0 50.0

Happy 50.0 50.0 50.0
Sad 50.0 50.0 50.0

Table 7: Total (first line) and percentage of documents
in the splits all the datasets, separated by demographics
and then task labels.
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C Data Details

In this section, we report dataset statistics, in-
cluding the number of posts per label and demo-
graphic. We select datasets in varied domains: clin-
ical text records, online reviews, and social media,
with both single and intersectional demographic
attributes, gender, race and gender+age subgroups,
and in a variety of classification paradigms: mul-
ticlass, binary and multilabel. Table 7 shows the
total and percentage for all datasets.

C.1 Clinical Records

It is crucial to implement behavioral fairness mea-
sures to secure fair behavior in the critical context
of AI applications for medical records. We use
the Multiparameter Intelligence Monitoring in In-
tensive Care (MIMIC-III) dataset (Johnson et al.,
2016b,a; Goldberger et al., 2000), a collection of
anonymized English medical records that include
clinical notes drawn from a critical care unit from
the Beth Israel Deaconess Medical Center between
2001 and 2012. We select two tasks from those de-
fined by Zhang et al. (2020): in-hospital mortality
and phenotyping. We use the same pre-processing
pipeline as Zhang et al. (2020)9 and only use gender
demographics since the other attributes are highly
imbalanced, resulting in very small subgroups, as
noted by prior work (Amir et al., 2021). These
tasks should be evaluated at the patient level (Zhang
et al., 2020), however, because the clinical notes
are too long to fit in the input size of the encoder,
we created subsequences using sliding windows.
The model predicts a label for each subsequence
and at evaluation time we aggregate these predic-
tions to obtain a single prediction for each patient.
We use an aggregation function from prior work
(Zhang et al., 2020):

Pr(y = 1|Ŷ ) =
max(Ŷ ) +mean(Ŷ )n/c

1 + n/c
,

where Ŷ are the predictions for all the subse-
quences from a patient, n is the number of sub-
sequences and c is a scaling factor (c = 2 (Zhang
et al., 2020).)

In-hospital Mortality. The task of in-hospital
mortality is to predict whether a patient will die in
the hospital based on the textual content of all the
clinical notes created within the first 48 hours of
the hospital stay. To avoid low information notes,

9https://github.com/MLforHealth/HurtfulWords

we limit the notes to “nurse", “nursing/other" and
“physician" types. We concatenate all notes avail-
able within the specified time period and tokenize
the concatenated notes and split them into sliding
subsequences of 512 subwords, to fit within the
BERT context window (Devlin et al., 2019). We
limit the number of subsequences per patient by
selecting the last 30 subsequences of the concate-
nated notes, following Zhang et al. (2020).

Phenotyping. In a medical record, a phenotype
is a clinical condition or characteristic. Phenotyp-
ing is the task of assigning these conditions based
on the evidence in the medical record. In our task,
we will assign up to 25 acute or chronic conditions
from the HCUP CCS code groups (Harutyunyan
et al., 2019), labeled with ICD-9 codes. In addition
to those conditions, three summary labels are also
added for patients that have any chronic or acute
condition. Therefore, the task is modeled as a set
of 28 binary classification tasks, and evaluated as
a multi-label problem. For this task we select the
first note written by a “nurse", “nursing/other" or
“physician" within the first 48 hours of the stay, as
proposed by Zhang et al. (2020).

For each dataset, we use the train-dev-test splits
provided by Zhang et al. (2020). Table 7 shows the
final breakdown of the number of subsequences in
the datasets.

C.2 Online Reviews

Developing automated NLP methods for online
product reviews can help companies understand
customer feedback, improve the user experience,
and enable market analysis. There are a variety
of tasks defined for online reviews, such as sen-
timent analysis, determining the helpfulness of a
review, and the topic of the review. Furthermore,
reviews are authored by a diverse population and
we seek models that perform fairly across this user
population.

We use data from Trustpilot, an open review
platform that allows users to review a range of
products, stores, and services (Hovy, 2015). Each
instance is an English language review selected
from the Trustpilot website that consists of a text
review and a 5-point star rating, along with item
information, such as the seller. The original dataset
defined three tasks: sentiment (based on the rat-
ing of the review), topic (the subject of the re-
view), and attributes (demographic attributes of
the review author). For our experiments, we utilize
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the sentiment (100k reviews) and topic (24k re-
views) tasks which share demographics for age –
under 35 (U35) and over 45 (O45) years old – and
gender – men and women.

Reviews sentiment. This is a multiclass task
where the labels were assigned based on the stars
of the reviews: 1-star reviews were labeled as “neg-
ative”, 3-star labeled as “neutral” and 5-star labeled
as “positive”. We selected reviews that have both
age and gender labels available with age ranges
between 16-35 and 45-70 years old, and discarded
reviews with 2 and 4 stars.

Reviews topic. This is a multiclass task where
labels are assigned based on the general topic of the
review, e.g. fashion, fitness, etc. These concepts
were assigned to each review using the Trustpilot
taxonomy for seller companies, which summarizes
the services and products offered by each com-
pany in the corpus with high-level concepts. We
selected the top 5 most popular topics: Fitness &
Nutrition (Fitness), Fashion Accessories (Fashion),
Gaming (Gaming), Cell phone accessories (Cell
Phone) and Hotels (Hotels)). We perform the same
demographic selection criteria as the sentiment
task, resulting in a multiclass task with 5 labels.

For each dataset, we obtain randomly stratified
train-dev-test (60-20-20%) splits ensuring equal
representations for both gender and age groups.
For each review, we follow prior work (Hung et al.,
2023) and set the maximum sequence length to 512
subword tokens, the max input size of BERT-style
models (Devlin et al., 2019). Table 7 shows the
final breakdown of the number of reviews in the
datasets.

C.3 Social Media

Social media platforms host a diverse population,
with studies demonstrating NLP system bias on
related tasks (Aguirre et al., 2021).

Twitter sentiment. This is a binary sentiment
classification task using Twitter data. Sentiment
labels were assigned based on common emojis,
following the preprocessing procedure of Elazar
and Goldberg (2018). The demographic variables
are based on the dialectal corpus from Blodgett
et al. (2016), where race was assigned based on
geolocation and words used in the tweet, obtain-
ing a binary AAE (African-American English) and
SAE (Standard American English) which we use as
proxies for non-Hispanic African-Americans and
non-Hispanic Caucasians.

HateXplain. This hate speech classifica-
tion dataset combines Twitter and Gab messages
(Mathew et al., 2021). We use the binary version
of the task which identifies toxicity of posts. We
select the posts for which there is a majority agree-
ment of annotators for race target groups, and for
which we have representation across train-dev-test
splits.

For each dataset, we follow the splits provided
by Elazar and Goldberg (2018) and Mathew et al.
(2021) respectively. Table 7 shows the number
of posts for the HateXplain and Twitter sentiment
datasets respectively.

D Experiment Table

For each dataset, the model setup and their respec-
tive training data, fairness loss attribute and which
task the fairness loss was applied to. MTL-fair
are the models with the fairness loss from §3.2,
and MTL-inter is the model with the intersectional
fairness loss discussed in §3.3. * The MTL-inter
model uses two separate single-attribute fairness
losses for each task.

E Results without access to val set
demographic attributes

The selection criteria for the best-performing mod-
els requires access to demographic attributes for
the test set of the target task to assess the fairness
of the models. In the absence of this, Table 9
shows the results for the model setting where we
select models with the target task performance of
at least 95% of STL-base and with the lowest fair-
ness score of the auxiliary task. These models
are labeled as MTL-fair no demo. For all of the
datasets, MTL-fair no demo are less fair than if
we could select models based on the fairness of
the target task, MTL-fair. In some cases, we ob-
tain models that are less fair than our single-task
baselines (STL-base, 2/4) and multi-task baselines
(MTL-base, 3/4). This suggest that while we are
able to generalize the fairness loss to other tasks
during training, the fairness measures across tasks
are not related. For these reasons we recommend
that MTL-fair models are validated for fairness on
the target task.
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Table 8: list of experiments

Review Sentiment
training data fairness loss attributes fairness loss target task

STL-base sentiment no no
STL-fair sentiment gender+age sentiment
MTL-base sentiment+topic no no
MTL-fair sentiment+topic gender+age topic

Review Topic
training data fairness loss attributes fairness loss target task

STL-base topic no no
STL-fair topic gender+age topic
MTL-base sentiment+topic no no
MTL-fair sentiment+topic gender+age sentiment

In-Hospital Mortality
training data fairness loss attributes fairness loss target task

STL-base In-hosp Mort. no no
STL-fair In-hosp Mort. gender In-hosp Mort.
MTL-base In-hosp Mort.+Phenotyping no no
MTL-fair In-hosp Mort.+Phenotyping gender Phenotyping

Phenotyping
training data fairness loss attributes fairness loss target task

STL-base Phenotyping no no
STL-fair Phenotyping gender Phenotyping
MTL-base In-hosp Mort.+Phenotyping no no
MTL-fair In-hosp Mort.+Phenotyping gender In-hosp Mort.

Twitter Sentiment
training data fairness loss attributes fairness loss target task

STL-base Twitter sentiment no no
STL-fair Twitter sentiment race twitter sentiment
MTL-base HateXplain+Twitter sentiment no no
MTL-fair HateXplain+Twitter sentiment race HateXplain

HateXplain
training data fairness loss attributes fairness loss target task

STL-base HateXplain no no
STL-fair HateXplain race HateXplain
MTL-base Twitter sentiment+HateXplain no no
MTL-fair Twitter sentiment+HateXplain race Twitter sentiment

Intersectional Experiments
training data fairness loss attributes fairness loss target task

STL-base-sentiment sentiment no no
STL-base-topic topic no no
STL-fair-sentiment sentiment gender+age sentiment
STL-fair-topic topic gender+age topic
MTL-base sentiment+topic no no
MTL-inter sentiment+topic gender/age* sentiment/topic*
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Table 9: Scores of the multi-task fairness loss experiments. For the Phenotyping task, these are macro-averages over
all labels. Bold is best per task.

method AUROC (%) ↑ ϵ-DEO ↓ ∆Recall (%) ↓ ∆Specificity (%) ↓

clinical

In-hosp Mort. stl-base 77.7 0.22 2.05 5.99
stl-fair 77.5 0.18 3.46 3.54

mtl-base 78.1 0.17 0.23 4.45
mtl-fair 78.1 0.14 0.98 3.83

mtl-fair no demo. 78.4 0.18 1.80 4.02

Phenotyping stl-base 69.5 0.24 4.97 3.17
stl-fair 69.6 0.21 4.63 2.96

mtl-base 69.7 0.29 5.47 4.12
mtl-fair 69.9 0.23 5.94 2.46

mtl-fair no demo. 70.9 0.28 6.18 4.25

method F1 (%) ↑ ϵ-DEO ↓ ∆F1 (%) ↓

reviews

sentiment stl-base 83.9 0.83 3.79
stl-fair 86.1 0.68 3.05

mtl-base 83.5 0.66 4.75
mtl-fair 84.4 0.63 1.96

mtl-fair no demo. 83.3 0.89 5.92

topic stl-base 91.9 1.42 4.58
stl-fair 92.1 1.04 2.86

mtl-base 91.3 1.10 6.15
mtl-fair 91.6 0.85 3.22

mtl-fair no demo. 91.3 1.11 4.79
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