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Abstract
Recently, work in NLP has shifted to few-shot
(in-context) learning, with large language mod-
els (LLMs) performing well across a range of
tasks. However, while fairness evaluations have
become a standard for supervised methods, lit-
tle is known about the fairness of LLMs as
prediction systems. Further, common standard
methods for fairness involve access to models
weights or are applied during finetuning, which
are not applicable in few-shot learning. Do
LLMs exhibit prediction biases when used for
standard NLP tasks?

In this work, we analyze the effect of shots,
which directly affect the performance of mod-
els, on the fairness of LLMs as NLP classifica-
tion systems. We consider how different shot
selection strategies, both existing and new de-
mographically sensitive methods, affect model
fairness across three standard fairness datasets.
We find that overall the performance of LLMs
is not indicative of their fairness, and further-
more, there is not a single method that fits all
scenarios. In light of these facts, we discuss
how future work can include LLM fairness into
evaluations.

1 Introduction

Historically, evaluation of machine learning sys-
tems concerned only overall performance: how
well did a trained system do on a held-out test
set. More recently, practitioners have realized
that dataset-level scores can mask uneven perfor-
mance across different sets of data points (Barocas
et al., 2019). This can be especially problematic
when performance varies significantly between de-
mographic groups, such as systems that do rela-
tively worse on underrepresented and historically
oppressed demographic groups (e.g., Zhang et al.,
2020). These systems are often called unfair or
biased. Fairness has implications for the quality of
the user experience and system robustness, and can
measure user experience in a manner not reflected

by overall metrics. Additionally, fairness may have
legal ramifications when AI regulations intersect
with laws against discrimination (e.g., Kim, 2022).
To address these disparities, researchers have de-
veloped methods for fairness that may be applied
to training objectives, alignment after training, and
evaluation metrics (Barocas et al., 2019).

A new approach to prediction relies on large
language models (LLMs), in which an instance is
accompanied by a prompt and an LLM relies on
in-context learning to make a prediction (Brown
et al., 2020). This type of learning, which requires
no fine-tuning or other gradient updates, uses just
a few examples at inference time as a “prompt” to
guide inference on a final instance. Because in-
context learning relies only on a few text examples
during inference, the content of these examples
can be very important for the quality of the emit-
ted output (Dong et al., 2022). While prior work
has shown that LLMs perform surprisingly well
on various prediction tasks, models are measured
once again on overall performance alone, not fair-
ness, despite an understanding of the variable na-
ture of LLM behavior (Chang and Bergen, 2023).
To date, little to no work has measured the fairness
of LLMs as prediction systems, despite numerous
studies showing inherent biases in the generations
of LLMs (Stanczak and Augenstein, 2021; Si et al.,
2022). Furthermore, traditional methods for ad-
dressing unfair models, whether pre-, in-, or post-
training, are not applicable to LLMs as the data
they’re trained on is often proprietary, pre-training
them is expensive, and many leading models are
closed source.

Relying on the importance of the content of ex-
amples in few-shot learning, we analyze the fair-
ness of LLMs as prediction systems considering
how different demonstration selection methods af-
fect the resulting social fairness of the model in
classification tasks. Experiments with 7 popu-
lar models (Table 1) across 3 datasets find that
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LLMs are unfair predictors. We consider two types
of demonstration selection methods to mitigate
this unfairness: semantic and demographic-based,
some novel and others from prior work. We con-
duct an in-depth analysis of the performance and
fairness of each demonstration selection method for
each model. While these selection methods can im-
prove fairness in unpredictable scenarios, these in-
consistent improvements across datasets and mod-
els suggest that future work is needed to better
understand how to achieve prediction fairness of
LLMs beyond shot selection, as well as meth-
ods that create more reliable and demographically-
stable LLMs.

2 Related Work

In-Context Learning. Large Language Models
are effective in a large number of classification
and generative tasks (Devlin et al., 2019a; Rad-
ford et al., 2019; Liu et al., 2019a; Lewis et al.,
2019). While finetuning a pretrained model is a
popular paradigm (Devlin et al., 2019a), finetun-
ing large models can be cost-prohibitive because
of the compute required to do so. Furthermore,
finetuning requires additional task-specific labeled
data, which can also be prohibitively expensive to
collect. Brown et al. (2020) evaluated in-context
learning, or few-shot learning, for LLMs, a learn-
ing paradigm in which the model is given a few
examples, or demonstrations, of a task and is then
asked to complete the final example. In-context
learning has shown impressive results in a vari-
ety of tasks, including question answering, transla-
tion, and natural language inference (Brown et al.,
2020).

Work on in-context learning has focused on writ-
ing better prompts (Wei et al., 2022; Min et al.,
2021a; Holtzman et al., 2021; Zhao et al., 2021),
choosing better demonstrations (Liu et al., 2021;
Rubin et al., 2021), and training with an in-context
learning objective (Min et al., 2021b; Chen et al.,
2021). There have also been explorations of the
sensitivities of in-context learning, such as the for-
mat of the prompts (Gao et al., 2021a; Jiang et al.,
2019) or the order of the demonstrations (Lu et al.,
2021). However, prior work has not studied the
effect of demonstration choice on social fairness,
only on overall performance (Dong et al., 2022).
Other work, like Ma et al. (2023) has evaluated
the label fairness, i.e. performance differences
across different labels or classes in a multi-class

prediction setting, of LLMs in in-context learning
by creating a system that chooses prompts to cre-
ate a "fair" demonstration. Similar to our work,
they focused on shot or demonstration choice and
found that shot selection matters for performance.
Thus, given the minimal amount of data used for
in-context learning, we suspect that the choice of
demonstrations has an effect on the social fairness
of the model’s output.

Social Fairness with Large Language Models.
Work that identifies and measures the biases of lan-
guage models have classified these harms in two
general categories: allocation and representation
harm (Stanczak and Augenstein, 2021). Represen-
tational harms happen when harmful concepts or
relations are associated with demographic groups
by a model; in language models these are often
measured via token embeddings and model param-
eters with fill-in the blank, or complete the sentence
templates (e.g., Nadeem et al., 2021; Nangia et al.,
2020). Most bias studies in NLP have focused on
representational harms: many studies have demon-
strated how generations from LLMs exhibit bias
towards specific groups, or generate text that can
be considered offensive, harmful or toxic (Dodge
et al., 2021; De-Arteaga et al., 2019; Bender et al.,
2021; Nadeem et al., 2021; Si et al., 2022), gen-
erations from LLMs are more likely to generative
negative sentiment for refugees, disabled people,
AAVE sentences, nonbinary, muslim and women
(Magee et al., 2021; Groenwold et al., 2020; Sheng
et al., 2019). In this area, research has also in-
vestigated how shot selection and ordering affects
the bias of models, finding that random ordering
and representative shots helps reduce bias (Si et al.,
2022). To understand the underlying bias source in
the behavior of these models, researchers have eval-
uated the generations of LLMs under different con-
ditions, like size and training procedure (Baldini
et al., 2022; Tal et al., 2022; de Vassimon Manela
et al., 2021; Nangia et al., 2020).

On the other hand, allocational harms are re-
flected on performance differences on data associ-
ated with different demographic groups (Stanczak
and Augenstein, 2021), also known as fairness. Lit-
tle work has focused on allocation harms from in-
context learning in LLMs for classification settings.
Salewski et al. (2023) found that impersonating
roles improves performance for in-context learning
on LLMs: impersonating an expert in a task can im-
prove performance of the model for that task; how-
ever, these impersonations can also reveal biases in
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models by finding disparate performances from im-
personating different roles, e.g. better performance
when impersonating men than women. Perhaps
the most related work is Zhang et al. (2022a), who
investigates fairness re-programming techniques
for models that cannot be re-trained or finetuned,
e.g. in-context learning LLMs. They append token
perturbations to the prompt, fairness triggers, that
are learned from a helper model and show that they
can decrease performance differences across demo-
graphic groups. We, instead, focus on investigating
the role of choice of demonstrations or shots in
the performance differences of LLMs on in-context
learning settings.

3 Data

We consider three text classification datasets that
include demographic information to evaluate the
fairness of language models with regard to demo-
graphics: Bias in Bios (De-Arteaga et al., 2019),
Twitter Sentiment (Blodgett et al., 2016), and Hat-
eXplain (Mathew et al., 2021).

Bias in Bios (demographics: gender) is a col-
lection of English documents from CommonCrawl
that contain biographies. The task is to predict
the occupation from the biography, (MIT license.)
De-Arteaga et al. (2019) found gender bias present
in models for this task. Following Kaneko et al.
(2022), we measure gender bias by comparing the
relative performance of models across biographies
written about men and women. We select profes-
sions (labels) that had more than 1000 examples of
biographies for each gender in the test set.1 This
yields the following 8 labels: Attorney, Dentist,
Journalist, Photographer, Physician, Professor, Psy-
chologist, and Teacher. We randomly selected 500
for each gender from each profession to create a
test set of 8,000 biographies. We then created a
training set of 183,638 biographies by selecting all
the biographies from the original train split with
the professions listed above.

Twitter Sentiment (demographics: race) is a
collection of English tweets where the task is to pre-
dict binary sentiment in a tweet. Tweets have also
been annotated with a binary attribute correspond-
ing to online text dialects: African-American En-
glish (AAE) or Standard American English (SAE),
which has been previously correlated with parts-
of-speech tagging performance difference in prior
work (Blodgett et al., 2016). We use these text di-

1i.e. professions with at least 1000 men and 1000 women

alects as proxies for race and measure racial bias by
comparing the relative performance of sentiment
classification across the dialects, similar to Shen
et al. (2022). To construct the dataset we follow
Han et al. (2022) (APACHE licence, v2.0.) We then
select 40k and 2k random tweets from each com-
bination of dialect and sentiment for train and test,
creating a train set with 160k examples and test set
of 8k.

HateXplain (demographics: race) is a collection
of posts from Gab and Twitter annotated with toxi-
city and hate speech labels, as well as demographic
labels for the target group of the hate speech. While
prior work has shown that there are performance
differences for detecting hate speech for different
target groups based on gender, religion, and race,
we experiment only on race as it was the demo-
graphic characteristic with the reported highest dis-
parities (Baldini et al., 2022, MIT license). We
remove Indigenous and Indian examples from our
race demographics as they do not appear in all data
splits. To construct the dataset, we followed a simi-
lar procedure to Ye et al. (2021): we first reduced
the space from multiclass to binary classification
by combining the “offensive” and “hatespeech” la-
bels to a singular “toxic” label while keeping the
“normal” class the same. Because of HateXplain
has multiple annotators per example for the labels
and demographics, we take the majority label and
the majority demographic. If there is not a majority
in either, we discard the example.

4 Methods

We measure the effect of different demonstration
selection methods on prediction fairness of LLMs.
We hypothesize that, similar to how the choice
of demonstrations has been shown to have an ef-
fect on performance, different methods of demon-
stration selection will affect social fairness of the
model. This section describes the models evalu-
ated, prompts, demonstration selection methods,
and definitions of performance and fairness. Over-
all, we conduct experiments in 36 setups (3 tasks,
12 models), using 6 demonstration selection strate-
gies.

4.1 Models

We consider the fairness of several different LLMs,
including open and closed source models. We
consider both pretrained only (LLaMA (Touvron

2https://openai.com/blog/chatgpt
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Access Type Model Name Training Type Parameters

Open Source

LLaMA Pretrained 13B & 65B
LLaMA2 Pretrained & chat 13B & 70B
Alpaca Instruction-tuned 7B & 13B
UL2 Pretrained 20B
Flan-UL2 Instruction-tuned 20B

Closed Source
davinci-003 Instruction-tuned 175B
gpt-3.5-turbo Instruction-tuned2 -

Table 1: The LLMs evaluated in this work.

et al., 2023a), UL2 (Tay et al., 2023), Llama2 (Tou-
vron et al., 2023b)) and finetuned variants (Alpaca
(Taori et al., 2023), Flan-UL2 (Chung et al., 2022),
Llama2-chat). We also consider two model sizes
to observe the effects of size on fairness: LLaMA
7B and 65B, Alpaca 7B and 13B, and Llama2 13B
and 70B. Finally, we consider two closed source
models (davinci-003, gpt-3.5-turbo). Table 1
shows the list of models tested in our experiments.

4.2 In-context Learning

The focus of our experiments is on the effect that
demonstrations have on fairness, however other as-
pects such as model hyperparameters and prompt
structure may affect the performance of the model.
We controlled for temperature by conducting ex-
periments varying temperature and choose the best
(1.0) based on the results in Appendix C. Further,
we controlled for prompt variability by utilizing
existing prompts for each dataset where available.
Otherwise, we adapted prompts from similar tasks.
2 shows the prompt templates. We choose the best
prompt structures based on performance from past
work, and leave exploration of the fairness effect
of prompt structure to future work.

Bias in Bios: We adapted the prompt from Lin
et al. (2022) to include information about the labels.
HateXplain: We adopted the prompt from Kociel-
nik et al. (2023). Twitter Sentiment: Similar to
Bias in Bios, we modified the prompt from Min
et al. (2022) to include information about the labels.
We prepended k samples (shots) from the training
set as demonstrations; each demonstration follows
the same prompt format. We evaluate models with
zero-shot and 10-shot settings; we discontinued
5-shot evaluations after finding no meaningful dif-
ferences in the results.

We note that it may be unrealistic to assume a
large training set from which to draw demonstra-
tions while also claiming a few-shot setting (Perez
et al., 2021). If we indeed have hundreds or thou-
sands of examples, train a model! Nevertheless, we

evaluate in this setting to better understand the ef-
fects of demonstration selection on fairness. If one
was going to annotate a small number of examples
to include in a prompt, which type of examples
should be included to maximize fairness? To an-
swer this question, we rely on existing annotations
(training sets) rather than creating our own.

4.3 Demonstration Selection Strategies

We evaluate existing demonstration selection meth-
ods for fairness: semantic similarity (Liu et al.,
2022; Gao et al., 2021b) and diversity (Zhang et al.,
2022b). We also experiment with demographic-
aware selection methods: sampling only within the
same demographic group and using a representa-
tive sample.

Zero-shot. We contextualize the performance
and fairness of shot selection methods by including
zero-shot baselines, i.e. no added demonstrations.

Random. We evaluate randomly selecting 10
demonstrations. While this may not be optimal for
performance (Liu et al., 2022), the fairness of this
method is unknown.

Similarity. Demonstrations are selected based
on the query instance. We select the k = 10
most similar training examples as compared to
the query instance. Similarity is measured based
on the cosine distance of the SBERT (Reimers
and Gurevych, 2019) embeddings, following (Gao
et al., 2021b).3

Diversity. A single set of demonstrations is se-
lected to include across all test instances to reflect
a diversity of examples. Like Similarity selection,
we obtain SBERT sentence embeddings and then
use KMeans Clustering from the faiss library (John-
son et al., 2019) to produce k = 10 clusters. We
selected the demonstrations with the vector closest
to the centroid of each cluster (Zhang et al., 2022b),
in order to obtain samples that are semantically
diverse.

Within. We randomly select demonstrations
that have the same demographic attribute as the
test instance. For example, in Bias in Bios, if the
example is a biography of a woman, we randomly
select biography demonstrations only from women.

Representative. A single set of demonstrations
is selected to include across all test instances to
reflect a demographically representative set of in-
stances. For example, in Bias in Bios, we randomly

3We use the all-mpnet-base-v2 model which is the
highest-performing sentence-embedding model at the time
of writing.
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Dataset Prompt Structure
Bias in Bios <Bio> \n Occupations: <List of Occupations> \nThe occupation of this person is <label>
Twitter Sent. Post:<Tweet>\nQuestion: Is this post happy or sad? \nAnswer: <label>
HateXplain Post:<Tweet> \nQuestion: Does this post contain offensive language?\n Answer: <label>

Table 2: Prompt templates used in our experiments. For each example, k = {0, 10} demonstrations are constructed
using the templates and prepended to the example which follows the same template but without the <label>.

sample 5 biography demonstrations from women
and 5 from men, obtaining a representative sample.

In addition to the demonstration selection
methods, we experiment with appending the
demographic category, e.g. race, sex, etc.
(demographic-attribute prompting), to the
prompt in each demonstration and the test exam-
ple. This is inspired by prior work that showed in-
creased performance with demographically aware
models (Hovy, 2015).

4.4 Evaluation
We obtain predictions by allowing each model to
generate up to five tokens. Positive and negative
labels are obtained by substring matching of the
generated tokens. Specifically, for Bias in Bios
models, we allowed the term "lawyer" as correct
for "attorney". For performance, we report the
macro-averaged F1 score of the model.

For the fairness evaluation, we use a modified
1-GAP metric originally introduced by De-Arteaga
et al. (2019). GAP is the difference in recall
scores (TPR) between two demographic groups,
also called equalized opportunity (Hardt et al.,
2016). We modified the definition to support mul-
tiple demographic groups by selecting the biggest
recall difference across demographic groups, in-
spired by Ghosh et al. (2021). We define the set of
all demographics as S, Y as the gold label, and Ŷ
as the prediction.

TPRsi,y = P
(
Ŷ = y | S = si, Y = y

)

1−GAP = min
si,sj∈S

1− (TPRsi,y − TPRsj ,y)

1-GAP gives us a relative metric, where models
closest to 1 are the fairest. However, to obtain a
binary label for whether a model is fair, we obtain
distributions of recall scores for each demographic
by bootstrapping with 100 iterations. We then per-
form a Krukal-Wallis (KW) one-way analysis of
variance to test whether the recall score samples for
each demographic belong to the same distribution
(fair model.)

4.5 Supervised and Other Baselines
To contextualize the performance of the LLMs for
these tasks, we compare the in-context models with
a random classifier baseline and BERT-based fine-
tuned classification models with and without a fair-
ness loss following Foulds et al. (2020). The BERT-
based classifiers are encoder+classification layer
models that were end-to-end finetuned with the
training data and hyperparameter tuned with the
available dev sets. The fairness variants of BERT-
based classifiers are finetuned with a true positive
rate (TPR or recall-parity) using the demograph-
ics available per dataset (Foulds et al., 2020). We
use BERT-style encoders (Devlin et al., 2019b)
with vocabulary that match the dataset domain:
RoBERTa for the Bias in Bios dataset (Liu et al.,
2019b) initialized with the roberta-base check-
point,4 and BERTweet for HateXplain and Twitter
Sentiment (Nguyen et al., 2020), initialized with
the vinai/bertweet-base checkpoint.5 For more
model training details, the hyperparameter search
space, and details about fairness definitions and
fairness finetuning, see Appendix B.

5 Results & Analysis

Table 3 shows the results of the models on all
three datasets using the different demonstration
selection methods. While the best performing
LLMs are competitive compared to the supervised
baselines, some settings perform below the ran-
dom classifier baseline, as seen in table 3 (UL2,
LLaMA-13B&65B, Alpaca-7B&13B, and Llama2-
13B&70B).

For demographic fairness, we observe that the
most fair models are often below random perfor-
mance. Since the ultimate goal of fairness is to
maximize the utility of the models across all demo-
graphic groups (rather than none), we do not take
into account fairness results from models that per-
form below a random classifier, these are shaded
on table 3. Comparing in-context models with

4https://huggingface.co/roberta-base
5https://huggingface.co/vinai/bertweet-base

54

https://huggingface.co/roberta-base
https://huggingface.co/vinai/bertweet-base


BERT-based finetuned models, in-context mod-
els tend to be fairer but with a substantial loss in
performance, with the most fair in-context model
(zeroshot Llama2-70B-chat) performing ≈ 25 F1
points lower than the fair BERT-based counterpart.
This is an extreme example of the fairness and accu-
racy trade-off, that is present in some of the LLMs
we tested; fair models are fair because they perform
poorly for all groups.

5.1 Model Choice
When considering the overall performance of mod-
els across all our settings, it becomes clear that
the choice of model matters both in terms of per-
formance and fairness. Flan-UL2, davinci-003,
gpt-3.5-turbo and Llama2-13B-chat are the best-
performing models across the three datasets. Some
models, e.g. Alpaca and UL2, have better than ran-
dom performance in only one dataset. In contrast,
there is not a clear winner for fairness, with model
fairness varying across all datasets. However, the
more drastic fairness differences are at the dataset
level, where the fairness of all models in Twitter
Sentiment (> .9 for all models) is much greater
than, e.g. HateXplain. These dataset-specific dif-
ferences could be due to overfitting to widely used
benchmarks, as the Twitter Sentiment task is more
often included benchmarks used to evaluate LLMs
compared to HateXplain. When comparing fine-
tuned vs pretrained variants of LLMs (FLAN-UL2
vs. UL2, LLaMA2 vs. LLama2-chat), finetuning
seems to help in performance but have a varied
effect on fairness.

Overall, we find that model selection for fairness
cannot be generalized across datasets.

5.2 Performance and Fairness
1-GAP (fairness) has an inherent connection with
F1 (performance) since both include recall. How-
ever, we can still have fair models at different
ranges of accuracy. Many have postulated that there
is a trade-off between fairness and performance;
fairness comes at the expense of performance re-
sulting in a negative correlation. Much recently,
Islam et al. (2021) showed this trade-off is not al-
ways present empirically; some methods obtain
high performance and fairness.

Our experiments (perhaps distressingly) exhibit
both positive and negative correlations for certain
models across datasets. Figure 1 shows the 1-GAP
vs F1 plots for three models, which have a positive
(Flan-UL2), no (Alpaca-7B) and negative corre-

lation (UL2) between performance and fairness.
This erratic relationship underscores the need for
explicit evaluation of fairness rather than relying
on performance alone.

5.3 Zero-shot Settings are Sometimes Better
How important is adding demonstrations (few-
shot) to prompts compared to leaving them out
(zero-shot) for fairness? The effect is especially
pronounced for UL2, LLaMA, and Alpaca, e.g.
Alpaca-7B goes from unusable performance in
zero-shot (2.3 F1) to decent in few-shot (82.1 F1)
in Bias in Bios. On the other hand, higher per-
forming models (davinci-003, gpt-3.5-turbo
and Flan-UL2) sometimes do better in the zero-
shot setting; adding demonstrations hurts perfor-
mance. Nevertheless, on average across models,
zero-shot settings were always outperformed by all
demonstration selection methods (see Table 4).

The relationship between demonstrations and
fairness is more varied. In general, when both fair-
ness and performance in zeroshot settings are high,
adding demonstrations does not help and can even
harm fairness. However, in average across mod-
els, zeroshot settings are generally more fair than
other demonstration selection methods closely fol-
lowed by similarity. While adding demonstrations
helps performance, the effect on fairness is unpre-
dictable. This again underscores the importance of
evaluating prediction fairness of LLMs.

5.4 Which Demonstrations To Add
Adding demonstrations (Random vs. Zero-shot)
usually improves model performance (∼70% of the
time), but often made model fairness worse (∼60%
of the time was worse). Care in demonstration
selection is needed to ensure fairness.

For similarity and diversity selection methods:
similarity selection helps performance on average
across datasets compared to random selection and
zero-shot (table 4.) This same is generally true
for fairness, but still less fair than zeroshot. In
contrast, Diversity selection has less consistent be-
havior, where it helps LLaMA-65B and Flan-UL2,
but hurts every other model. The fairness scores
also fluctuate and vary by data and model.

The demographic-based demonstration selection
strategies are less successful overall. Perhaps sur-
prisingly, selecting demonstrations from within the
same demographic was the least favored setting

5The recall scores from bootstrap samples (100) across
demographics belong to the same distribution.
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HateXplain race
zeroshot random similarity diversity within representative

F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP

davinci-003 64.1 84.7 70.0 74.0 68.0 78.0 66.8 69.6 65.8 82.6 69.0 79.5
gpt-3.5-turbo 61.3 85.6 69.1 80.5 67.8 73.8 67.0 80.8 67.3 82.1 67.8 78.6

UL2 53.5 92.7 44.3 99.1 44.3 96.7 44.4 100.0* 44.4 100.0* 44.3 96.8
FLAN-UL2 60.9 71.0 68.4 83.8 68.6 85.6 68.3 83.5 68.9 82.3 69.1 82.6

LLaMA-13B 22.3 77.5 31.3 69.1 48.5 52.6 23.5 75.7 36.0 48.7 32.0 78.2
LLaMA-65B 40.5 84.6 44.7 76.4 52.2 79.6 49.6 60.7 47.2 71.3 48.8 68.7

Alpaca-7B 28.7 87.9 48.8 66.1 52.2 82.9 45.6 78.6 45.7 80.2 48.9 92.8
Alpaca-13B 27.7 85.7 34.9 84.8 38.3 78.5 37.1 74.7 35.5 76.9 36.6 77.1

LLaMA2-13B 33.0 86.5 46.1 94.6 47.1 85.2 47.1 93.5 46.0 88.7 43.9 92.6
LLaMA2-13B-chat 63.4 93.5 59.9 71.1 63.0 65.2 59.3 49.2 58.9 93.3 61.6 81.5

LLaMA2-70B 46.1 90.9 25.5 78.7 33.3 77.2 15.1 79.6 28.2 81.8 33.5 80.4
LLaMA2-70B-chat 48.5 99.1 51.9 68.2 42.4 74.6 31.7 82.2 46.4 72.0 51.1 77.2

avg 45.8 86.6 49.6 78.9 52.1 77.5 46.3 77.3 49.2 80.0 50.6 82.2
random class. 45.2

BERTweet 72.7 40.0
BERTweet Fair 73.2 86.9

Bias in Bios
zeroshot random similarity diversity within representative

F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP

davinci-003 82.8 79.2 80.0 77.8 81.9 85.6 76.4 78.6 79.6 82.4 79.6 81.6
gpt-3.5-turbo 84.6 87.4 84.6 88.8 86.7 92.4 81.8 89.4 84.4 90.4 84.4 88.2

UL2 19.2 99.6 2.5 100.0* 11.5 100.0* 0.9 100.0* 2.4 100.0* 2.4 100.0*
FLAN-UL2 86.7 92.8 84.2 84.6 85.3 87.4 85.4 83.0 84.5 85.0 84.5 84.4

LLaMA-13B 11.5 99.8 74.2 82.0 78.7 95.6 78.3 83.0 73.0 78.4 73.6 81.8
LLaMA-65B 8.0 99.4 73.7 86.0 74.1 83.6 82.1 84.6 73.2 85.2 74.7 88.4

Alpaca-7B 2.3 99.8 76.7 78.2 82.1 79.8 80.6 83.4 76.3 78.4 76.1 79.6
Alpaca-13B 29.0 96.0 18.2 99.2 34.0 95.0 1.7 100.0* 18.4 98.4 17.7 98.4

LLaMA2-13B 2.1 100.0* 76.0 83.4 75.5 87.4 83.6 83.6 75.8 88.2 77.0 91.8
LLaMA2-13B-chat 65.0 98.4 84.7 93.2 86.9 88.2 83.7 94.2 85.1 95.6 84.9 95.4

LLaMA2-70B 5.2 99.6 63.4 91.0 50.0 94.4 54.7 98.2 62.9 94.4 43.7 95.8
LLaMA2-70B-chat 69.3 85.4 73.9 94.6 1.0 100.0* 83.9 82.4 73.5 93.8 73.6 89.2

avg 38.8 94.8 66.0 88.2 62.3 90.8 66.1 88.4 65.8 89.2 64.4 89.6
random class. 45.2

RoBERTa 79.6 91.2
RoBERTa Fair 77.5 92.0

Twitter Sentiment
zeroshot random similarity diversity within representative

F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP F1 1-GAP

davinci-003 60.4 97.5 69.3 93.9 71.1 99.5 69.9 86.1 69.6 96.9 69.6 93.6
gpt-3.5-turbo 44.8 97.6 54.5 99.2 61.2 99.7* 57.0 99.9* 54.7 98.2 54.9 97.7

UL2 58.1 98.6 48.2 92.6 65.0 99.9* 33.5 100.0 47.8 83.6 47.9 94.1
FLAN-UL2 69.5 99.6* 69.7 99.1 70.0 99.9* 69.6 98.8 69.8 98.8 69.8 98.6

LLaMA-13B 36.9 97.8 55.8 97.0 64.5 98.9 51.6 97.8 56.0 93.5 54.8 95.6
LLaMA-65B 0.4 99.8 54.7 96.4 61.2 93.6 49.9 93.4 54.6 92.5 54.3 94.5

Alpaca-7B 35.9 92.0 2.2 100.0* 10.2 98.9 0.0 100.0* 2.5 99.5 2.1 99.9
Alpaca-13B 21.9 97.2 35.7 98.8 36.5 99.4 24.6 97.4 35.6 95.4 36.7 98.0

LLaMA2-13B 8.3 96.0 20.2 95.2 52.1 96.5 53.6 98.8 21.8 87.2 21.0 96.0
LLaMA2-13B-chat 62.7 92.1 60.9 97.3 63.2 95.3 62.2 97.2 62.3 95.7 61.5 97.8

LLaMA2-70B 16.6 99.8 0.4 99.8 11.5 99.6 3.6 99.5 0.6 99.8 0.4 99.8
LLaMA2-70B-chat 59.3 91.9 43.2 96.0 44.6 91.1 51.5 91.6 43.5 93.9 42.7 95.7

avg 39.5 96.6 42.9 97.1 50.9 97.7 43.9 96.7 43.2 94.6 43.0 96.8
random class. 50.0

BERTweet 76.6 83.9
BERTweet Fair 76.5 88.7

Table 3: Macro-averaged F1 score and 1-GAP of all models and demonstration selection methods for all of the three
datasets. Bold is best per model×dataset and underlined is best per dataset (above a random baseline). Asterisk (*)
denotes no significant difference in recall scores performing a Kruskal-Wallis test with 100 bootstrap iterations. We
shade results that have an F1 score below a random baseline.

56



1-GAP

F
1

70

65

60

70 75 80 85

𝑟=.96, p<.01

(a) Flan-UL2

1-GAP

F
1

55

45

35

65 75 85 95

𝑟=-.29, p=.58

(b) Alpaca-7B

1-GAP

F
1

55

50

45

92 94 96 98 100

𝑟=-.84, p=.03

(c) UL2

Figure 1: F1 vs 1-GAP when varying demonstration selection methods for Flan-UL2, Alpaca-7B and UL2 in
HateXplain dataset showing positive, no correlation and negative correlations respectively.

HateXplain Bias in Bios Twitter Sent.

F1 1-GAP F1 1-GAP F1 1-GAP

zeroshot 45.8 86.6 38.8 94.8 39.6 96.6
random 49.6 78.9 66.0 88.2 42.9 97.1

similarity 52.1 77.5 62.3 90.8 50.9 97.7
diversity 46.3 77.3 66.1 88.4 43.9 96.7

within 49.2 80.0 65.8 89.2 43.2 94.6
representative 50.6 82.2 64.4 89.6 43.0 96.8

Table 4: Mean F1 & 1-GAP per selection strategy.

in both performance and fairness across models
and datasets. We expected choosing data of the
same type would help fairness; it did not. A rep-
resentative selection of demonstrations had more
success than within in both performance and fair-
ness. These results are congruent with prior work
that found that a representative selection of demon-
strations aids in reducing bias in models (Si et al.,
2022).

Combining these findings, our results suggest
that LLMs more efficiently utilize examples with
semantic similarity (similarity) as opposed exam-
ples with similarities in text due to demographic
groups (within.)

5.5 Including Demographic Attributes
Perhaps having access to explicit demographic in-
formation can help LLMs reduce classification
bias. Figure 2 shows the results of including de-
mographic attributes with the demonstrations to
open source models in the Bias in Bios dataset (all
datasets are shown in Table 5). While adding de-
mographic attributes helps in terms of performance,
benefits appear to be model specific. For LLaMA
and Alpaca, some settings have improved perfor-
mance, but overall a mixed effect on fairness, e.g.
for Alpaca-13B with demonstrations selected with
diversity the performance increased from 2 F1 to 80
by simply adding the demographic attributes but, at

the same time, reduced from perfect fairness (100)
to 81 (Figure 2.) Adding demographic attributes
affected the performance and fairness of Flan-UL2
models to a lesser effect. For these models, there
was a general trade-off between increasing perfor-
mance but decreasing fairness, and vice-versa.

Overall, adding demographic attributes seems
to help LLaMA and Alpaca models the most in
performance, perhaps because more information is
provided, but the effect on fairness is mixed.

5.6 Other Selection Methods

Since similarity and diversity selection were more
successful than demographic-based selection, we
experimented with combining these and the within
method. We test within+similarity, demonstrations
that are most similar within the same demographic
group, and within+diversity, demonstrations that
are most diverse within the same demographic.

Figure 3 show results for Bias in Bios and Ta-
ble 6 for all datasets. Unfortunately, combining
within and similarity methods often drastically
decreases model performance, but sometimes in-
creases fairness (Flan-UL2.) This is interesting as
these are the most similar methods, with ∼ 80% of
demonstrations selected by similarity being within
the same demographic. Despite these similarities,
we see that semantic similarity is generally more
important than demographic similarity for both per-
formance and fairness, and combining these two
actually hinders the performance of the models.

On the other hand, combining within and diver-
sity selection methods often helps in both perfor-
mance and fairness! Contextualizing these results
with the previous subsections, a rule-of-thumb is to
select semantically diverse demonstrations within
the same demographic group, or semantically simi-
lar demonstrations across all demographics.
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While semantic similarity was not always the
best performing, it provides the best performance
and fairness trade-off.

6 Conclusion

Significant work has gone into evaluating differ-
ent demonstration selection strategies in the per-
formance of LLMs as classification systems. This
paper represents one of the first studies to con-
sider the fairness of these systems. Our study con-
siders 7 widely used family of models (Table 1),
three datasets, and multiple demonstration selec-
tion methods. We find that the classification fair-
ness of LLMs doest not generalize across datasets,
similar to prior work with other families supervised
models (Zhang et al., 2020). Our results support
the need for task-specific fairness evaluations and
serve as a cautionary tale for over-reliance on per-
formance metrics alone. On average, LLMs still un-
derperform compared to supervised baselines often
with a more drastic fairness vs performance trade-
off. In terms of shot selection strategies, while
adding demonstrations (with similarity having the
most success) generally yields higher performing
models (compared to zero-shot), it does not consis-
tently yield fairer models.

Where do these results leave us? First, fair-
ness must be evaluated alongside task performance
when developing prompts, selection strategies, and
models. We cannot assume any relationship be-
tween fairness and performance. Second, we
need to better understand why LLMs are unfair
in their predictions. While significant work has
examined fairness in supervised training objectives
(Delobelle et al., 2021), and other work demon-
strates bias in LLM generations (Chang and Bergen,
2023), we need work that intersects these two.
Third, how can we determine when a LLM is being
unfair? Work examining confidence in LLM predic-
tions (e.g., Portillo Wightman et al., 2023) can help
automatically determine the accuracy of the sys-
tem. Can we develop similar metrics for fairness?
This would be especially helpful in cases where we
do not have demographically labeled data. Finally,
there is now a large focus on fine-tuning LLMs (e.g.
RLHF (Ouyang et al., 2022), FLAN (Chung et al.,
2022)). The goal of these methods has been better
instruction following and improved accuracy on
prediction tasks, but our results suggest they do not
always make models fairer. How can we include
fairness objectives in this training process?

7 Ethics Statement

We study the fairness of language models for three
tasks: occupation classification, sentiment analysis,
and hate speech detection. Occupation classifica-
tion has direct applications in the automation of
hiring procedures, which have been historically bi-
ased along many more demographic attributes than
what we consider, e.g. age, disabilities, race, eth-
nicity, sexual orientation, and veteran status. The
same is true of the other datasets in this paper. Ad-
ditionally, often these inequities intersect across
these social groups, further increasing the impact
of applications that use these models outside of an
academic environment. Because we were limited
by the currently available datasets and the coverage
they have on demographic attributes, we acknowl-
edge that fairness as is discussed in this paper will
not translate to social fairness in the wild without
first considering all of these biases.

8 Limitations

We work with LLMs that are expensive to run
(large GPUs to run big open source models) or
costly to access (cost of APIs). This limits our abil-
ity to fully explore all possible models. For exam-
ple, OpenAI API costs precluded our use of close-
source models in some experiments Sections 5.5
and 5.6. Furthermore, our closed-source model
evaluations may not be reproducible as we do not
have control over updates to the underlying models
and the model outputs are known to be inconsistent
(Ye et al., 2023).

While we consider 12 models, there are now
many different LLMs available for evaluation, with
several released concurrent with this study, e.g.
GPT4o, Falcon (Almazrouei et al., 2023) and Vi-
cuna (Chiang et al., 2023). We cannot evaluate all
models, but our results suggest that the fairness of
these models will also be highly varied and there
is no reason to believe this invalidates our findings.
Additionally, other aspects of in-context learning
may also affect the fairness of LLMs that we did not
study, e.g. demonstration ordering (Lu et al., 2022)
and prompt formatting (Wang et al., 2022). Fur-
ther, we only test these models in English datasets
limiting the breath of the type of biases we can
capture; future work can expand this evaluation to
other languages.
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Figure 2: ∆ F1 and ∆ 1-GAP when including demo-
graphic attributes in prompt (Bias in Bios.)

A All Results

Here we present the performance of the models
adding demographic attributes to the demonstra-
tions and prompt in Table 5. And finally, we show
the performance and fairness of the models when
combining semantic and demographic based selec-
tion methods in Table 6, Figure 2 and Figure 3.

B BERT-based fine-tuning details

Baseline. We use BERT-style encoders (Devlin
et al., 2019b) with a vocabulary that matches the
domain of each dataset: RoBERTa for the Bias
in Bios dataset (Liu et al., 2019b) initialized with
the roberta-base checkpoint,6 and BERTweet for
HateXplain and Twitter Sentiment (Nguyen et al.,
2020), initialized with the vinai/bertweet-base
checkpoint.7 We add a separate linear classification
head for each task, with a Softmax output function
to allow for multi-class classification (Bias in Bios)
or a Sigmoid output function for binary classifica-
tion (HateXplain and Twitter Sentiment.) The doc-
ument representation for the classification head is
a mean-pooled aggregation across all subword rep-
resentations of the document taken at the top layer
of the network.. Models were trained on Nvidia

6https://huggingface.co/roberta-base
7https://huggingface.co/vinai/bertweet-base
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Figure 3: Performance (F1) and fairness (1-GAP) of
combining within with semantic-based methods across
models in the Bias in Bios dataset. For 1-GAP graph
we show models with > rand. classifier performance.

A100 GPUs, using jiant (Phang et al., 2020), a
multi-task wrapper library.

Fairness Finetuning. In addition to a typi-
cal finetuning model, we also provide a finetuned
model with an added fairness loss, to compare with
a model that adds fairness to the objective. We
utilize equalized opportunity, also known as GAP,
as our fairness definition, which is the compliment
of 1-GAP, the fairness definition in the main pa-
per. We use ϵ-Differential Equalized Opportunity
(ϵ-DEO), a variant of ϵ-DF (Foulds et al., 2020),
that applies the equalized opportunity objective, to
ensure that the recall rates are equal across demo-
graphic groups (Barocas et al., 2019) and that is
learnable and differentiable.

Formally, let s1, ..., sp be discrete-valued demo-
graphic attributes, z = s1 × s2 × ...× sp. A model
M(X) satisfies ϵ-DEO with respect to z if for all
x, ŷ ∈ Range(M) and y ∈ Range(M),

e−ϵ ≤ Pr(Mθ(x) = 1|si, y = 1)

Pr(Mθ(x) = 1|sj , y = 1)
≤ eϵ, (1)

for all (si, sj) ∈ z × z where Pr(si) > 0,
Pr(sj) > 0; smaller ϵ is better, with ϵ = 0 for
perfect fairness. Perfect fairness results from a
classifier with the same recall rates across groups
of demographic attributes.

The standard approach to incorporating fairness
metrics into learning objectives uses an additive
term. For example, for a deep neural network clas-
sifier M(X) with parameters θ, we obtain the fol-
lowing,
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HateXplain race Bias in Bios Twitter Sentiment

F1 (∆) 1-GAP (∆) F1 (∆) 1-GAP (∆) F1 (∆) 1-GAP (∆)

baseline random class. 61.3 12.5 50.0

model selection method

UL2

zero-shot 53.5 92.7 19.2 99.6 58.1 98.6
+demographic attributes 45.9 (-7.6) 100 (7.3) 48.7 (29.5) 94.6 (-5.0) 61.1 (3.0) 78.8 (-19.8)

random 44.3 99.1 2.5 100 48.2 92.6
+demographic attributes 44.3 (0.0) 99.7 (0.6) 2.3 (-0.2) 100 (0.0) 42.3 (-6.0) 99.2 (6.6)

similarity 44.3 96.7 11.5 100 65.0 99.9
+demographic attributes 45.9 (1.5) 100 (3.3) 0.140 (2.5) 99.8 (-0.2) 65.2 (0.1) 0.924 (-7.5)

diversity 44.4 100 0.9 100 33.5 100
+demographic attributes 44.4 (0.0) 100 (0.0) 1.3 (0.3) 100 (0.0) 33.4 (-0.1) 0.999 (-0.1)

within 44.4 100 2.4 100 47.8 83.6
+demographic attributes 44.4 (0.0) 100 (0.0) 2.2 (-0.2) 100 (0.0) 48.9 (1.0) 0.791 (-4.5)

representative 44.3 96.8 2.4 100 47.9 94.1
+demographic attributes 44.4 (0.1) 100 (3.2) 3.1 (0.7) 100 (0.0) 41.4 (-6.4) 0.936 (-0.5)

Flan-UL2

zero-shot 60.9 71.0 86.7 92.8 69.5 99.6
+demographic attributes 49.7 (-11.2) 82.2 (11.2) 86.7 (0.1) 92.0 (-0.8) 69.4 (-0.1) 98.7 (-0.9)

random 68.4 83.8 84.2 84.6 69.7 99.1
+demographic attributes 65.9 (-2.5) 88.8 (5.0) 82.8 (-1.4) 81.0 (-3.6) 69.3 (-0.4) 98.8 (-0.3)

similarity 68.6 85.6 85.3 87.4 70.0 99.9
+demographic attributes 64.9 (-3.7) 88.5 (2.9) 84.6 (-0.7) 89.6 (2.2) 70.2 (0.2) 99.1 (-0.8)

diversity 68.3 83.5 85.4 83.0 69.6 98.8
+demographic attributes 67.6 (-0.8) 88.4 (5.0) 85.1 (-0.3) 86.2 (3.2) 70.2 (0.6) 97.4 (-1.4)

within 68.9 82.3 84.5 85.0 69.8 98.8
+demographic attributes 67.7 (-1.2) 89.1 (6.8) 84.8 (0.3) 89.0 (4.0) 69.8 (0.0) 98.6 (-0.2)

representative 69.1 82.6 84.5 84.4 69.8 98.6
+demographic attributes 66.3 (-2.8) 88.1 (5.6) 83.6 (-0.9) 80.6 (-3.8) 70.2 (0.3) 96.1 (-2.5)

LLaMA-13B

zero-shot 22.3 77.5 11.5 99.8 36.9 0.978
+demographic attributes 5.2 (-17.1) 91.1 (13.5) 12.9 (1.4) 100 (0.2) 28.6 (-8.3) 98.0 (0.2)

random 31.3 69.1 74.2 82.0 55.8 0.970
+demographic attributes 46.9 (15.6) 68.2 (-0.9) 79.1 (4.9) 81.4 (-0.6) 50.6 (-5.2) 97.3 (0.3)

similarity 48.5 52.6 78.7 95.6 64.5 0.989
+demographic attributes 55.6 (7.1) 42.8 (-9.8) 83.0 (4.3) 83.0 (-12.6) 62.1 (-2.4) 95.2 (-3.8)

diversity 23.5 75.7 78.3 83.0 51.6 0.978
+demographic attributes 35.4 (11.8) 51.8 (-23.9) 81.5 (3.2) 82.6 (-0.4) 60.2 (8.6) 95.8 (-2.0)

within 36.0 48.7 73.0 78.4 56.0 0.935
+demographic attributes 44.7 (8.7) 55.4 (6.7) 78.8 (5.8) 78.0 (-0.4) 53.4 (-2.6) 91.4 (-2.1)

representative 32.0 78.2 73.6 81.8 54.8 0.956
+demographic attributes 46.1 (14.1) 66.9 (-11.3) 79.9 (6.3) 77.8 (-4.0) 49.0 (-5.8) 97.1 (1.5)

LLaMA-65B

zero-shot 40.5 84.6 8.0 99.4 0.4 99.8
+demographic attributes 41.0 (0.4) 75.8 (-8.8) 13.1 (5.1) 99.4 (0.0) 0.7 (0.4) 99.6 (-0.2)

random 44.7 76.4 73.7 86.0 54.7 96.4
+demographic attributes 48.3 (3.5) 53.5 (-23.0) 75.6 (1.9) 84.4 (-1.6) 52.0 (-2.7) 99.6 (3.2)

similarity 52.2 79.6 74.1 83.6 61.2 93.6
+demographic attributes 54.7 (2.5) 71.2 (-8.4) 71.4 (-2.7) 85.4 (1.8) 59.1 (-2.1) 95.1 (1.5)

diversity 49.6 60.7 82.1 84.6 49.9 93.4
+demographic attributes 63.7 (14.1) 34.4 (-26.3) 83.1 (1.0) 83.6 (-1.0) 62.0 (12.2) 96.8 (3.4)

within 47.2 71.3 73.2 85.2 54.6 92.5
+demographic attributes 47.5 (0.3) 59.1 (-12.2) 73.1 (-0.1) 81.8 (-3.4) 50.3 (-4.3) 93.0 (0.4)

representative 48.8 68.7 74.7 88.4 54.3 94.5
+demographic attributes 50.4 (1.6) 57.6 (-11.1) 75.8 (1.0) 82.6 (-5.8) 50.0 (-4.4) 89.6 (-4.9)

Alpaca-7B

zero-shot 28.7 87.9 2.3 99.8 35.9 92.0
+demographic attributes 45.6 (16.9) 87.2 (-0.7) 13.1 (10.8) 100 (0.2) 57.9 (22.0) 86.5 (-5.6)

random 48.8 66.1 76.7 78.2 2.2 100
+demographic attributes 58.2 (9.4) 46.7 (-19.4) 74.4 (-2.3) 82.4 (4.2) 30.8 (28.6) 94.4 (-5.6)

similarity 52.2 82.9 82.1 79.8 10.2 98.9
+demographic attributes 57.9 (5.7) 77.4 (-5.5) 76.2 (-6.0) 87.8 (8.0) 49.6 (39.5) 97.3 (-1.7)

diversity 45.6 78.6 80.6 83.4 0.0 100
+demographic attributes 62.0 (16.4) 35.7 (-42.9) 0.757 (-5.0) 81.2 (-2.2) 30.5 (30.5) 97.3 (-2.7)

within 45.7 80.2 76.3 78.4 2.5 99.5
+demographic attributes 53.2 (7.5) 79.8 (-0.4) 74.9 (-1.4) 85.0 (6.6) 27.7 (25.2) 97.6 (-2.0)

representative 48.9 92.8 76.1 79.6 2.1 99.9
+demographic attributes 58.5 (9.6) 61.7 (-31.1) 72.5 (-3.6) 84.0 (4.4) 34.5 (32.4) 94.4 (-5.5)

Alpaca-13B

zero-shot 27.7 85.7 29.0 96.0 21.9 97.2
+demographic attributes 44.2 (16.5) 98.1 (12.4) 52.4 (23.4) 99.4 (3.4) 49.5 (27.6) 70.0 (-27.2)

random 34.9 84.8 18.2 99.2 35.7 98.8
+demographic attributes 60.9 (26.0) 59.5 (-25.3) 78.2 (59.9) 79.2 (-20.0) 35.3 (-0.4) 85.4 (-13.4)

similarity 38.3 78.5 34.0 95.0 36.5 99.4
+demographic attributes 60.6 (22.3) 68.4 (-10.1) 78.3 (44.3) 82.8 (-12.2) 53.8 (17.3) 97.4 (-2.1)

diversity 37.1 74.7 1.7 100 24.6 97.4
+demographic attributes 64.7 (27.5) 62.6 (-12.1) 80.0 (78.3) 81.0 (-19.0) 47.7 (23.1) 85.7 (-11.8)

within 35.5 76.9 18.4 98.4 35.6 95.4
+demographic attributes 57.7 (22.2) 74.4 (-2.4) 77.4 (59.0) 76.8 (-21.6) 37.9 (2.3) 92.3 (-3.2)

representative 36.6 77.1 17.7 98.4 36.7 98.0
+demographic attributes 62.9 (26.3) 65.1 (-12.0) 78.3 (60.6) 76.8 (-21.6) 37.2 (0.5) 86.3 (-11.7)

Table 5: Performance of open source models across datasets when adding demographic attributes to the demonstra-
tions and prompt. Results without demographic attributes are shown as comparison, as well as a difference between
them. Bold is best per model×dataset and underlined is best per dataset (above a random baseline). We shade
results that have an F1 score below a random baseline.
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model selection method F1 1-GAP F1 1-GAP F1 1-GAP

UL2

zero-shot 53.5 92.7 19.2 99.6 58.1 98.6
random 44.3 99.1 2.5 100 48.2 92.6
similarity 44.3 96.7 11.5 100 65.0 99.9
diversity 44.4 100 0.9 100 33.5 100
representative 44.3 96.8 2.4 100 47.9 94.1
within 44.4 100 2.4 100 47.8 83.6

+similarity 44.3 96.8 2.1 100 48.5 97.6
+diverse 44.4 100 1.9 100 50.6 02.4

Flan-UL2

zero-shot 60.9 71.0 86.7 92.8 69.5 99.6
random 68.4 83.8 84.2 84.6 69.7 99.1
similarity 68.6 85.6 85.3 87.4 70.0 99.9
diversity 68.3 83.5 85.4 83.0 69.6 98.8
representative 69.1 82.6 84.5 84.4 69.8 98.6
within 68.9 82.3 84.5 85.0 69.8 98.8

+similarity 50.3 87.2 31.9 100 59.4 96.4
+diverse 68.6 86.3 85.2 88.0 69.4 93.5

LLaMA-13B

zero-shot 22.3 77.5 11.5 99.8 36.9 97.8
random 31.3 69.1 74.2 82.0 55.8 97.0
similarity 48.5 52.6 78.7 95.6 64.5 98.9
diversity 23.5 75.7 78.3 83.0 51.6 97.8
representative 32.0 78.2 73.6 81.8 54.8 95.6
within 36.0 48.7 73.0 78.4 56.0 93.5

+similarity 37.3 81.8 11.3 100 47.0 99.5
+diverse 25.5 29.0 77.0 91.8 63.9 75.0

LLaMA-65B

zero-shot 40.5 84.6 8.0 99.4 00.4 99.8
random 44.7 76.4 73.7 86.0 54.7 96.4
similarity 52.2 79.6 74.1 83.6 61.2 93.6
diversity 49.6 60.7 82.1 84.6 49.9 93.4
representative 48.8 68.7 74.7 88.4 54.3 94.5
within 47.2 71.3 73.2 85.2 54.6 92.5

+similarity 41.0 81.5 8.6 100 44.1 99.8
+diverse 48.0 73.6 79.9 96.6 62.0 73.0

Alpaca-7B

zero-shot 28.7 87.9 2.3 99.8 35.9 92.0
random 48.8 66.1 76.7 78.2 2.2 100
similarity 52.2 82.9 82.1 79.8 10.2 98.9
diversity 45.6 78.6 80.6 83.4 0.0 100
representative 48.9 92.8 76.1 79.6 2.1 99.9
within 45.7 80.2 76.3 78.4 2.5 99.5

+similarity 49.3 80.4 8.7 100 36.2 99.5
+diverse 50.3 71.0 76.8 93.2 58.9 96.7

Alpaca-13B

zero-shot 27.7 85.7 29.0 96.0 21.9 97.2
random 34.9 84.8 18.2 99.2 35.7 98.8
similarity 38.3 78.5 34.0 95.0 36.5 99.4
diversity 37.1 74.7 1.7 100 24.6 97.4
representative 36.6 77.1 17.7 98.4 36.7 98.0
within 35.5 76.9 18.4 98.4 35.6 95.4

+similarity 44.3 74.6 11.4 100 37.3 98.0
+diverse 59.1 66.9 79.9 82.6 33.6 76.9

Table 6: Performance of open source models across datasets for demonstration selection methods that select based
on semantic similarity within the same demographic category (within + similarity) and semantic diversity within the
same demographic (within + diversity). We show results for other selection methods for context. Bold is best per
model×dataset and underlined is best per dataset (above a random classifier baseline). We shade results that have
an F1 score below a random class. baseline.
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min
θ

f(X; θ)
∆
=

1

N

N∑

i=1

L(xi; θ)+λ[max(0, ϵ(X; θ)−ϵt)]

(2)
where ϵ(X; θ) is the ϵ-DEO measure, eq. (1), for

the classifier, ϵt is the desired base fairness (in our
experiments 0), and λ is a hyper-parameter that
trades between prediction loss and fairness (Foulds
et al., 2020). Since the fairness term is differen-
tiable, the model can be trained using stochastic
gradient descent on the objective via backpropa-
gation and automatic differentiation. A burn-in
period and stochastic approximation-based update
are adopted following Foulds et al. (2020).

To obtain the best performing model, we use a
grid search for each task, with a learning rate=
[1e−4, 1e−5, 1e−6] with Adam optimizer (Kingma
and Ba, 2014), batch size= [16, 32, 48], warmup=
[.1, .05, .005], epsilon= [1e − 7, 1e − 8, 1e − 9],
burn-in= [.5, 1], λ = [.01, .1] and ρ = [.9, .1, .01].
We select the best performing model on develop-
ment data and report test data results.

C Hyperparameter Experiments

When considering the performance of LLMs for
classification it may be important finetune the hy-
perparameters for generation. In this section, we
report the result of experiments when varying the
temperature parameter across datasets. Since we
evaluate on 12 models across 3 datasets and 6
demonstration selection methods (total of 216 set-
tings), varying the temperature for all settings is not
practical. Thus, we select the best performing open-
source model, FLAN-UL2 for this experiment.

Figure 4 shows the results for performance (F1)
and fairness (1-GAP) for FLAN-UL2 across all
three datasets. We observe little difference when
varying temperature in the classification perfor-
mance and the fairness of the model across demon-
stration selection strategies.
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Figure 4: Results of varying temperature across datasets for Flan-UL2. No meaningful difference found.
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