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Abstract

The importance of rationales, or natural lan-
guage explanations, lies in their capacity to
bridge the gap between machine predictions
and human understanding, by providing human-
readable insights into why a text classifier
makes specific decisions. This paper presents
a novel multi-task rationalisation approach tai-
lored to enhancing the explainability of multi-
label text classifiers to identify indicators of
forced labour. Our framework integrates a ra-
tionale extraction task with the classification
objective and allows the inclusion of human
explanations during training. We conduct ex-
tensive experiments using transformer-based
models on a dataset consisting of 2,800 news
articles, each annotated with labels and human-
generated explanations. Our findings reveal a
statistically significant difference between the
best-performing architecture leveraging human
rationales during training and variants using
only labels. Specifically, the supervised model
demonstrates a 10% improvement in predic-
tive performance measured by the weighted F1
score, a 15% increase in the agreement between
human and machine-generated rationales, and
a 4% improvement in the generated rationales’
comprehensiveness. These results hold promis-
ing implications for addressing complex human
rights issues with greater transparency and ac-
countability using advanced NLP techniques.

1 Introduction

Multi-label text classification is a fundamental task
in Natural Language Processing (NLP) with wide-
ranging applications, including document categori-
sation, sentiment analysis and content recommen-
dation (Kowsari et al., 2019). Even though deep
learning models have achieved state-of-the-art per-
formance for text classification in the last two
decades, their black-box nature and the lack of
understanding of why they assign specific labels to
a text limits their application scope in high-stake
domains (Liu et al., 2017; Zini and Awad, 2022).

Figure 1: Example of an extractive and abstractive ra-
tionale supporting the identification of a forced labour
indicator for a news article.

Rationalisation models attempt to explain the
outcome of a text classification model by provid-
ing a natural language explanation (rationale) (Lei
et al., 2016). It has been observed that rationales are
more understandable and easier to use than other
explainability methods since they are verbalised
in human-comprehensible natural language (DeY-
oung et al., 2019; Wang and Dou, 2022). Recent
evidence suggests that generating human-readable
justifications for a model’s predictions could em-
power users to grasp the reasoning behind a clas-
sifier’s decisions, facilitating trust, accountability
and the development of user-centric applications
(Kandul et al., 2023; Zhao et al., 2023).

Rationales for explainable text classification can
be categorised into extractive and abstractive ratio-
nales (Figure 1). Extractive rationales are a subset
of the input text that supports a model’s predic-
tions, while abstractive rationales are explanations
that are not constrained to be grounded in the input
text (DeYoung et al., 2019; Liu et al., 2018).

Previous research has established that a multi-
task learning approach in training a rationalisation
model can enhance the model’s accuracy and gen-
erate more coherent and relevant explanations (Lei
et al., 2016, 2017). When a rationalisation model
is trained to classify items and explain its predic-
tions, it learns to perform both tasks simultaneously,
leveraging shared information to improve its pre-
dictions and rationales (Yu et al., 2019). Recent
evidence suggests that domain experts can play a
pivotal role in this process by providing concise
textual snippets (human rationales) that encapsu-
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late the reasons behind each classification deci-
sion (Wang and Dou, 2022; Kandul et al., 2023).

We propose a novel rationalisation framework to
explain the outcome of a multi-label text classifier
through extractive rationalisation. Our framework
uses multi-task learning to independently produce
rationales at a label level and allows the alterna-
tive of including human rationales during training
as an extra supervision signal. We employ our
framework to identify indicators of forced labour,
as defined by the International Labour Organiza-
tion (ILO, 2012), for a rationale-annotated corpus
of news articles (Mendez Guzman et al., 2022). We
hope our framework can help researchers and prac-
titioners (e.g., social scientists or policymakers) in
using supervised learning models to detect mod-
ern slavery with a more systematic approach. In
summary, the main contributions of this paper are:
(i) We present a novel rationalisation framework to
generate extractive rationales at a label level in a
multi-label setting using a multi-task learning ap-
proach and including human explanations during
training; (ii) We provide results demonstrating that
including human explanations during training can
boost predictive performance and explainability of
our rationalisation model for identifying indicators
of forced labour.

2 Related Work

Most research on extractive rationalisation has been
carried out using an encoder-decoder1 architec-
ture (Lei et al., 2016; Arous et al., 2021). The
encoder enc(x) serves as a tagging model, where
each word in the input sequence x receives a binary
tag indicating whether it is included in the rationale
z. The decoder dec(x, z) then uses only the ratio-
nales and maps them to the target vector (Paranjape
et al., 2020).

Lei et al. (2016) pioneered the idea of using a
multi-task learning approach modelling rationales
as binary latent variables. They proposed jointly
training the encoder and decoder to minimise a
cost function composed of the classification loss
and sparsity-inducing regularisation to keep the
rationales short and coherent. Considering that
minimising the expected cost is challenging since
it involves summing up all possible choices of ratio-
nales in the input sequence, they suggested training

1Not to be confused with encoder-decoder transformer
architectures, such as the Text-to-Text Transfer Transformer
(T5).

the architecture using REINFORCE-based optimi-
sation (Williams, 1992). REINFORCE works by
sampling rationales from the encoder and train-
ing the model to generate explanations using re-
inforcement learning. As a result, the model is
rewarded for producing rationales that align with
the desiderata defined in the cost function (Zhang
et al., 2021b).

Using this multi-task learning approach, re-
searchers have studied extractive rationalisation
methods for binary and multi-class text classifi-
cation (Wang and Dou, 2022). While some au-
thors have kept using the latent binary variables and
sparsity-inducing regularisation to encourage the
model to select a limited set of words as rationales
while suppressing irrelevant information (Zhao and
Vydiswaran, 2020; Paranjape et al., 2020), others
have decided to transform the binary latent vari-
ables into continuous and differentiable variables.
Reparametrisation enables smoother optimisation
without using the REINFORCE algorithm and al-
lows for fine-tuning the length of rationales (Bast-
ings et al., 2019; Madani and Minervini, 2023).

Even though research on learning with ratio-
nales has established over the last fifteen years that
incorporating human rationales during training can
improve classification performance, it is only in
the past four years that studies have started looking
into using human rationales to enhance the quality
of the generated explanations (Hartmann and Son-
ntag, 2022). Researchers have adapted the original
implementation by Lei et al. (2016), incorporating
human rationales during training by modifying the
model’s cost function by adding components to
force the generated rationales to be similar to the
human explanations (DeYoung et al., 2019; Strout
et al., 2019; Arous et al., 2021).

Our rationalisation approach draws inspiration
from the work of Lei et al. (2016) and Bastings et al.
(2019) around using multi-task learning to enhance
predictive performance and explainability when
training the encoder-decoder architecture. Follow-
ing work by DeYoung et al. (2019) and Arous et al.
(2021), we also explore using human explanations
during training as an extra supervision signal and
check whether it significantly impacts the results of
our framework. However, our work extends theirs
by focussing on independently producing rationales
tailored to each predicted label using pre-trained
language models.
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Figure 2: Framework for Explainable Multi-Label Text Classification through Multi-Task Extractive Rationalisation.
The encoder processes the input sequences (X) to extract the rationales (Ẑ) at a label level. The rationales are then
input to the decoder to predict the target labels (Ŷ ). The encoder and decoder are trained jointly via REINFORCE-
based optimisation using a loss function composed by the Classification Loss (Y, Ŷ ), a Rationale Regularisation
(Ẑ), and an additional Rationale Prediction Loss (Z, Ẑ) in the case of the supervised rationale extraction variant.

3 Explainable Text Classification
Framework

In this section, we detail our framework for ex-
plainable text classification based on a multi-task
learning implementation of the encoder-decoder
architecture (Lei et al., 2016) to produce rationales
at a label level for a multi-label setting. The en-
coder is the module responsible for identifying the
rationales within the input sequence at a label level,
and the decoder is tasked with predicting labels
based on the generated rationales (Bastings et al.,
2019; Madani and Minervini, 2023).

It is important to note that our framework allows
human rationales to be included as an extra supervi-
sion signal during training. Throughout our paper,
we refer to the architecture using target labels and
human rationales during training as ‘supervised ra-
tionale extraction’ and refer to the implementation
using only target labels as ‘unsupervised rationale
extraction’. Figure 2 describes our framework in
terms of its input data, encoder, decoder and loss
function.

Input Data The input data for our framework is
composed of input sequences (X), target labels (Y )
and, optionally, human rationales (Z). Target labels
are encoded as C-dimensional vectors using one-
hot-encoding (Zhang and Zhou, 2013), where C is

the number of classes. As mentioned before, the
human rationales are snippets of the input sequence
that support labelling decisions at the label level.
The human rationales for each input sequence are
subsequently post-processed and represented in a
C × L matrix format, where L is the maximum
sequence length associated with the tokenisation
applied over the input sequence (Arous et al., 2021).
Each row corresponds to a rationale for a specific
label, and it is filled with binary tags that indicate
whether the token was selected to be part of the
human explanation or not. We refer to Appendix A
for a detailed input data example.

Encoder Drawing inspiration from the encoder-
decoder architecture proposed by Lei et al. (2016)
and DeYoung et al. (2019), we employ a pre-trained
language model such as BERT (Devlin et al., 2018),
to induce contextualised representation of tokens.
The encoder generates a scalar, denoting the proba-
bility of selecting that token as part of the rationale,
for each BERT hidden state using a set of C linear
and Bernoulli layers (Shapiro and Zahedi, 1990). It
is important to note that each linear and Bernoulli
layer works independently to produce rationales at
a label level for our multi-label classifier.

Decoder As a decoder, we use a second pre-
trained language model followed by a classifica-
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tion layer. The classification layer comprises a
dropout (Srivastava et al., 2014), a linear (Svozil
et al., 1997) and a sigmoid layers (Menon et al.,
1996). In our implementation, the decoder accepts
the tokens in the input sequence tagged as ratio-
nales by the encoder and independently predicts
each label.

Optimisation The encoder and decoder are
trained jointly via REINFORCE-based optimisa-
tion (Williams, 1992), for which we assume it is
possible to efficiently sample rationales from the
encoder (Lei et al., 2016; Arous et al., 2021). RE-
INFORCE allows us to extract rationales using
reinforcement learning, where our model is re-
warded for producing explanations that align with
the desiderata defined in our loss function (Zhang
et al., 2021b). One of the advantages of this ap-
proach is that it is flexible enough to allow us to ex-
periment with variants of the architecture in which
we train it with and without rationale-level annota-
tions.

Loss Function For the unsupervised rationale
extraction variant, the loss function is a composite
of the classification loss and a regulariser over the
rationale selection. Following Lei et al. (2016),
we guide the encoder to extract short and coherent
explanations by penalising the number of words in
rationales and discouraging transitions. In this way,
the encoder should select only a few words, and
those rationales should form phrases rather than
isolated and disconnected words (Bastings et al.,
2019; Arous et al., 2021). In the variant using
human rationales during training, we incorporate
an additional component made by the cross-entropy
loss over rationale predictions (Strout et al., 2019;
DeYoung et al., 2019). We refer to Appendix B for
the mathematical formulation of the loss function.

Evaluation The goal of our rationalisation frame-
work is to simultaneously enhance predictive per-
formance and explainability by identifying concise
and relevant rationales. We evaluate the outcome
of our architecture from various perspectives, at-
tempting to assess the extent to which it meets the
expectations of different stakeholders, especially
end-users and developers (Doshi-Velez and Kim,
2017; Carton et al., 2020).

We utilise a set of widely used metrics for multi-
label classification to evaluate the predictive per-
formance. Even though our primary metric will
be the weighted F1 score as it considers the class

imbalance in our corpus (Feldman et al., 2007),
we also calculate the Label Ranking Average Pre-
cision (LRAP) (Ghamrawi and McCallum, 2005)
and the Exact Match Ratio (EMR) (Feldman et al.,
2007). While LRAP assesses the classifier’s rank-
ing performance by quantifying how well it orders
the labels in terms of relevance, EMR evaluates
the classifier’s precision in predicting all labels cor-
rectly for a given instance. These metrics offer a
robust evaluation framework addressing precision,
ranking and overall label prediction accuracy.

To assess the quality of the machine-generated
rationales, we measure their plausibility and faith-
fulness. Plausibility reflects whether the rationales
make sense to domain experts or end users, while
faithfulness assesses the alignment between the ra-
tionales and the model’s actual decision-making
process (Mohseni et al., 2018; Lertvittayakumjorn
and Toni, 2019; Carton et al., 2020). This dual
evaluation ensures that the explanations are human-
understandable and faithfully represent the model’s
reasoning, enhancing their overall utility and trust-
worthiness (Doshi-Velez and Kim, 2017; Hase and
Bansal, 2020).

Since measuring exact matches between human
rationales (zij) and machine-generated explana-
tions (ẑij) for the same input sequence i and class
j is likely too harsh, we evaluate plausibility using
the Intersection-over-Union (IoU) at the token level
as it is a more relaxed measure to compare two text
sequences (DeYoung et al., 2019):

IoU(zij , ẑij) =
|zij ∩ ẑij |
|zij ∪ ẑij |

(1)

We count an extracted rationale as a match if it
overlaps with the human rationale by more than
some threshold (0.5 in our case):

match =

{
1 if IoU(zij , ẑij) > threshold
0 otherwise

(2)

Finally, we use these matches to derive an F1
score at the label level and weight them according
to the number of items on each class to calculate a
weighted average (DeYoung et al., 2019; Paranjape
et al., 2020; Chan et al., 2021).

For measuring faithfulness, we calculate suffi-
ciency and comprehensiveness as defined by DeY-
oung et al. (2019), using m(xi)j as the original
prediction for the item i provided by a model m
for the predicted class j. Similarly, m(zij)j and
m(xi\zij)j are the predicted probability for the
same class using only the rationales, and using the
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input sequence once the rationales were removed,
respectively.

Sufficiency (Suff) assesses whether the snippets
in the rationales are adequate to make a prediction
(Equation 3).

Suff = 1−max(0,m(xi)j −m(zij)j) (3)

Comprehensiveness (Comp) captures the degree
to which all relevant features to make a prediction
were selected as rationales (Equation 4).

Comp = max(0,m(xi)j −m(xi\zij)j) (4)

Sufficiency and comprehensiveness scores go
from zero to one, with one being the best score
possible. Following these definitions, a faithful
rationale should have high sufficiency and com-
prehensiveness (Zhang et al., 2021a; Chan et al.,
2021). All the metrics cited above are calculated at
a label level and then aggregated into a weighted
average to account for the class imbalance in our
dataset.

4 Experimental Design

We conduct experiments using various pre-trained
language models to compare and contrast the re-
sults of the unsupervised and supervised rationale
extraction architectures on our dataset.2

4.1 Dataset

Forced labour refers to situations in which individ-
uals are coerced to work against their will through
the use of violence, intimidation, or other forms
of exploitation (ILO, 1930). According to figures
from the International Labour Organization (ILO)
and Walk Free, an estimated 27.6 million peo-
ple worldwide were victims of forced labour in
2022 across various industries, including agricul-
ture, construction, and domestic work (Free et al.,
2022).

The dataset utilised in this study is the RaFoLa
dataset v.2.0 curated by Mendez et al. (2022)
to promote research on explainability and re-
leased under the Creative Commons Attribution-
NonCommercial 4.0 International License (CC-
BY-NC-4.0)3. The second release of the RaFoLa
dataset comprises a collection of 2,800 news arti-
cles retrieved from specialised data sources, such

2The code will be made publicly available upon paper
acceptance.

3https://creativecommons.org/licenses/by-nc/4.
0/legalcode

as the Traffik Analysis Hub (TAH, 2012), and anno-
tated by researchers and domain experts to identify
indicators of forced labour. Each news article is
annotated in a multi-label text classification man-
ner based on the eleven indicators of forced labour
defined by ILO (2012). Additionally, the annota-
tors have selected phrases and sentences to support
their labelling decisions at a label level. These snip-
pets extracted from the original text are the human
rationales used for training our supervised rational-
isation architecture and evaluating the plausibility
of the generated rationales. For detailed informa-
tion about the dataset’s label distribution, we refer
the reader to Appendix C.

4.2 Training
Since there is a relatively small body of literature
on using state-of-the-art NLP methods in the hu-
manitarian domain, we decided to explore a set of
BERT variations for our explainable framework,
considering the trade-off between performance and
computational cost (Bliss et al., 2021).

Based on work of Mendez et al. (2022) on text
classification to identify forced labour, we utilised
the following transformer-based models available
on Hugging Face (Wolf et al., 2019):

• DistilBERT (Sanh et al., 2019): A com-
pressed and smaller version of BERT leverag-
ing knowledge distillation during the training
phase.

• ALBERT (Lan et al., 2019): A light version
of BERT that introduces parameter-sharing
strategies to reduce the model’s size.

• RoBERTa (Liu et al., 2019): An optimised
variant of BERT, achieved by fine-tuning train-
ing techniques and leveraging a larger corpus.
We use the ‘base’, ‘distil-roberta’ and ‘large’
versions for this model.

• XLNet (Yang et al., 2019): A generalised au-
toregressive pretraining method incorporating
a permutation-based training approach, en-
abling it to capture bidirectional context.

• DeBERTa (He et al., 2020): A variant of the
BERT model that introduces disentangled at-
tention mechanisms and performs dynamic
weight adaptation.

DistilBERT’s efficiency is advantageous
for rapid experimentation, while ALBERT’s
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Model F1 (B) F1 P S C
U

ns
up

er
vi

se
d

distilroberta-base 0.48 ± 0.03 0.55 ± 0.02 0.17 ± 0.01 0.96 ± 0.03 0.30 ± 0.02
roberta-base 0.48 ± 0.02 0.54 ± 0.01 0.13 ± 0.01 0.90 ± 0.03 0.29 ± 0.02
distilbert-base 0.50 ± 0.03 0.53 ± 0.04 0.12 ± 0.01 0.94 ± 0.02 0.27 ± 0.01
xlnet-base 0.53 ± 0.02 0.58 ± 0.02 0.19 ± 0.00 0.92 ± 0.02 0.32 ± 0.01
albert-base 0.48 ± 0.01 0.51 ± 0.02 0.15 ± 0.01 0.94 ± 0.02 0.26 ± 0.01
roberta-large 0.47 ± 0.04 0.55 ± 0.04 0.11 ± 0.00 0.91 ± 0.02 0.26 ± 0.01
deberta-base 0.52 ± 0.03 0.57 ± 0.03 0.18 ± 0.01 0.91 ± 0.03 0.31 ± 0.02

Su
pe

rv
is

ed

distilroberta-base 0.48 ± 0.03 0.57 ± 0.03 0.19 ± 0.01 0.94 ± 0.02 0.34 ± 0.02
roberta-base 0.48 ± 0.02 0.56 ± 0.03 0.14 ± 0.01 0.91 ± 0.02 0.29 ± 0.01
distilbert-base 0.50 ± 0.03 0.56 ± 0.03 0.13 ± 0.01 0.96 ± 0.03 0.28 ± 0.02
xlnet-base 0.53 ± 0.02 0.64 ± 0.04 0.22 ± 0.02 0.92 ± 0.03 0.36 ± 0.02
albert-base 0.48 ± 0.01 0.57 ± 0.05 0.16 ± 0.01 0.95 ± 0.02 0.27 ± 0.02
roberta-large 0.47 ± 0.04 0.57 ± 0.04 0.11 ± 0.00 0.89 ± 0.03 0.28 ± 0.01
deberta-base 0.52 ± 0.03 0.62 ± 0.04 0.20 ± 0.01 0.90 ± 0.02 0.31 ± 0.01

Table 1: Cross-validation results for the unsupervised and supervised architectures F1 (B): Baseline weighted F1
Score using the whole input sequence F1: Weighted F1 Score P: Plausibility. S: Sufficiency C: Comprehensiveness

parameter-reduction techniques allow us to reduce
model size without sacrificing its predictive
performance (Sanh et al., 2019; Lan et al., 2019).
RoBERTa’s robustness, XLNet’s bidirectional
context capture, and DeBERTa’s attention mecha-
nisms all provide a versatile toolkit for improving
our rationalisation framework’s performance and
explainability capabilities (Liu et al., 2019; Yang
et al., 2019; He et al., 2020).

We leverage the power of the EGG toolkit
to implement our multi-task learning rationali-
sation approach for explainable text classifica-
tion (Kharitonov et al., 2021). EGG is a Pytorch-
based (Paszke et al., 2019) toolkit that allows re-
searchers to implement multi-agent games, where
agents are trained to communicate and jointly
solve a task. EGG’s flexible and user-friendly
APIs allowed us to train our architecture using
the transformer-based models listed above with
REINFORCE-based optimisation. Moreover, it
is essential to note that EGG includes an easy-to-
adapt boilerplate code to include human rationales
during training with minimal changes in the imple-
mentation logic.

We split the RaFoLa dataset (v.2.0) into training,
validation and test sets according to a 70:10:20 ra-
tio using stratified sampling (Neyman, 1992) and
search for the hyperparameter values that minimise
the corresponding loss function over the validation
set for the unsupervised and supervised variants
of our rationalisation architecture. To optimise the
training process, we tuned the architecture hyperpa-
rameters using a random search method (Bergstra

and Bengio, 2012) and ran ten training runs, one
for each combination of hyperparameters. Each
trial was fine-tuned for twenty-five epochs on the
training set. For a detailed description of the hyper-
parameter tuning process and its results, we refer
the reader to Appendix D.

Finally, we merged the training and validation
sets in preparation for evaluating the architectures.
We utilised k-fold validation (k=5) (Anguita et al.,
2012), where each fold was trained for a hundred
epochs using the hyperparameters selected by the
search method described above. Finally, we used
t-test (Student, 1908) and ANOVA (Girden, 1992)
analysis to determine if there are statistically sig-
nificant differences among the different variants of
our architecture.

To ensure consistency and comparability of our
results, all our models were trained and evaluated
on a Google Colab (Bisong and Bisong, 2019) run-
time equipped with an NVIDIA A100 GPU with
40 GB of memory.

5 Results and Discussion

Table 1 shows the results obtained for each unsuper-
vised and supervised rationalisation architecture in
the cross-validation test sets in terms of each met-
ric’s mean and standard deviation.

Results from the ANOVAs, performed separately
for each performance and explainability indicator
using a significance level of 0.05, suggest a statis-
tically significant difference in the architectures’
performance in all metrics.

We replicate the experiments described by
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Label F1 P S C
Abuse of vulnerability 0.41 ± 0.04 0.06 ± 0.02 0.92 ± 0.03 0.09 ± 0.02

Abusive working and living conditions 0.79 ± 0.04 0.30 ± 0.03 0.94 ± 0.02 0.25 ± 0.04
Debt bondage 0.61 ± 0.03 0.48 ± 0.02 0.92 ± 0.02 0.55 ± 0.07

Deception 0.56 ± 0.04 0.13 ± 0.08 0.85 ± 0.05 0.31 ± 0.03
Excessive overtime 0.67 ± 0.05 0.16 ± 0.07 0.90 ± 0.04 0.63 ± 0.02

Intimidation and threats 0.26 ± 0.07 0.09 ± 0.03 0.89 ± 0.04 0.53 ± 0.08
Isolation 0.64 ± 0.06 0.06 ± 0.02 0.92 ± 0.03 0.24 ± 0.02

Physical and sexual violence 0.42 ± 0.10 0.35 ± 0.02 0.95 ± 0.01 0.57 ± 0.03
Restriction of movement 0.90 ± 0.03 0.14 ± 0.03 0.73 ± 0.09 0.50 ± 0.03

Retention of identity documents 0.29 ± 0.11 0.04 ± 0.01 0.68 ± 0.08 0.53 ± 0.02
Withholding of wages 0.58 ± 0.07 0.08 ± 0.02 0.77 ± 0.09 0.43 ± 0.03

Table 2: Cross-validation results for the best-performing supervised architecture (XLNet) F1: Weighted F1 Score P:
Plausibility. S: Sufficiency C: Comprehensiveness

Mendez Guzman et al. (2022) using the RaFoLa
dataset (v.2.0) and use the weighted F1 score as
a baseline for the predictive performance of our
framework. From this data, it can be seen that
there is an increase in the average predictive per-
formance when comparing our unsupervised ratio-
nalisation architecture with transformer-based clas-
sifiers using the whole input sequence as an input.
For LRAP and EMR scores for each architecture,
we refer the reader to Appendix E.

What stands out in Table 1 are the high suffi-
ciency scores for all architectures, regardless of
whether they exploit human rationales during train-
ing and the transformer model they are based on.
The sufficiency scores of 0.9 or above on aver-
age, indicate that the generated rationales provide
enough information to justify the classification out-
come (DeYoung et al., 2019; Bastings et al., 2019;
Paranjape et al., 2020). However, there is room for
improvement regarding the plausibility and compre-
hensiveness of the machine-generated explanations.
Low plausibility signifies that the extracted ratio-
nales differ from the snippets the domain experts
picked, potentially undermining the model’s trust
in a real-world setting (Strout et al., 2019; Arous
et al., 2021). Additionally, low comprehensiveness
suggests that the rationales fail to encompass the
essential information, including more information
than necessary, potentially reducing the explana-
tion’s effectiveness (Doshi-Velez and Kim, 2017;
Carton et al., 2020).

The implementation based on the XLNet model
performed the best among the unsupervised ar-
chitectures in all metrics except for the suffi-
ciency. Data from previous research suggests that
permutation-based training of this model, which

captures bidirectional context efficiently, might en-
hance our architecture’s predictive performance
and rationales’ quality (Mendez Guzman et al.,
2022; Kashapov et al., 2022).

Regarding the supervised rationalisation models,
data in Table 1 shows that incorporating human
rationales during training enhances the model’s
performance and explainability. The ANOVA anal-
ysis revealed a significant difference between the
unsupervised and supervised rationalisation archi-
tectures in the F1 score, plausibility and compre-
hensiveness scores. Even though the difference
in the sufficiency scores between the two variants
was not statistically significant, results of the super-
vised architectures are still around 0.9 on average.
We refer the reader to Appendix E for detailed
results regarding LRAP and EMR scores for the
supervised rationalisation architectures.

Similar to the results for the unsupervised ra-
tionalisation models, the architecture based on the
XLNet model performed best among the super-
vised variants. Results show a 10%, 15%, and 4%
improvement in F1 score, plausibility and compre-
hensiveness, compared to the unsupervised archi-
tecture based on the same model. It is worth noting
that these results are significant at a p = 0.05 level.

Table 2 presents results at the forced labour in-
dicator level for the supervised rationalisation ar-
chitecture based on the XLNet model. A closer
inspection of the table shows the disparity in the
results among indicators of forced labour. While
there are labels such as ‘Debt bondage’ and ‘Physi-
cal and sexual violence’ where the model performs
significantly better than the overall results, there
are also indicators, namely ‘Retention of identity
documents’ and ‘Withholding of wages’, where
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Figure 3: Examples of “good” (✓) and “bad” (×) rationales extracted using the supervised rationalisation architecture
based on the XLNet model. Human rationales are depicted in bold for each example, while the machine-generated
rationales are underlined.

the model is not able to identify nor explain them
adequately.

Figure 3 presents examples of some “good” and
“bad” rationales extracted using the supervised
rationalisation architecture based on the XLNet
model. On average, machine-generated rationales
are 37% shorter than human rationales. “Good” ra-
tionales are often a subset of the human rationales
containing the most relevant information regard-
ing the predicted forced labour indicator. In con-
trast, “bad” machine-generated rationales are either
too short or have no intersection with the human-
provided explanations. In both cases, the IoU
scores are very low, directly affecting the gener-
ated rationales’ plausibility (DeYoung et al., 2019;
Carton et al., 2020).

The results of our rationalisation approach may
vary among labels due to differences in the num-
ber of news articles per indicator and the intrinsic
complexity associated with each label (Ghamrawi
and McCallum, 2005; Lertvittayakumjorn and Toni,
2019; Carton et al., 2020). Labels with fewer ex-
amples (e.g., “Retention of identity documents”)
or inherently complex criteria (e.g., “Intimidation
and threats”) may exhibit more significant vari-
ability in rationalisation performance compared
to labels with readily available training data (e.g.,
“Abusive working and living conditions”) and more
distinctive language characteristics (e.g., “Debt
bondage”) (ILO, 2012; Mendez et al., 2022).

We observe that our rationalisation approach ex-
ploiting rationale-level supervision often improves

the predictive performance and rationales’ quality,
as in prior work (Zhang et al., 2016; Strout et al.,
2019; Arous et al., 2021). Nevertheless, there is a
disparity in the results among labels where ratio-
nales for less-represented forced labour indicators
tend to have low predictive performance and shal-
low agreement with human-provided rationales.

6 Conclusions

Forced labour is the most common type of mod-
ern slavery, affecting an estimated 27.6 million
people worldwide. Explainable text classification
can aid stakeholders, such as NGOs, police forces,
and policy-makers, in understanding, addressing,
and preventing the spread of forced labour by em-
powering them with actionable insights (Tambe
and Tambay, 2020; Weinberg et al., 2020). In this
work, we presented a novel multi-task rationalisa-
tion framework to extract rationales at a label level
in a multi-label setting that allows the inclusion of
human explanations during training. Our experi-
ments showed that using human rationales as an
extra supervision signal can improve the classifi-
cation performance of our model while enhancing
the quality of the generated explanations. Whilst
the small number of cases limits the results of our
framework in some of the forced labour indicators,
it offers valuable insights into cases of “Abusive
working and living conditions” and “Restriction
of movement”, among other indicators. In the fu-
ture, we will focus on improving the framework’s
performance for less-represented labels.
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7 Limitations

We attempted to develop a novel framework for ex-
plainable multi-label text classification in a multi-
task setting using human explanations as additional
supervision signals during training. However, our
approach is subject to certain limitations, as enu-
merated below: (i) Since our rationalisation ap-
proach uses human rationales during training, there
is the potential for limited or biased annotations
which may not cover the full range of possible
rationales. One could consider employing data aug-
mentation techniques to create additional diverse
rationales or incorporating more expert feedback
to enhance the diversity and representativeness of
the training dataset. (ii) A limitation of evaluating
the machine-generated rationales using only plau-
sibility and faithfulness metrics is that these may
not fully capture the utility of the explanations for
end-users. One could incorporate additional user–
centric evaluation metrics obtained through user
studies or feedback to provide a more comprehen-
sive assessment of rationale quality from the user’s
perspective. (iii) The proposed methodology has
been validated on an English-based dataset. Fur-
ther research would be required to scale up to other
languages prevalent in regions and countries where
forced labour is more widespread.

8 Ethics Statement

One potential harm of our rationalisation approach
to identify indicators of forced labour is the risk
of inadvertently revealing sensitive information
through the generated rationales, which could jeop-
ardise the safety of victims. Additionally, if not
carefully trained and implemented, the methodol-
ogy may be exploited to produce misleading expla-
nations, potentially hindering the accurate identifi-
cation of forced labour indicators. To address con-
cerns around potential harms, we believe that our
framework should be used by data professionals
and domain experts trained to handle and analyse
sensitive information and interpret the rationalisa-
tion results appropriately.
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A Input Data

Here is a description of the input data of our multi-task rationalisation framework

• News article: Original text.

• Human Rationales: Human explanations at a label level, including an index of the first character, an
index of the last index, the snippet justifying the label, and the indicator of forced labour.

• Rationale Mask: The human rationales’ matrix format is filled with binary tags indicating the tokens
selected as rationales per label.

• Labels: Target labels encoded as C-dimensional vectors using one-hot-encoding.

Below, we provide an example of each of the above-mentioned elements.
news article’: “But the job wasn’t what he expected. He found himself held captive in a call centre,

forced to scam foreigners, including Australians, out of thousands of dollars. After arriving in Cambodia
at the start of May last year, John Doe was taken to a compound with about 70 other people, he says. His
passport was confiscated and he was taught how to scam victims online, tricking Australians, Europeans
and Chinese into handing over their money”

‘human rationales’:[[37, 83, ‘He found himself held captive in a call centre’, ‘Restriction of
movement’] [222, 278, ‘John Doe was taken to a compound with about 70 other people’, ‘Restriction of
movement’], [289, 317, ‘His passport was confiscated’, ‘Retention of identity documents’]

‘rationale mask’:
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]

Labels: [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]
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B Loss Function Details

Before describing the loss function, we would like to remind you of the inputs and outputs of our
framework and their dimensions:

• Inputs: Input Sequence (B × L), Labels (B × C), and Human Rationales (B × C × L).

• Outputs: Predicted Labels (B × C) and Extracted Rationales (B × C × L).

B corresponds to the batch size, C is the number of classes, and L is the maximum sequence length.
The loss function is a composite of the classification loss and a regularisation over rationale selection.

Additionally, we incorporate a loss over rationale prediction in the variant using human rationales.
Compiling all the components, the total loss averaged over the batch size is (Equation 5):

Loss = Classification Loss + Length Regularisation + Sparsity Regularisation + Rationale Loss (5)

B.1 Classification Loss
The binary cross-entropy loss with logits for the whole batch is averaged across all instances B and all
classes C (Equation 6):

Classification Loss = − 1

B

B∑

i=1

C∑

j=1

1

C
[yij · log(σ(ŷij)) + (1− yij) · log(1− σ(ŷij))] (6)

Here, yij and ŷij denote the true labels and predicted logits for the j-th class of the i-th instance in the
batch, respectively. This formula captures the binary classification loss for each class within each example
in the batch.

B.2 Length Regularisation
This component of the loss function (Equation 7) penalises the total length of the rationale to encourage
compact rationales:

Length Regularisation =
λ

B

B∑

i=1

C∑

j=1

L∑

k=1

ẑijk (7)

ẑijk are the elements of the extracted rationale, with λ serving as the regularisation coefficient.

B.3 Sparsity Regularisation
To encourage minimal changes between adjacent rationale elements, the sparsity regularisation is defined
as (Equation 8):

Sparsity Regularisation =
γ

B

B∑

i=1

C∑

j=1

L−1∑

k=1

|ẑi,j,k+1 − ẑijk| (8)

Here, γ is the coherence factor, emphasising minimal variation between adjacent elements in the
extracted rationale, enhancing the coherence of selected rationales.

B.4 Rationale Classification
The loss for rationale classification against the human rationales can be expressed with binary cross-entropy
as follows (Equation 9):

Rationale Prediction = − 1

B

B∑

i=1

C∑

j=1

L∑

k=1

[zijk log(σ(ẑijk)) + (1− zijk) log(1− σ(ẑijk))] (9)

ẑijk represents elements of the human rationale used for rationale comparison.
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C Label Distribution in the Dataset

Table 3 illustrates the number of news articles assigned to each forced labour indicator and the percentage
with respect to the total number of articles in the corpus.

Label # News Articles % of the Total
Abuse of vulnerability 731 26.09

Abusive working and living conditions 594 21.20
Debt bondage 107 3.81

Deception 107 3.81
Excessive overtime 160 5.71

Intimidation and threats 30 1.09
Isolation 15 0.54

Physical and sexual violence 289 10.33
Restriction of movement 46 1.63

Retention of identity documents 30 1.09
Withholding of wages 46 1.63

Table 3: Distribution of the number of labels

D Hyperparameter Tuning

Here are the details of the hyperparameter tuning process used in our experiments, including a brief
description of each hyperparameter.

• Regularisation - Length (λ): The length rationale regularisation term aims to control the length of
generated rationales by penalising models for producing excessively long or verbose explanations
during training.

• Regularisation - Sparsity (γ): The sparsity regularisation term encourages continuity of selections
in the generated rationales, discouraging transitions or isolated words as explanations during training.

• Entropy Coefficient: The entropy coefficient modulates the exploration-exploitation trade-off of the
REINFORCE algorithm by adding a penalty term based on the entropy of the rationale distribution.

• Rationale Threshold: Threshold value is used to determine which tokens are included in the
generated rationales, allowing the model to select only features surpassing the predefined threshold
during inference.

Table 4 describes the search space for each hyperparameter in terms of their sampling distribution and
possible values. As mentioned in Section 4, these values were tuned for each classifier using a random
search method.

Hyperparameter Distribution Value ranges
R - Length (λ) random [0.03, 0.06, 0.09, 0.12, 0.15]
R - Sparsity (γ) random [0.06, 0.12, 0.18, 0.24, 0.30]

Entropy Coefficient random [0.05, 0.10, 0.15, 0.20, 0.25]
Threshold random [0.40, 0.45, 0.50, 0.55, 0.60]

Table 4: Hyperparameter search space

Table 5 and table 6 shows the hyperparameter values used for the unsupervised and supervised
architectures, respectively.
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Model R - Length (λ) R - Sparcity (γ) Entropy Coefficient RS - Threshold
distilbert-base 0.03 0.12 0.05 0.45

albert-base 0.03 0.18 0.05 0.50
roberta-base 0.09 0.12 0.10 0.40

distilroberta-base 0.06 0.06 0.05 0.50
roberta-large 0.09 0.18 0.10 0.55

xlnet-base 0.03 0.06 0.05 0.45
deberta-base 0.06 0.12 0.15 0.50

Table 5: Hyperparameters used in the unsupervised architectures.

Model R - Length (λ) R - Sparcity (γ) Entropy Coefficient RS - Threshold
distilbert-base 0.06 0.12 0.10 0.50

albert-base 0.09 0.12 0.10 0.55
roberta-base 0.03 0.06 0.05 0.55

distilroberta-base 0.12 0.18 0.15 0.55
roberta-large 0.06 0.12 0.15 0.50

xlnet-base 0.06 0.12 0.10 0.55
deberta-base 0.09 0.24 0.05 0.55

Table 6: Hyperparameters used in the supervised architectures.

E Detailed Predictive Performance Results

This section details the predictive performance, Label ranking average precision (LRAP) and exact match
ratio (EMR), for the unsupervised and supervised rationalisation architectures.

Unsupervised Architecture Supervised Architecture
Model LRAP EMR LRAP EMR

distilroberta-base 0.91 ± 0.03 0.06 ± 0.03 0.90 ± 0.02 0.08 ± 0.02
roberta-base 0.93 ± 0.02 0.08 ± 0.02 0.94 ± 0.03 0.09 ± 0.03

distilbert-base 0.85 ± 0.04 0.10 ± 0.02 0.90 ± 0.02 0.09 ± 0.01
xlnet-base 0.95 ± 0.07 0.11 ± 0.03 0.94 ± 0.04 0.09 ± 0.04
albert-base 0.87 ± 0.03 0.09 ± 0.03 0.91 ± 0.02 0.10 ± 0.02

roberta-large 0.87 ± 0.06 0.06 ± 0.02 0.88 ± 0.03 0.09 ± 0.03
deberta-base 0.93 ± 0.03 0.10 ± 0.03 0.92 ± 0.02 0.12 ± 0.04

Table 7: Cross-validation results for the unsupervised and supervised rationalisation architectures LRAP: Label
ranking average precision EMR: Exact match ratio.
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