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Abstract

This study examines the alignment of Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR) research with the principles of the
"bitter lesson" proposed by Rich Sutton. We
analyze two decades of CVPR abstracts and ti-
tles using large language models (LLMs) to as-
sess the field’s embracement of these principles.
Our methodology leverages state-of-the-art nat-
ural language processing techniques to system-
atically evaluate the evolution of research ap-
proaches in computer vision. The results reveal
significant trends in the adoption of general-
purpose learning algorithms and the utilization
of increased computational resources. We dis-
cuss the implications of these findings for the
future direction of computer vision research
and its potential impact on broader artificial in-
telligence development. This work contributes
to the ongoing dialogue about the most effec-
tive strategies for advancing machine learning
and computer vision, offering insights that may
guide future research priorities and methodolo-
gies in the field.

1 Introduction

Rich Sutton’s influential essay "The Bitter Lesson"
argues that the most significant advancements in
artificial intelligence (AI) have come from focus-
ing on general methods that leverage computation
rather than human-designed representations and
knowledge. This principle has been particularly ev-
ident in the field of Computer Vision (CV), which
has witnessed a notable shift from hand-crafted
features to deep learning models.

In this paper, we investigate the extent to which
the abstracts of the Conference on Computer Vision
and Pattern Recognition (CVPR), a major machine
learning (ML) conference, align with the principles
of the "bitter lesson" over a span of 20 years. We
analyze a random sample of 200 papers each year,
addressing the following research questions:

• How has the focus on general methods and
computation evolved in CVPR abstracts over
the past two decades?

• What trends can be observed in the adoption
of deep learning techniques and the shift away
from hand-engineered features?

• To what extent do the abstracts reflect the key
insights of Sutton’s "bitter lesson," and how
has this alignment changed over time?

• Is there a significant relationship between a
paper’s alignment with the "bitter lesson" prin-
ciples and its impact, as measured by citation
count?

To address these questions, we employ large
language models (LLMs), which themselves are a
prime manifestation of principles outlined in the
"bitter lesson", to analyze the CVPR abstracts. The
evaluation is based on five metrics assigned by the
LLMs, providing a comprehensive assessment of
the alignment between the abstracts and the "bitter
lesson."

Our research provides valuable insights into the
overall direction of the ML community and reveals
interesting trends in the adoption of Sutton’s princi-
ples. By leveraging LLMs to analyze a large body
of research literature, we offer a novel approach
to understanding the learning and evolution of a
scientific field. This method allows us to uncover
patterns and trends that may not be immediately
apparent through traditional research methods, pro-
viding a more comprehensive understanding of the
current state of ML research and its alignment with
the principles that have proven most effective in
driving progress in AI.

The potential impact of our findings on future
CV research directions is significant. By identify-
ing trends in the adoption of general methods and
deep learning techniques, we can inform the devel-
opment of foundation models for CV at the state
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of the art. These insights contribute to a deeper
understanding of the current state of ML research
and highlight potential areas for further exploration
and growth in the field.

2 Background

2.1 The Bitter Lesson

The field of artificial intelligence (AI) has wit-
nessed a paradigm shift, eloquently articulated in
Rich Sutton’s influential essay "The Bitter Les-
son" (Sutton, 2019). Sutton’s thesis emphasizes
the primacy of general methods that harness com-
putational power over human-designed represen-
tations and domain-specific knowledge. This per-
spective echoes the seminal work of Leo Breiman,
who, two decades earlier, delineated the dichotomy
between statistical and algorithmic approaches in
his paper "Statistical Modeling: The Two Cul-
tures" (Breiman, 2001). Breiman’s insights, along
with subsequent works like (Halevy et al., 2009),
have profoundly shaped our understanding of data-
driven methodologies in AI.

2.2 Evolution of Computer Vision

The field of Computer Vision (CV) exemplifies the
principles of Sutton’s "bitter lesson." Traditionally
reliant on hand-crafted features like SIFT, HOG,
and Haar cascades for object detection and im-
age classification, CV underwent a paradigm shift
with embracing deep learning, particularly Convo-
lutional Neural Networks (CNNs). This transition
enabled the automatic learning of hierarchical fea-
tures directly from raw image data, eliminating the
need for manual feature engineering and signifi-
cantly improving performance across various CV
tasks.

The 2012 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) marked a pivotal mo-
ment in this evolution. AlexNet, a CNN architec-
ture, achieved a remarkable 15.3% top-5 error rate,
outperforming previous models by over 10 percent-
age points. This breakthrough was facilitated by
the convergence of ImageNet’s massive annotated
dataset, advancements in CNN architectures, GPU
computing power, and foundational work of vision-
ary researchers.

The subsequent emergence of foundation models
further aligned CV with Sutton’s principles. Mod-
els like CLIP, ALIGN, and Florence demonstrate
remarkable adaptability across diverse tasks with
minimal fine-tuning, leveraging extensive multi-

modal datasets to learn rich, transferable repre-
sentations. For instance, the Florence model has
achieved state-of-the-art results by integrating uni-
versal visual-language representations from web-
scale image-text data (Bayoudh et al., 2021).

This evolution from traditional feature engineer-
ing to deep learning and foundation models in CV
underscores the importance of leveraging computa-
tion and vast datasets for superior performance and
generalization. For a comprehensive overview of
these advancements, readers may refer to Minaee
et al. (2020), which details recent progress in deep
learning for image segmentation.

2.3 Large Language Models in Academic
Evaluation

The integration of Large Language Models (LLMs)
into the evaluation of academic texts has emerged
as a significant area of interest. LLMs, such as
GPT-4, have demonstrated remarkable capabilities
in processing and analyzing large volumes of infor-
mation quickly, making them suitable for various
applications, including the assessment of academic
literature. For instance, research has shown that
LLMs can effectively assist in title and abstract
screening for literature reviews, which is crucial in
the biomedical domain (Dennstädt, 2024). More-
over, LLMs have been employed to perform qual-
itative data analysis, producing consistent results
across multiple iterations (Tai et al., 2023).

In addition to their analytical capabilities, LLMs
have been shown to possess a degree of human-like
judgment in evaluating the quality of text. The G-
EVAL framework, which utilizes LLMs to assess
the quality of natural language generation outputs,
demonstrates that LLMs can align closely with
human evaluators in certain contexts (Liu, 2023).
However, the deployment of LLMs in academic
evaluation is not without challenges. LLMs can
exhibit biases similar to those found in human judg-
ments, which may affect the fairness and accuracy
of their evaluations (Acerbi, 2023). Furthermore,
the phenomenon of "hallucination," where LLMs
produce plausible but factually incorrect informa-
tion, poses a risk in academic contexts (Buchanan,
2023).

The role of LLMs in answering questions and
generating hypotheses also merits attention. Their
ability to provide detailed responses to complex
queries has been leveraged in various educational
settings, enhancing learning experiences and fa-
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cilitating knowledge acquisition (Polverini, 2024).
However, the tendency of LLMs to produce ver-
bose outputs can sometimes obscure the clarity of
their answers, necessitating careful prompt engi-
neering (Yeadon, 2024). In the context of academic
research, LLMs can assist in generating hypotheses
and guiding exploratory studies, contributing to the
advancement of knowledge in various fields (Irons
et al., 2023).

Despite the promising applications of LLMs in
academic evaluation and research, it is crucial to es-
tablish ethical guidelines and best practices for their
use. The potential for misuse, such as generating
misleading information or facilitating academic dis-
honesty, necessitates careful consideration of the
implications of LLM deployment in educational
and research contexts (Urman, 2023).

3 Methodology and Evaluation

3.1 LLM Evaluation of Titles and Abstracts
We employ three large language models to evaluate
the title and abstracts of CVPR papers from 2005
to 2024: GPT-4o-2024-05-13, gpt-4o-mini-2024-
07-18, and claude-3-5-sonnet-20240620. The fol-
lowing information is extracted from online portals
and stored in a database for each paper: Publi-
cation year (2005-2024), Title, Authors, Abstract.
For each paper, the citation count from Semantic
Scholar API is also queried on July 20th 2024, and
stored alongside the other metadata. The total num-
ber of papers per year is shown in Figure 1.

Each LLM model is tasked with assigning a Lik-
ert score of 0-10 for how well the paper aligns with
the principles of Sutton’s "bitter lesson." We use
the Chain-of-Thought Prompting technique with
Magentic library to interface with the models and
collect their responses in a structured format for
analysis (Collins et al., 2024). The prompts used
in this study are included in the appendix for repro-
ducibility.

We define five dimensions for "bitter lesson"
alignment:

1. Learning Over Engineering: To what ex-
tent does the idea prioritize leveraging com-
putation through data-driven learning and
statistical methods over relying on human-
engineered knowledge, heuristics, and domain
expertise?

2. Search over Heuristics: To what degree
does the idea emphasize leveraging compu-

tation through search algorithms and opti-
mization techniques rather than depending
on human-designed heuristics and problem-
specific strategies?

3. Scalability with Computation: To what ex-
tent is the idea based on methods that can
continuously scale and improve performance
as the available computational resources in-
crease?

4. Generality over Specificity: To what degree
does the approach emphasize general, flexi-
ble, and adaptable methods that can learn and
capture arbitrary complexity from data rather
than attempting to build in complex and de-
tailed models of the world through manual
engineering and domain-specific knowledge?

5. Favoring Fundamental Principles: To what
extent does the approach adhere to fundamen-
tal principles of computation, mathematics,
and information theory rather than focusing
on emulating the specific details of human
cognition or biological intelligence?

The prompts were designed to capture the
essence of each "bitter lesson" dimension concisely
and objectively. To anchor the ratings, we provide
examples for the 0, 5, and 10 points on each dimen-
sion, clarifying the criteria and ensuring consistent
evaluations. The prompts are formatted consis-
tently to facilitate easy processing and understand-
ing by the models.

Given the vast number of publications, our study
focuses on a representative random sample of 200
papers from each year of CVPR proceedings. We
define the overall alignment score for each paper
as the sum of scores across five dimensions. In
the absence of human-evaluated ground truth, we
employ multiple inter-rater reliability measures to
assess the consistency of ratings between different
models.

3.2 Inter-rater Reliability Measures

Intraclass Correlation Coefficient (ICC): We uti-
lize ICC to quantify the degree of agreement among
the models’ ratings. ICC is particularly suitable for
assessing reliability when multiple raters evaluate
the same set of items. We specifically employ the
two-way random effects model (ICC(2,k)) to ac-
count for both rater and subject effects.
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Figure 1: Total number of CVPR papers present in database for each year from 2005 to 2024.

Krippendorff’s Alpha: To complement ICC,
we also calculate Krippendorff’s Alpha, a versa-
tile reliability coefficient that can handle various
types of data (nominal, ordinal, interval, ratio) and
is robust to missing data. This measure provides
an additional perspective on the inter-rater agree-
ment, especially useful when dealing with potential
variations in rating scales or missing evaluations.

3.3 Regression Analysis

To investigate the relationship between alignment
scores and paper impact, we conduct regression
analysis using citation count as a proxy for influ-
ence. To control for the year of publication and
account for potential temporal effects, we imple-
ment yearly stratification in our regression model.
This approach allows us to isolate the impact of
alignment while considering the varying citation
patterns across different publication years.

To address the typically right-skewed distribu-
tion of citation counts Figure 2, we apply a logarith-
mic transformation to the data. This transformation
serves multiple purposes in our analysis. First, it re-
duces skewness, resulting in a more symmetric dis-
tribution that better approximates normality—a key
assumption in many statistical models. Second, it
stabilizes variance across the range of data, mitigat-
ing the heteroscedasticity often observed in citation
count data where variance tends to increase with
the mean. Finally, the log transformation linearizes
potentially multiplicative relationships, converting
them to additive ones. This facilitates more accu-
rate modeling using linear regression techniques,
particularly when the effect of predictors on cita-
tion counts is expected to be multiplicative rather
than additive. By employing this transformation,

we enhance the robustness of our statistical analy-
ses and ensure they are better suited to the inherent
characteristics of citation data in academic litera-
ture.

The results of the analysis are presented in the
following section.

4 Results

4.1 Inter-rater Reliability

Figure 3 presents the inter-rater reliability scores
for the five dimensions of "bitter lesson" alignment
across the three models employed in this study. The
horizontal dashed lines indicate common thresh-
olds for interpreting these measures, with the color
and label denoting the qualitative interpretation.
The bar colors reflect the relative strength of each
dimension. In the Krippendorff’s alpha graph, the
bar for the "Favoring Fundamental Principles" di-
mension is not visible due to its near-zero score.

The models demonstrate consistently strong
agreement on all dimensions except "Favoring Fun-
damental Principles," as evidenced by ICC values
above 0.5 and Krippendorff’s alpha scores exceed-
ing 0.4 on the remaining dimensions. The poor per-
formance on "Favoring Fundamental Principles"
may be attributed to the high adherence to this prin-
ciple in papers published since 2005. Among the
dimensions, "Learning Over Engineering" exhibits
the highest ICC and Krippendorff’s alpha scores,
indicating the models’ reliable evaluation of pa-
per alignment based on the provided prompts and
rating criteria.

Although perfect agreement is not achieved, the
inter-reliability measures fall within or above com-
mon thresholds for "good" reliability, validating
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Figure 2: Distribution of citation counts and log-
transformed citation counts for CVPR papers from 2005
to 2024 present in the database.

the use of AI models for prompt-based research
paper evaluation. It is important to acknowledge
that even with domain expert human raters, perfect
agreement is seldom attained due to the complex-
ities of research evaluation. The high reliability
scores obtained in this study demonstrate the mod-
els’ consistency in their assessments, providing a
reliable foundation for further analysis. For more
information on the challenges and limitations of
inter-rater reliability measures in human evalua-
tions of the NeurIPS conference, readers may re-
fer to (Beygelzimer et al., 2023) and (Cortes and
Lawrence, 2021).

4.2 Regression Analysis

Table 1 presents the results of the regression analy-
sis for each dimension of "bitter lesson" alignment
scores against citation impact, stratified by year of
publication. The R-squared values, ranging from
0.027 to 0.306, indicate that 2.7-30.6% of the vari-
ation in citation impact can be explained by align-
ment to "bitter lessons" dimensions. It is crucial to

interpret the coefficients for each dimension as mul-
tiplicative effects, as the log transform of citation
counts is used as the dependent variable.

In the context of this regression analysis, a multi-
plicative effect implies that a one-unit change in the
alignment score for a particular dimension leads
to a proportional change in the original scale of
the citation count. For instance, if the regression
coefficient for the "Scalability" dimension is 0.5,
a one-unit increase in the "Scalability" alignment
score would be associated with a multiplicative
effect of approximately exp(0.5) ≈ 1.65 on the
original citation count. In other words, if a paper’s
"Scalability" alignment score increases by one unit,
its citation count would be expected to increase by a
factor of 1.65, holding all other variables constant.

The statistical significance of the regression co-
efficients is denoted using *, **, and *** to rep-
resent the 10%, 5%, and 1% significance levels,
respectively. Several dimensions, such as "Scal-
ability" and "Learning over engineering," exhibit
statistically significant relationships with citation
impact across multiple years. However, given the
high degree of correlation between the dimensions,
the significance and coefficients in the regression
model should be interpreted with caution.

These findings suggest that adherence to the prin-
ciples outlined in the "bitter lesson" dimensions,
particularly "Scalability" and "Learning over engi-
neering," may have a positive influence on a paper’s
citation impact. The multiplicative nature of the
coefficients highlights the potential for substantial
increases in citation counts as alignment scores im-
prove. Nevertheless, the presence of correlations
among the dimensions necessitates a cautious in-
terpretation of the individual coefficients and their
statistical significance.

Table 2 shows the results of regressing citation
counts on the overall "bitter lesson" alignment
score for each year between 2005 and 2024. Sev-
eral key trends emerge. First, the R-squared values,
which indicate the proportion of variance in cita-
tion counts explained by the alignment scores, are
quite low for most years (generally less than 5%).
However, they increase substantially starting in
2015, reaching over 15% in some later years. This
suggests that alignment with the "bitter lessons"
became more predictive of citation impact over
time. This time period is of special interest as
it coincides with the emergence of deep learning,
and a shift towards the principles of scalability and
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Figure 3: Comparison of ICC and Krippendorff’s alpha values across the five dimensions of "bitter lesson" alignment
for the three language models used in the study.

Table 1: Regression analysis results for the relationship between "bitter lesson" alignment scores and citation impact,
stratified by year.

Year R-squared N Learning Search Scalability Generality Principles
2005 0.027 199 -0.220 0.104 0.139 0.272 -0.171
2006 0.076 200 0.016 -0.042 0.388* 0.199 -0.171
2007 0.035 200 -0.087 0.117 0.350* -0.006 -0.318*
2008 0.078 200 -0.009 0.096 0.465*** -0.026 -0.463***
2009 0.085 199 -0.073 0.136 0.104 0.378* -0.631***
2010 0.074 200 0.121 -0.129 0.218 0.016 -0.471**
2011 0.076 200 0.208 -0.036 0.318** -0.284 -0.423**
2012 0.094 200 0.195 0.077 0.428** -0.110 -0.517**
2013 0.085 200 0.395*** -0.112 0.013 -0.119 -0.279
2014 0.119 200 0.408*** -0.085 0.308* -0.348* -0.266
2015 0.264 200 0.515*** -0.145 0.417** -0.236 -0.122
2016 0.306 200 0.637*** -0.300** 0.517*** -0.325 -0.372*
2017 0.313 200 0.418*** -0.353** 0.751*** -0.004 -0.508**
2018 0.172 200 0.291* -0.322* 0.418** 0.156 -0.436**
2019 0.111 200 0.573** -0.439** 0.229 -0.099 -0.257
2020 0.120 200 0.315 -0.411*** 0.179 0.229 0.010
2021 0.090 200 0.269* -0.381*** 0.253 -0.072 -0.265*
2022 0.136 200 0.618*** -0.137 0.110 -0.118 -0.257
2023 0.123 200 0.107 -0.009 0.664*** -0.078 -0.132
2024 0.178 171 -0.619*** 0.314 0.808*** 0.282 -0.020

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level.

learning from data that are emphasized in the "bit-
ter lessons." Second, the overall alignment scores
exhibit a statistically significant positive relation-
ship with citations in many individual years, most
prominently after 2011. The coefficients tend to
be largest in later years as well. This indicates that
as deep learning became more established, papers
more closely adhering to principles like scalabil-
ity and learning from data received more citations

on average. The results suggest that the "bitter
lessons" have become increasingly important in the
field of computer vision, aligning with the broader
trend towards data-driven methods and scalable
algorithms in machine learning research.

4.3 Trends in "Bitter Lesson" Alignment

Figure 4 presents the average alignment scores for
each "bitter lesson" dimension across the years
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Table 2: Regression analysis results for the relationship between overall "bitter lesson" alignment scores and citation
impact, stratified by year.

Year R-squared N F-statistic Prob (F-statistic) Overall Alignment Score
2005 0.007 199 1.409 0.237 0.029 [-0.019, 0.076]
2006 0.050 200 10.335 0.002 0.083*** [0.032, 0.134]
2007 0.003 200 0.554 0.457 0.019 [-0.031, 0.068]
2008 0.010 200 1.993 0.160 0.031 [-0.012, 0.075]
2009 0.015 199 2.998 0.085 0.045* [-0.006, 0.097]
2010 0.000 200 0.033 0.856 0.005 [-0.049, 0.059]
2011 0.000 200 0.000 0.993 -0.000 [-0.051, 0.051]
2012 0.024 200 4.898 0.028 0.057** [0.006, 0.109]
2013 0.005 200 0.944 0.333 0.022 [-0.023, 0.067]
2014 0.030 200 6.023 0.015 0.056** [0.011, 0.101]
2015 0.170 200 40.618 0.000 0.141*** [0.097, 0.184]
2016 0.128 200 29.114 0.000 0.129*** [0.082, 0.176]
2017 0.133 200 30.338 0.000 0.182*** [0.117, 0.248]
2018 0.066 200 13.996 0.000 0.098*** [0.047, 0.150]
2019 0.021 200 4.241 0.041 0.061** [0.003, 0.119]
2020 0.040 200 8.325 0.004 0.079*** [0.025, 0.133]
2021 0.002 200 0.407 0.524 -0.017 [-0.068, 0.035]
2022 0.062 200 13.054 0.000 0.097*** [0.044, 0.149]
2023 0.063 200 13.416 0.000 0.099*** [0.046, 0.153]
2024 0.092 171 17.040 0.000 0.127*** [0.066, 0.188]

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level.
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Figure 4: Line plot showing the average alignment scores across years for CVPR papers from 2005 to 2024.

2005-2024. The vertical lines, which depict the
publication of influential papers in machine learn-
ing (not necessarily computer vision), serve as a
guide to understanding the overall evolution of the
field. The averages are calculated across all pa-

pers and all language models (LLMs) employed in
the study. The plot reveals several notable trends
in the alignment of CVPR papers with the princi-
ples of the "bitter lesson." Notably, the dimensions
of "Scalability with Computation" and "Learning
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Over Engineering" exhibit a consistent upward
trend over the years, indicating a growing empha-
sis on scalable algorithms and data-driven learning
methods in CVPR research. This trend aligns with
the broader shift towards deep learning and foun-
dation models in computer vision, emphasizing the
importance of leveraging computation and large
datasets for superior performance.

The period from 2015 to 2020 witnesses a partic-
ularly sharp rise in the average scores for these di-
mensions, coinciding with major advances in deep
learning, such as the application of convolutional
neural networks to computer vision tasks. Inter-
estingly, this time frame corresponds to the period
in which the regression analysis finds the highest
predictive power of alignment scores on citation
counts. This finding suggests that the increasing
alignment of CVPR papers with the principles of
scalability and learning-oriented approaches dur-
ing this period has a significant impact on their
academic influence, as measured by citation met-
rics.

The observed trends in the alignment scores high-
light the evolving landscape of computer vision
research, with a growing emphasis on leveraging
the power of computation and data-driven learning
techniques. The coincidence of these trends with
the increased predictive power of alignment scores
on citation counts underscores the importance of
adhering to the principles of the "bitter lesson" for
achieving impactful research outcomes in the field
of computer vision.

5 Conclusion

Our study examined the alignment of CVPR re-
search with Rich Sutton’s "The Bitter Lesson" over
twenty years, leveraging large language models
to analyze trends. The findings reveal a consis-
tent increase in the adoption of general-purpose
learning algorithms and scalability with computa-
tional resources, reflecting a strong adherence to
the core principles of the "bitter lesson." These
trends underscore the machine learning commu-
nity’s preference for data-driven and computation-
heavy approaches over manual engineering and
domain-specific knowledge.

However, the dimension of "Search over Heuris-
tics" has not experienced a similar upward trajec-
tory, indicating limited integration of search-based
methodologies within the field. This stagnation
contrasts with recent advancements in inference-

time scaling, exemplified by OpenAI’s o1 models,
which emphasize the importance of test-time com-
pute in overcoming diminishing returns. The o1
models’ ability to simulate various strategies and
scenarios during inference, similar to AlphaGo’s
Monte Carlo Tree Search (MCTS), marks a key de-
parture from earlier approaches that relied heavily
on large pre-trained models.

The paradigm shift towards scaling inference
time, driven by the development of larger and
more complex models, has the potential to emu-
late search-like processes. As computational capa-
bilities continue to expand, it is plausible that fu-
ture research may increasingly incorporate search
techniques, thereby enhancing alignment with this
dimension of the "bitter lesson." The dynamic re-
source allocation in o1 models, which adjusts com-
putational resources based on task complexity, fur-
ther underscores the potential for integrating search
methodologies.

Overall, our findings highlight the continued rel-
evance of the "bitter lesson" in shaping the tra-
jectory of computer vision research. By empha-
sizing generality and scalability, the field is well-
positioned to leverage emerging computational ad-
vancements. Future work should explore the inte-
gration of search methodologies and assess their im-
pact on research impact and innovation within com-
puter vision, particularly in light of recent break-
throughs in inference-time scaling.

Limitations

This study, while providing valuable insights into
the evolution of computer vision research, has
several limitations that should be acknowledged.
Firstly, our reliance on large language models
(LLMs) for evaluating research abstracts, while
innovative, introduces potential biases inherent to
these models. The LLMs’ understanding and inter-
pretation of complex scientific concepts may not al-
ways align perfectly with human expert judgment.

Secondly, the absence of human expert evalu-
ation as a ground truth is a significant limitation.
Collecting such human evaluations presents con-
siderable challenges, as it would require a diverse
panel of researchers from various subfields of the
computer vision community. The interdisciplinary
nature of modern computer vision research neces-
sitates expertise in areas ranging from traditional
image processing to deep learning, computer graph-
ics, and even cognitive science. Assembling such
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a panel and achieving consensus on the evaluation
criteria would be a formidable task, both in terms
of logistics and resources.

Furthermore, our analysis is limited to the in-
formation contained in titles and abstracts. While
these elements provide a concise summary of re-
search, they may not capture the full depth and
nuance of the methodologies and findings pre-
sented in the full papers. This limitation could
potentially lead to oversimplification of complex
research ideas.

Lastly, while our study spans two decades of
CVPR proceedings, it does not account for research
published in other venues or unpublished work that
may have influenced the field. This focus on a
single conference, albeit a prestigious one, may not
provide a complete picture of the entire computer
vision research landscape.

Despite these limitations, we believe our study
provides valuable insights into broad trends in com-
puter vision research and its alignment with the
principles of the "bitter lesson." Future work could
address these limitations by incorporating human
expert evaluations, analyzing full paper contents,
and expanding the scope to include a wider range
of publication venues.

Ethics Statement

This study adheres to the ACL Ethics Policy. Our
use of large language models (LLMs) for analyzing
trends in academic literature raises important eth-
ical considerations. We acknowledge that LLMs
may introduce biases when used for direct evalu-
ation of academic work. However, our study fo-
cuses solely on using LLMs to analyze broad trends
rather than to assess individual papers’ quality or
merit. We have addressed the challenges and poten-
tial biases of LLM use for evaluation in our back-
ground section, emphasizing the need for careful
interpretation of results.

All data were collected in accordance with appli-
cable privacy and intellectual property laws. The
titles and abstracts of CVPR papers were collected
from the conference website, which allows for such
collection and analysis under standard terms of
use. Citation counts were collected from Semantic
Scholar, which also permits such collection and
analysis under its standard terms of use. No per-
sonally identifiable information was collected from
human subjects.

Our methodology aims to minimize risks by us-

ing multiple models and focusing on aggregate
trends rather than individual assessments. No
crowd workers or annotators were involved in the
data collection process described in the paper. We
believe this approach provides valuable insights
into the evolution of computer vision research
while maintaining ethical standards in AI-assisted
academic analysis.
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A Prompt and Example Usage

from magentic import prompt

from pydantic import BaseModel, Field

class Score(BaseModel):

explanation: str = Field(description="An explanation for the given score")

score: int = Field(

description="A score from 0 to 10",

ge=0,

le=10,

)

class BitterLessonScores(BaseModel):

learning_over_engineering_score: Score = Field(

description="**Learning Over Engineering**: To what extent does the idea prioritize leveraging

computation through data-driven learning and statistical methods (e.g., machine learning,

deep learning, neural networks, probabilistic models, unsupervised learning, supervised

learning, reinforcement learning, generative models, discriminative models, ensemble

methods, online learning, active learning, semi-supervised learning) over relying on

human-engineered knowledge, heuristics, and domain expertise (e.g., hand-crafted features,

rule-based systems, expert systems, symbolic AI, knowledge representation, logic

programming, constraint satisfaction)?\n\nPlease rate on a scale from 0 to 10, where:\n0

= Completely relies on human engineering, 5 = Equal emphasis on learning and engineering,

10 = Completely prioritizes learning from data",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

search_over_heuristics_score: Score = Field(

description="**Search over Heuristics**: To what degree does the idea emphasize leveraging

computation through search algorithms (e.g., gradient descent, stochastic gradient

descent, evolutionary algorithms, genetic algorithms, simulated annealing, Monte Carlo

methods, Markov chain Monte Carlo, beam search, branch and bound, A* search, heuristic

search) and optimization techniques (e.g., convex optimization, stochastic optimization,

combinatorial optimization, integer programming, quadratic programming, linear

programming, non-linear optimization, multi-objective optimization), rather than

depending on human-designed heuristics and problem-specific strategies (e.g., hand-tuned

parameters, domain-specific rules, expert knowledge, case-based reasoning, heuristic

functions)?\n\nPlease rate on a scale from 0 to 10, where:\n0 = Completely relies on

human-designed heuristics, 5 = Equal emphasis on search and heuristics, 10 = Completely

prioritizes search and optimization",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

scalability_with_computation_score: Score = Field(

description="**Scalability with Computation**:To what extent is the idea based on methods that

can continuously scale and improve performance as the available computational resources

(e.g., processing power, memory, storage, data, distributed computing, cloud computing,

GPU acceleration, TPU acceleration, high-performance computing, edge computing, quantum

computing) increase, taking full advantage of the exponential growth in computing

capabilities (e.g., Moore's Law, Dennard scaling, Amdahl's Law, Gustafson's

Law)?\n\nPlease rate on a scale from 0 to 10, where:\n0 = Does not scale with computation

at all, 5 = Scales moderately with computation, 10 = Scales exceptionally well with

computation",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

generality_over_specificity_score: Score = Field(
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description="**Generality over Specificity**:To what degree does the approach emphasize

general, flexible, and adaptable methods that can learn and capture arbitrary complexity

from data (e.g., deep learning, transfer learning, meta-learning, representation learning,

multi-task learning, few-shot learning, zero-shot learning, self-supervised learning,

unsupervised pre-training, domain adaptation, continual learning, lifelong learning,

incremental learning) rather than attempting to build in complex and detailed models of

the world through manual engineering and domain-specific knowledge (e.g., hand-designed

features, domain-specific ontologies, knowledge graphs, expert systems, rule-based

systems, symbolic representations, logic-based representations)?\n\nPlease rate on a

scale from 0 to 10, where:\n0 = Completely domain-specific and manually engineered, 5 =

Balance of generality and specificity, 10 = Maximally general, flexible and adaptable",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

favoring_fundamental_principles_score: Score = Field(

description="**Favoring Fundamental Principles**: To what extent does the approach adhere to

fundamental principles of computation, mathematics, and information theory (e.g.,

algorithmic efficiency, computational complexity, statistical learning theory,

information entropy, Bayesian inference, Kolmogorov complexity, Occam's razor, Minimum

Description Length, PAC learning, VC dimension, Rademacher complexity, concentration

inequalities, regularization, sparsity, smoothness, stability, convergence, consistency)

rather than focusing on emulating the specific details of human cognition or biological

intelligence (e.g., neuroscience-inspired architectures, cognitive architectures,

embodied cognition, situated cognition, enactivism, dynamical systems theory, ecological

psychology)?\n\nPlease rate on a scale from 0 to 10, where:\n0 = Completely focused on

emulating human/biological details, 5 = Equal focus on principles and human/biological

details, 10 = Completely grounded in fundamental principles",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

@prompt(

"""

Title: {title}

Abstract: {abstract}

We want to evalute this abstract in terms of alignment with "The Bitter Lesson". The main idea of Rich

Sutton's "The Bitter Lesson" is that the most effective AI approaches in the long run are those

that leverage computation and general-purpose methods like search and learning, rather than

human-designed systems that try to build in human knowledge. Evaluate the alignment of the

abstract with the following principles, assigning a score from 0 to 10 for each.

↪→

↪→

↪→

↪→

"""

)

def evaluate_bitter_lesson_alignment(

title: str, abstract: str

) -> BitterLessonScores: ...

## EXAMPLE USAGE

bitter_lesson_scores = evaluate_bitter_lesson_alignment(

title="Attention Is All You Need",
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abstract="The dominant sequence transduction models are based on complex recurrent or

convolutional neural networks in an encoder-decoder configuration. The best performing models

also connect the encoder and decoder through an attention mechanism. We propose a new simple

network architecture, the Transformer, based solely on attention mechanisms, dispensing with

recurrence and convolutions entirely. Experiments on two machine translation tasks show these

models to be superior in quality while being more parallelizable and requiring significantly

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German

translation task, improving over the existing best results, including ensembles by over 2

BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new

single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a

small fraction of the training costs of the best models from the literature. We show that the

Transformer generalizes well to other tasks by applying it successfully to English

constituency parsing both with large and limited training data.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

)

print(bitter_lesson_scores.model_dump_json(indent=2))

# {

# "learning_over_engineering_score": {

# "explanation": "The abstract describes a model called the Transformer that is based solely

on attention mechanisms, dispensing with recurrence and convolutions. This indicates a strong

reliance on learning from data rather than on human-engineered features or domain-specific

knowledge. The significant improvement in BLEU scores across multiple tasks further showcases the

efficacy of data-driven learning methods.",

↪→

↪→

↪→

↪→

# "score": 9,

# },

# "search_over_heuristics_score": {

# "explanation": "The Transformer model prioritizes the use of attention mechanisms to learn

representations from data, which can be considered a form of search over heuristics. The

architecture allows for efficient computation and optimization during training, indicating a

significant emphasis on leveraging search algorithms and optimization techniques rather than

relying on human-designed heuristics.",

↪→

↪→

↪→

↪→

# "score": 8,

# },

# "scalability_with_computation_score": {

# "explanation": "The abstract highlights the Transformer model's parallelizability and

reduced training time, which suggests that the model can scale effectively with increased

computational resources. The use of GPUs to achieve state-of-the-art performance in a relatively

short training time further indicates that the model benefits significantly from additional

computational power.",

↪→

↪→

↪→

↪→

# "score": 9,

# },

# "generality_over_specificity_score": {

# "explanation": "The abstract demonstrates the generality of the Transformer model by

applying it successfully to multiple tasks, including machine translation and English

constituency parsing. The model's ability to generalize well to tasks with both large and limited

training data suggests that it is highly adaptable and not limited to specific domains or tasks.",

↪→

↪→

↪→

# "score": 9,

# },

# "favoring_fundamental_principles_score": {

# "explanation": "The Transformer model is grounded in fundamental principles of computation

and information theory, particularly through its use of attention mechanisms, which can be seen

as an efficient way to handle sequence transductions. The focus on parallelizability and

optimization also aligns with fundamental principles rather than attempting to emulate human

cognition or biological processes.",

↪→

↪→

↪→

↪→

# "score": 8,

# },

# }
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