@inproceedings{kumar-etal-2024-personalized,
title = "Personalized-{ABA}: Personalized Treatment Plan Generation for Applied Behavior Analysis using Natural Language Processing",
author = "Kumar, Aman and
Au, Mareiko and
Semlawat, Raj and
Sridhar, Malavica and
Gurnani, Hitesh",
editor = "Peled-Cohen, Lotem and
Calderon, Nitay and
Lissak, Shir and
Reichart, Roi",
booktitle = "Proceedings of the 1st Workshop on NLP for Science (NLP4Science)",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4science-1.16",
pages = "188--196",
abstract = "Autism Spectrum Disorder (ASD) is a neurological and developmental disability that affects how an individual learns, communicates, interacts with others. Applied Behavior Analysis (ABA) is a gold standard therapy for children and adults suffering from ASD to improve their learning, social, and communication skills. Today, 1 in 36 children are diagnosed with ASD with expectations that this rate will only continue to rise. The supply of certified ABA providers is alarmingly insufficient to meet the needs of children with ASD. In fact, waitlists to receive ABA therapy in the United States exceed 10 months in most states. Clinicians or Board Certified Behavior Analysts (BCBAs) are now experiencing intense bottlenecks around diagnostic evaluations and developing treatment plans quickly enough to support timely access to care. Over the past few years, Artificial Intelligence has changed the way industries operate by offering powerful ways to process, analyze, generate, and predict data. In this paper, we have addressed the problem of both time and supply restrictions faced by ABA providers by proposing a novel method for personalized treatment plan generation and program prediction by leveraging the capabilities of Deep Learning and Large Language Models (LLM). Additionally, we have introduced two separate models for behavior program prediction (F1-Score: 0.671) and skill acquisition program predictions (Rouge-1 Score: 0.476) which will help ABA providers in treatment plan implementation. Results are promising: an AI-generated treatment plan demonstrates a high similarity (Average Similarity Score: 0.915) to the original treatment plan written by a BCBA. Finally, as we partnered with a multi-state ABA provider in building this product, we ran a single-blind study that concluded that BCBAs prefer an AI-generated treatment plan 65 percent of the time compared to a BCBA-generated one.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2024-personalized">
<titleInfo>
<title>Personalized-ABA: Personalized Treatment Plan Generation for Applied Behavior Analysis using Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aman</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mareiko</namePart>
<namePart type="family">Au</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="family">Semlawat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malavica</namePart>
<namePart type="family">Sridhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitesh</namePart>
<namePart type="family">Gurnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for Science (NLP4Science)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lotem</namePart>
<namePart type="family">Peled-Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitay</namePart>
<namePart type="family">Calderon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shir</namePart>
<namePart type="family">Lissak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, FL, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Autism Spectrum Disorder (ASD) is a neurological and developmental disability that affects how an individual learns, communicates, interacts with others. Applied Behavior Analysis (ABA) is a gold standard therapy for children and adults suffering from ASD to improve their learning, social, and communication skills. Today, 1 in 36 children are diagnosed with ASD with expectations that this rate will only continue to rise. The supply of certified ABA providers is alarmingly insufficient to meet the needs of children with ASD. In fact, waitlists to receive ABA therapy in the United States exceed 10 months in most states. Clinicians or Board Certified Behavior Analysts (BCBAs) are now experiencing intense bottlenecks around diagnostic evaluations and developing treatment plans quickly enough to support timely access to care. Over the past few years, Artificial Intelligence has changed the way industries operate by offering powerful ways to process, analyze, generate, and predict data. In this paper, we have addressed the problem of both time and supply restrictions faced by ABA providers by proposing a novel method for personalized treatment plan generation and program prediction by leveraging the capabilities of Deep Learning and Large Language Models (LLM). Additionally, we have introduced two separate models for behavior program prediction (F1-Score: 0.671) and skill acquisition program predictions (Rouge-1 Score: 0.476) which will help ABA providers in treatment plan implementation. Results are promising: an AI-generated treatment plan demonstrates a high similarity (Average Similarity Score: 0.915) to the original treatment plan written by a BCBA. Finally, as we partnered with a multi-state ABA provider in building this product, we ran a single-blind study that concluded that BCBAs prefer an AI-generated treatment plan 65 percent of the time compared to a BCBA-generated one.</abstract>
<identifier type="citekey">kumar-etal-2024-personalized</identifier>
<location>
<url>https://aclanthology.org/2024.nlp4science-1.16</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>188</start>
<end>196</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Personalized-ABA: Personalized Treatment Plan Generation for Applied Behavior Analysis using Natural Language Processing
%A Kumar, Aman
%A Au, Mareiko
%A Semlawat, Raj
%A Sridhar, Malavica
%A Gurnani, Hitesh
%Y Peled-Cohen, Lotem
%Y Calderon, Nitay
%Y Lissak, Shir
%Y Reichart, Roi
%S Proceedings of the 1st Workshop on NLP for Science (NLP4Science)
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, FL, USA
%F kumar-etal-2024-personalized
%X Autism Spectrum Disorder (ASD) is a neurological and developmental disability that affects how an individual learns, communicates, interacts with others. Applied Behavior Analysis (ABA) is a gold standard therapy for children and adults suffering from ASD to improve their learning, social, and communication skills. Today, 1 in 36 children are diagnosed with ASD with expectations that this rate will only continue to rise. The supply of certified ABA providers is alarmingly insufficient to meet the needs of children with ASD. In fact, waitlists to receive ABA therapy in the United States exceed 10 months in most states. Clinicians or Board Certified Behavior Analysts (BCBAs) are now experiencing intense bottlenecks around diagnostic evaluations and developing treatment plans quickly enough to support timely access to care. Over the past few years, Artificial Intelligence has changed the way industries operate by offering powerful ways to process, analyze, generate, and predict data. In this paper, we have addressed the problem of both time and supply restrictions faced by ABA providers by proposing a novel method for personalized treatment plan generation and program prediction by leveraging the capabilities of Deep Learning and Large Language Models (LLM). Additionally, we have introduced two separate models for behavior program prediction (F1-Score: 0.671) and skill acquisition program predictions (Rouge-1 Score: 0.476) which will help ABA providers in treatment plan implementation. Results are promising: an AI-generated treatment plan demonstrates a high similarity (Average Similarity Score: 0.915) to the original treatment plan written by a BCBA. Finally, as we partnered with a multi-state ABA provider in building this product, we ran a single-blind study that concluded that BCBAs prefer an AI-generated treatment plan 65 percent of the time compared to a BCBA-generated one.
%U https://aclanthology.org/2024.nlp4science-1.16
%P 188-196
Markdown (Informal)
[Personalized-ABA: Personalized Treatment Plan Generation for Applied Behavior Analysis using Natural Language Processing](https://aclanthology.org/2024.nlp4science-1.16) (Kumar et al., NLP4Science 2024)
ACL